
Locking under Pfair Scheduling

PHILIP HOLMAN

University of North Carolina at Chapel Hill

and

JAMES H. ANDERSON

University of North Carolina at Chapel Hill

We present several locking synchronization protocols for Pfair-scheduled multiprocessor sys-
tems. We focus on two classes of protocols. The first class is only applicable in systems in which
all critical sections are short relative to the length of the scheduling quantum. In this case, effi-
cient synchronization can be achieved by ensuring that all locks have been released before tasks
are preempted. This is accomplished by exploiting the quantum-based nature of Pfair scheduling,
which provides a priori knowledge of all possible preemption points. The second and more general
protocol class is applicable to any system. For this class, we consider the use of a client-server
model. We also discuss the viability of inheritance-based protocols in Pfair-scheduled systems.

Categories and Subject Descriptors: C.3 [Computer Systems Organization]: Special-Purpose
and Application-Based Systems—Real-Time and Embedded Systems; D.4.1 [Operating Sys-
tems]: Process Management—Multiprocessing; Mutual Exclusion; Scheduling; Synchronization;
J.7 [Computer Applications]: Computers in Other Systems—Real time

General Terms: Algorithms, Design

Additional Key Words and Phrases: Locking, Multiprocessor, Pfairness, Real-time, Scheduling,
Semaphore, Supertask, Synchronization

1. INTRODUCTION

In recent years, there has been considerable interest in fair scheduling algorithms
for multiprocessor systems [Anderson and Srinivasan 2000a; 2000b; 2001; Baruah
et al. 1996; Baruah et al. 1995; Chandra et al. 2000; Moir and Ramamurthy 1999;
Srinivasan and Anderson 2002]. Under fair disciplines, each task is assigned a
weight that represents its share of the system’s resources. At present, fair scheduling
algorithms are the only known means for optimally scheduling recurrent real-time
tasks on multiprocessors, and thus are of importance from a theoretical perspective.
In addition, there has been growing practical interest in such algorithms. Ensim
Corp., for example, an Internet service provider, has deployed multiprocessor fair
scheduling algorithms in its product line [Chandra et al. 2000].

One limitation of most prior work on multiprocessor fair scheduling algorithms is

Work supported by NSF grants CCR 9988327, ITR 0082866, CCR 0204312, and CCR 0309825.
Preliminary versions of some content appeared previously in [Holman and Anderson 2002b; 2002a].
Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 20TBD ACM 0000-0000/20TBD/0000-00000 $5.00

ACM Journal Name, Vol. TBD, No. TBD, TBD 20TBD, Pages 0–0??.

Locking under Pfair Scheduling · 1

that only independent tasks that do not synchronize or share resources have been
considered. In contrast, tasks in real systems usually are not independent. Syn-
chronization entails additional overhead, which must be taken into account when
determining system feasibility [Anderson et al. 1997; Baker 1991; Rajkumar 1990;
1991; Rajkumar et al. 1988; Sha et al. 1990]. Unfortunately, prior work on real-time
synchronization has been directed at uniprocessor systems, or systems implemented
using non-fair scheduling algorithms (or both), and thus cannot be directly applied
in fair-scheduled multiprocessor systems. Indeed, synchronization issues in fair-
scheduled uniprocessor systems and related bandwidth-preserving server schemes
were first considered only very recently [de Niz et al. 2001; Gai et al. 2001; Lamastra
et al. 2001; Caccamo and Sha 2001].

In this paper, we consider the problem of incorporating lock-based synchroniza-
tion into fair-scheduled multiprocessor systems. (In related work [Holman and An-
derson 2002b; 2005], we showed how to incoporate lock-free synchronization within
such systems.) The notion of fairness that we consider is the Pfairness constraint
proposed by Baruah et al. [Baruah et al. 1996]. Under Pfair scheduling, each task
is assigned a weight , which is the fraction of a single processor required by that
task. Scheduling decisions are then made using a fixed-size scheduling quantum so
that each task receives approximately the amount of processor time designated by
its assigned weight. We also limit attention to the scheduling of periodic [Liu and
Layland 1973] and sporadic [Mok 1983] tasks. A periodic (respectively, sporadic)
task is invoked repeatedly to generate a sequence of identical jobs; consecutive in-
vocations are separated in time by a given exact (respectively, minimum) delay.
Despite this restricted focus, many of our results can be easily adapted to other
fair scheduling algorithms and notions of recurrent execution as well.

Contributions of this paper . This paper consists of four contributions. First, we
begin by deriving rules by which independent periodic and sporadic tasks can be
supported in a realistic Pfair-scheduled system, i.e., we assume that the quantum
size is given rather than being arbitrarily selectable. This support provides for
task suspensions and also forms a basis for the analysis presented later in the
paper. Second, we consider the viability of using inheritance-based protocols in
Pfair-scheduled systems. Inheritance occurs when a lock-holding task temporarily
adopts characteristics of tasks that it blocks. Due to the effectiveness of inheritance
on uniprocessors [Rajkumar 1990; 1991], it is an obvious alternative of interest.
Third, we propose an optimized technique for supporting synchronization under
quantum-based scheduling when critical sections are shorter than the quantum
length. Finally, we propose a simple server-based protocol to support long critical
sections. For each protocol, we present supporting analysis.

This remainder of the paper is organized as follows. After summarizing revelant
background information and presenting basic results in Section 2, we present our
rules for assigning weights to independent periodic and sporadic tasks in Section 3.
These rules serve as a basis for the remainder of the results. We begin our discussion
of synchronization by considering the viability of inheritance-based protocols in
Section 4. In Section 5, we present two protocols designed for short critical sections.
We then present our server-based protocol, which supports arbitrarily long critical

ACM Journal Name, Vol. TBD, No. TBD, TBD 20TBD.

2 · P. Holman and J. Anderson

sections, in Section 6. A simple experimental comparison of these protocol is then
presented in Section 7. We conclude in Section 8.

2. BACKGROUND

In this section, we summarize background information that is related to the re-
sults presented herein. In addition, we present several basic results that drive the
derivations presented later in the paper.

Periodic and sporadic tasks . Let τ denote a set of periodic [Liu and Layland 1973]
and sporadic [Mok 1983] tasks to be scheduled on M processors. Each periodic
and sporadic task T is characterized by four parameters: an offset T.φ, a per-job
execution requirement T.e, a period T.p, and a relative deadline T.d. Each time the
task is invoked, a job is released that must complete within T.d time units. The
first invocation occurs at time T.φ. Under the periodic (respectively, sporadic) task
model, the next invocation occurs exactly (respectively, at least) T.p time units
after the previous invocation. Each job requires T.e units of processor time to
complete. We let T = P(φ, e, p, d) (respectively, T = S(φ, e, p, d)) denote a periodic
(respectively, sporadic) task T with T.φ = φ, T.e = e, T.p = p, and T.d = d.

Multi-phase representation. To represent jobs with critical sections and suspensions,
we use a multi-phase representation. This representation decomposes each job J
into a sequence of J.k phases. (When the range of a phase index i is not explicitly
given, the range 1 ≤ i ≤ J.k should be assumed.) Each phase J [i] is either an
execution phase or a suspension phase. Since all jobs of a task are identical, T [i]

will be used to denote the ith phase of any job of task T .
An execution phase is described by two parameters. T [i].e (respectively, T [i].R)

denotes the execution requirement (respectively, resource) of phase T [i]. T [i].R
indicates which (non-processor) shared resource1 is required by T [i]. If T [i] is not a
critical section, then T [i].R = ∅. We let T [i] = C(R, e) denote an execution phase
T [i] with T [i].R = R and T [i].e = e.

A suspension phase T [i] is characterized only by its maximum duration,2 denoted
T [i].θ. Suspension phases are assumed to never occur consecutively. (Consecutive
suspensions can be expressed as a single phase.) We let T [i] = I(θ) denote a
suspension phase T [i] with T [i].θ = θ.

Pfair scheduling . Under Pfair scheduling, each task T is characterized by a weight
T.w in the range (0, 1]. Conceptually, T.w is the fraction of a single processor to
which T is entitled. We let T = PF(w) denote a Pfair task with T.w = w.

Time is subdivided into a sequence of fixed-length slots. To simplify the pre-
sentation, we use the slot length as the basic time unit, i.e., slot i corresponds to
the time interval [i, i + 1). Within each slot, each processor may be allocated to at
most one task. For instance, in Figure 1(b), task B is scheduled in slot 3, which

1This model does not support nested critical sections. Consequently, deadlock cannot occur.
Adding support for nested critical sections and handling the complications introduced by them
are topics for future work.
2Knowing the minimum duration is often useful also; however, for our purposes, the maximum
duration is sufficient.

ACM Journal Name, Vol. TBD, No. TBD, TBD 20TBD.

Locking under Pfair Scheduling · 3

1050

A
B

C

1.00
0.75
0.50
0.25

A
L
L
O

C
A

T
IO

N

TIME

(a) Fluid scheduler

0
Q

−Q

0
Q

−Q

0
Q

−Q

0 5 10

1.00
0.75
0.50
0.25

A
L
L
O

C
A

T
IO

N

TIME

CC C C CA B BA A

A

L
A

G B

C

(b) Lag-based scheduler

Fig. 1. Sample schedules for τ = {A, B, C} where A = PF
(

1
4

)
, B = PF

(
1
4

)
, and C = PF

(
1
2

)
.

(a) Schedule produced by a fluid scheduler. (b) Schedule produced by a Pfair lag-based scheduler.

corresponds to the time interval [3, 4). (The rest of this figure is considered in de-
tail below.) Task migration is allowed. We let Q denote the quantum size, i.e., the
amount of processor time actually provided by each processor within each slot. In
a real system, some processor time is unavoidably consumed in each slot by system
activities, such as scheduling. We refer to such overhead as per-slot overhead. For
example, if up to 10% of the processor time within each time slot is consumed
by system activities, then Q = 0.9 (i.e., 90% of the slot length). When practical
overheads are ignored, as is commonly done in the literature, Q = 1 (i.e., 100% of
the slot length).

Pfair scheduling tracks the allocation of processor time in a fluid schedule; devi-
ation is formally expressed as lag(T, t), which is defined below.

lag(T, t) = fluid(T, 0, t) − received(T, 0, t) (1)

In the above equation, received(T, t1, t2) denotes the amount of processor time
received by T over [t1, t2), while fluid(T, t1, t2) denotes the amount of processor
time guaranteed by fluid scheduling over this interval. As explained in [Holman
2004], fluid(T, t1, t2) is defined as shown below.3

fluid(T, t1, t2) = T.w · (t2 − t1) · Q (2)

The above formula follows from the fact that each processor provides (t2 − t1) · Q
units of processor time to tasks over [t1, t2). Each task T is then entitled to a
fraction T.w of this quantity. (See [Holman 2004] for a more detailed explanation
of fluid scheduling.) Using this notion of lag, the Pfairness timing constraint for a

3Because Q = 1 is commonly assumed, Q typically does not appear in similar formulas in the
literature.

ACM Journal Name, Vol. TBD, No. TBD, TBD 20TBD.

4 · P. Holman and J. Anderson

task T can be formally defined as shown below.

for all t, |lag(T, t) | < Q (3)

Informally, T ’s allocation must always be within one quantum of its fluid allocation.
Figure 1(a) shows ideal (i.e., Q = 1) fluid and Pfair uniprocessor schedules for a

task set containing three Pfair tasks: A = PF
(

1
4

)
, B = PF

(
1
4

)
, and C = PF

(
1
2

)
.

In Figure 1(b), changes in each task’s lag are shown across the top of the schedule.
Baruah et al. [Baruah et al. 1996] showed that a schedule satisfying (3) exists on

M processors for a set τ of Pfair tasks if and only if the following condition holds.∑
T∈τ

T.w ≤ M (4)

Subtasks and windows . The use of quantum-based scheduling effectively subdivides
each task into a sequence of quantum-length subtasks. Scheduling constraints, e.g.,
(3), have the effect of specifying a window of slots in which each subtask must be
scheduled. We let Ti denote the ith subtask of task T , and let ω(Ti) denote the
window of that subtask. Figure 2(a) shows the window within which each subtask
of the task PF

(
3
10

)
must execute based on (3). For example, ω(T2) = [3, 7). ω(Ti)

extends from Ti’s pseudo-release,4 denoted r(Ti), to its pseudo-deadline, denoted
d(Ti). In Figure 2(a), r(T2) = 3 and d(T2) = 7. A schedule satisfies Pfairness if
and only if each subtask Ti executes in the interval [r(Ti) , d(Ti)). Finally, b(Ti)
is the number of slots by which the windows of Ti and Ti+1 overlap, i.e., b(Ti) =
d(Ti) − r(Ti+1) [Anderson and Srinivasan 2000a].

Anderson and Srinivasan noted that the use of a rational weight results in a
repeating, symmetric series of windows [Anderson and Srinivasan 2000a]. We refer
to each occurrence of the series as a cycle. For instance, in Figure 2(a), each cycle
consists of three windows that span ten slots. Two cycles are shown: the first
spans [0, 10) while the second spans [10, 20). Cycles of a task T are defined by two
parameters: the per-cycle execution requirement E(T) and the cycle period P(T).
Given a weight T.w = a

b , where a and b are integers satisfying b ≥ a > 0, E(T)
and P(T) are defined by a

gcd(a,b) and b
gcd(a,b) , respectively [Anderson and Srinivasan

2000a]. For instance, in Figure 2(a), E(T) = 3
gcd(3,10) = 3 and P(T) = 10

gcd(3,10) = 10.
Interest in E(T) and P(T) stems from the fact that these values define the place-

ment of disjoint windows. More formally, these parameters satisfy Property WC,
shown below.

Window Cycles (WC):

b(Ti) =
{

0 , if E(T) | i
1 , otherwise

In the above property, a | b holds when b is divisible by a. Informally, Property WC
states that the last subtask in each cycle does not overlap with its successor, while
all other subtasks within the cycle do. Hence, cycles do not overlap.

4The “pseudo” prefix avoids confusion with job releases and deadlines. This prefix will be omitted
when the proper interpretation is clearly implied.

ACM Journal Name, Vol. TBD, No. TBD, TBD 20TBD.

Locking under Pfair Scheduling · 5

PF-Window IS-Window Absent PF-Window

LEGEND

T1

T2

T3

T4

T5

T

5 10 15 20

6

0

(a) Pfair task

T1

T4

T2

T3

IS Delay

5 10 15 200

(c) ISfair task

T1

T3
T2

T6
T5
T4

5 10 15 200

(b) ERfair task

T1

T4

T2

5 10 15 20

IS Delay

0

(d) GISfair task

Fig. 2. The window layout for a task with weight 3
10

is shown under the Pfair task model and
its variants. (a) Normal window layout under the Pfair task model. (b) Early releasing has been
used so that each grouping of three subtasks becomes eligible simultaneously. (In reality, each
subtask will not be eligible until its predecessor is scheduled.) (c) Windows appear as in inset (b)
except that T2’s release is now preceded by an intra-sporadic delay of six slots. (T5 and T6 are
not shown.) (d) Windows appear as in inset (c) except that T3 is now absent.

Pfair variants. Srinivasan and Anderson [Anderson and Srinivasan 2000a; Srini-
vasan and Anderson 2002] proposed three additional task models for use under
Pfair scheduling. Early-release fairness (ERfairness) allows subtasks to execute be-
fore their pseudo-releases, provided that they are still prioritized by their pseudo-
deadlines. Intra-sporadic fairness (ISfairness) extends ERfairness by allowing win-
dows to be right-shifted (i.e., delayed relative to their Pfair placement). However,
the relative separation between each pair of windows must be at least that guar-
anteed under Pfairness. Under ISfairness, b(Ti) is the maximum number of slots
by which two windows can overlap, i.e., the overlap when no delays occur. Finally,
generalized intra-sporadic fairness (GISfairness) extends ISfairness by allowing sub-
tasks to be omitted. Figure 2(b)–(d) illustrates these variants. Since the GIS model
generalizes the ER and IS models, we restrict attention to the Pfair and GIS task
models in the remainder of the paper. A GISfair task will be denoted by GIS(w).

Pfair schedulers. Several Pfair algorithms have been proposed, including PF [Baruah
et al. 1996], PD [Baruah et al. 1995], PD2 [Anderson and Srinivasan 2001], and
EPDF [Anderson and Srinivasan 2000b; Srinivasan and Anderson 2003a]. Each
of PF, PD, and PD2 optimally schedules Pfair tasks, i.e., its use will result in
a Pfair schedule whenever (4) is satisfied. In addition, Anderson and Srinivasan
proved that PD2 correctly schedules ERfair, ISfair, and GISfair tasks whenever (4)
holds. EPDF optimally schedules Pfair tasks only for systems of at most two pro-
cessors [Anderson and Srinivasan 2000b]. Despite this, EPDF offers some practical
advantages over the optimal algorithms, such as lower scheduling overhead.

In this paper, we consider only the guarantees provided by the scheduler and base
ACM Journal Name, Vol. TBD, No. TBD, TBD 20TBD.

6 · P. Holman and J. Anderson

our work on properties that follow from these guarantees. There are two primary
benefits to abstracting the scheduler in this way. First, our results can be applied
easily to both the optimal and sub-optimal Pfair schedulers. As demonstrated by
Anderson and Srinivasan [Anderson and Srinivasan 2000b], sub-optimal policies,
such as EPDF, are capable of providing fairness guarantees similar to, but weaker
than, the Pfairness guarantee. Such relaxed fairness poses an interesting trade-off
since weaker guarantees are often offset by practical gains, such as lower scheduling
overhead. By enabling the use of our results under a variety of schedulers, we
lay the foundation for a quantitative evaluation of this trade-off. Second, more
scheduling policies will likely be proposed in the future. By developing a model for
Pfair-like schedulers, we provide some forward compatibility with future work and
try to avoid the need to revisit this issue each time a new scheduler is proposed.

To characterize scheduling guarantees, we use a four-parameter model, previously
proposed by us in [Holman and Anderson 2003]. First, we let β− (≥ 1) and β+ (≥ 1)
denote (real-valued) lower and upper lag scalers. These scalers are multiplied by
−Q and Q, respectively, to yield the actual lag bounds guaranteed by the scheduler,
as shown below.

for all t, −Q · β− < lag(T, t) < Q · β+ (5)

To simplify the presentation, we let

β = β+ + β−. (6)

The constraint given by (5) generalizes (3), which corresponds to the β− = β+ = 1
case.

Relaxing lag bounds scales each subtask window. However, due to the use of
quantum-based scheduling, windows are clipped to slot boundaries, resulting in
non-uniform scaling. We refer to the windows defined by (5) as relaxed windows.
Figure 3(b) shows the first six relaxed windows for a task with weight 3

10 when
β− = β+ = 1.5; Figure 3(a) shows the corresponding Pfair window layout. Notice
that ω(T2)’s release occurs two slots earlier in Figure 3(b), while ω(T3)’s release
occurs only one slot earlier.

The second parameter pair is εr and εd, which denote the number of slots by which
each pseudo-release and pseudo-deadline, respectively, is extended (beyond its lag-
based placement). More precisely, the scheduler treats a subtask with a relaxed
window spanning [tr, td) as having the window [tr − εr, td + εd). Figure 3(c) shows
the window layout obtained by β− = β+ = 1.5, εr = 0, and εd = 1. Notice that each
deadline is extended by one slot, relative to Figure 3(b), due to εd. Such windows
are called extended windows. For example, T2 in Figure 3(c) has an extended
deadline at time 10. We let

ε = εr + εd. (7)

Basic properties. We now state without proof basic properties of the scheduler
model described above. (These properties are proved in an appendix.) All results
apply to the case in which no IS delays occur.

The first theorem, shown below, provides formulas for determining the placement
of extended windows. These formulas represent only the guarantee provided by the
ACM Journal Name, Vol. TBD, No. TBD, TBD 20TBD.

Locking under Pfair Scheduling · 7

20151050

T1

T2

T3

T4

T5

T6

(a) Pfair Windows

20151050

T5

4T

2T

6T

3T

1T

(b) Relaxed Windows when β+ = β− = 1.5

20151050

5

4

T
T

T

2T

6

3T

1T

(c) Extended Windows when β+ = β− = 1.5, εr = 0, and εd = 1

Fig. 3. The first six windows of a task with weight 3
10

are shown up to time 20. (a) Windows
defined by Pfairness constraint. (b) Relaxed windows defined by β+ = β− = 1.5. (c) Extended
windows defined by β+ = β− = 1.5, εr = 0, and εd = 1.

scheduler; we make no assumptions about how this guarantee is provided by the
scheduler, beyond those already stated.

Theorem 2.1. When no IS delays occur, the following formulas define the place-
ment of extended windows:

r(Ti) =
⌊

i − β+

T.w

⌋
− εr d(Ti) =

⌈
(i − 1) + β−

T.w

⌉
+ εd.

The next lemma bounds the number of slots by which consecutive subtask win-
dows can overlap.

Lemma 2.2. When no IS delays occur, each pair of consecutive subtasks Ti and
Ti+1 satisfy the inequality shown below.

⌈
β − 2
T.w

⌉
+ ε ≤ d(Ti) − r(Ti+1) ≤

⌈
β − 2
T.w

⌉
+ ε + 1

ACM Journal Name, Vol. TBD, No. TBD, TBD 20TBD.

8 · P. Holman and J. Anderson

If Ti is the last subtask in a cycle, then

d(Ti) − r(Ti+1) = B(T) def=
⌈

β− − 1
T.w

⌉
+

⌈
β+ − 1
T.w

⌉
+ ε.

The previous lemma introduces the new parameter B(T), which is the number
of slots by which consecutive cycles of T overlap (when no IS delays occur). Recall
that B(T) = 0 under Pfairness.

The next lemma bounds the number of slots spanned by a sequence of n consec-
utive windows, which we refer to as an n-span. For instance, the interval [3, 13) in
Figure 3(a) is a 3-span since r(T2) = 3 and d(T4) = 14. In general, each n-span
corresponds to an interval [r(Ti+1) , d(Ti+n)) for some integer i.

Lemma 2.3. When no IS delays occur, every sequence of consecutive subtasks
Ti+1, . . . , Ti+n satisfies the following:

⌈
n + β − 2

T.w

⌉
+ ε ≤ d(Ti+n) − r(Ti+1) ≤

⌈
n + β − 2

T.w

⌉
+ ε + 1.

When Ti+1 begins a cycle (i.e., E(T) | i holds) and subtask i + n ends a cycle (i.e.,
E(T) | (i + n) holds),

d(Ti+n) − r(Ti+1) =
n

T.w
+ B(T) .

Locking . Let Γ denote the set of all locks used by tasks in τ . A lock-requesting task
T issues a request for a lock � by invoking RequestLock. Until � is granted, T ’s
request is pending . Pending requests for each lock � are assumed to be prioritized
using a FIFO policy.5 Once � is granted to T , we refer to T as the lock-holding task
until it completes the corresponding call to ReleaseLock. If a task U has a pending
request for � while T holds �, then T is said to block U . Similarly, if tasks T and
U both have pending requests for �, then these requests are competing and T and
U are competitors. Finally, we assume that the overhead of the RequestLock and
ReleaseLock calls are factored into the execution requirements of the appropriate
phases of each task.

To motivate the need for locking protocols under Pfair scheduling, consider a
task T with a long critical section that always executes at its normal rate, i.e.,
no attempt is made to speed its critical section. Let C denote the amount of
processor time required by the critical section. Since T ’s average execution rate is
given by Q · T.w, the execution of its critical section will make the associated lock
unavailable to other tasks for approximately C

Q·T.w time units for sufficiently long
intervals. Hence, tasks with low weights can potentially make locks unavailable for
very long durations, which suggests a need for techniques that speed the execution
of critical sections.

5Locking protocols typically prioritize requests by the scheduling priorities of the requesting tasks.
However, this is not practical under Pfair scheduling because priorities are not fixed during critical
sections. We consider a FIFO prioritization because it facilitates analysis and avoids request
starvation. Consideration of other request prioritizations is left as future work.

ACM Journal Name, Vol. TBD, No. TBD, TBD 20TBD.

Locking under Pfair Scheduling · 9

3. MAPPING INDEPENDENT TASKS

Before returning to the issue of locking, we first present rules for selecting a task
weight based on the parameters of an independent periodic or sporadic task. More
precisely, we explain how to map the requirements of an independent periodic or
sporadic task T onto a GIS task U . These rules will also be used when accounting
for synchronization in the sections that follow.

Motivation. Prior work (e.g., [Anderson and Srinivasan 2000a; Baruah et al. 1996;
Baruah et al. 1995]) considered simply letting U.w = T.e

T.p , under the assumption
that T.φ = 0 and T.d = T.p. This assignment is lacking for two reasons. First,
such an assignment does not account for task suspensions. ISfairness provides some
limited support in that suspensions that begin and end on slot boundaries can be
modelled as IS delays. The rules that follow generalize support for suspensions.
Second, the rule given above does not consider practical constraints, including the
impact of Q. Indeed, this assignment assumes that the quantum size can be made
arbitrarily small so that T.e is a multiple of Q for all T . In reality, context-switching
overhead imposes a practical lower limit on size of the scheduling quantum. The
rules presented below include Q as an explicit parameter, and hence provide a more
realistic assessment of the cost of supporting periodic and sporadic tasks under a
Pfair scheduler.

Constraints. The rules presented here are based on the following constraints:6

(1) Each job of T is associated with a unique group of k consecutive cycles of U ;
each cycle is associated with only one job of T .

(2) The extended release of the first subtask associated with a job must occur on
a slot boundary at or after the job’s release.

(3) The extended deadline of the last subtask associated with a job must occur on
a slot boundary at or before the job’s deadline.

(4) All subtasks must satisfy the minimum separation imposed by the GIS task
model.

If the above constraints are satisfied, then all jobs will meet their deadlines provided
that a sufficient amount of processor time is allocated to each job while it is not
suspended.

Without suspensions. First, consider the problem of scheduling a periodic task
when all jobs are released on slot boundaries.

Lemma 3.1. If T is an independent periodic task that never suspends and both
T.φ and T.p are integers, then each job of T will complete by its deadline when
executed within the allocation of a GIS task U with weight

U.w =

⌈
T.e
Q

⌉
min (�T.d� − B(U) , T.p)

,

provided that U.w ∈ (0, 1].

6These constraints are not necessary, i.e., rules that do not satisfy these constraints may also
work correctly.

ACM Journal Name, Vol. TBD, No. TBD, TBD 20TBD.

10 · P. Holman and J. Anderson

Proof. First, since no suspensions occur, associating
⌈

T.e
Q

⌉
subtasks with each

job is sufficient to ensure that the per-job execution requirement is satisfied. In the
remainder of the proof, we construct a window layout that ensures that each job
receives its associated time by its deadline, while respecting the four constraints
given above. We then use the properties proved earlier to determine a weight
capable of producing the desired layout. If a job completes while unused associated
subtasks remain, then these subtasks can simply be marked absent.

Because T.φ and T.p are integers,7 it follows that T.φ+k ·T.p is an integer also for
all integers k ≥ 0. Hence, every job release coincides with a slot boundary. Consider
a specific job J that arrives at time a. We let the extended release of the first subtask
associated with the job occur at this time, which satisfies Constraint 2. Recall that
the next job will be handled by a separate cycle. By Lemma 2.2, consecutive cycles
of U can overlap by up to B(U). Hence, since the next job’s first cycle begins at
a + T.p, the extended deadline of the last subtask associated with J must occur at
or before time a + T.p + B(U) to satisfy Constraint 4. In addition, J ’s deadline
occurs at time a+T.d. It follows that this same extended deadline must occur at or
before this time in order to satisfy Constraint 3. Therefore, the extended deadline
must occur at or before a+min (�T.d� , T.p + B(U)). Hence, the total window span
of the cycle(s) associated with J must be at most min (�T.d� , T.p + B(U)).

We can now use previous results to select a weight such that exactly the span
given above is ensured. (A shorter span could be used instead, but would result in
an unnecessarily high weight.) Recall that

⌈
T.e
Q

⌉
subtasks must be associated with

each job. By Lemma 2.3, a span of s can be ensured across one or more cycles
consisting of n subtasks (combined) by letting U.w = n

s−B(U) . Substituting s =

min (�T.d� , T.p + B(U)) and n =
⌈

T.e
Q

⌉
into this formula establishes the lemma.

Figure 4(a) shows the application of Lemma 3.1 to the task T = P(5, 3.2Q, 20, 18)
when the scheduler is described by β− = β+ = 1, εr = 0, and εd = 1. Hence,
B(U) = 1. The other insets, which consider this same scheduler with different
tasks, are considered later. By Lemma 3.1, U.w = �3.2�

min(�18�−1, 20) = 4
17 . Notice how

IS delays are used to ensure that subtask windows properly align properly with
the associated job’s interval. (Job releases and deadlines are depicted using up and
down arrows, respectively.)

The above lemma highlights a problem that is common under rate-based schedul-
ing: weight-assignment formulas are often functions of the task’s weight. In this
case, the B(U) term causes the problem. Applying the formula given in Lemma 2.2,
the weight assignment given by Lemma 3.1 becomes

U.w =

⌈
T.e
Q

⌉

min
(
�T.d� −

(⌈
β−−1
U.w

⌉
+

⌈
β+−1
U.w

⌉
+ ε

)
, T.p

) .

Notice that U.w now occurs on both sides of the formula. Due to the ceiling
operators in the right-hand side, these terms cannot be combined. In this case,

7Recall that the slot length is the basic time unit. Hence, in the context of this paper, a time
value is a multiple of the slot length if and only if the value is an integer.

ACM Journal Name, Vol. TBD, No. TBD, TBD 20TBD.

Locking under Pfair Scheduling · 11

Intra−Sporadic DelayJob DeadlineJob Release

LEGEND

10 20 30 40 50TIME

U

T

0

(a) Periodic task with all releases on slot boundaries

10 20 30 40 50TIME

U

T

0

(b) Periodic or sporadic task

T

10 20 30 40 50TIME

U

0

(c) Multi-phase periodic task with all releases on slot boundaries

10 20 30 40 50TIME

U

T

0

(d) Multi-phase periodic or sporadic task

Fig. 4. Examples of mapping a periodic or sporadic task T onto a GIS task U when the
global scheduler is described by β− = β+ = 1, εr = 0, and εd = 1. Examples in-
clude (a) T = P(5, 3.2Q, 20, 18), (b) T = S(5, 3.2Q, 20, 18), (c) T = P(5, 3.2Q, 20, 18) :

C(∅, 2.1Q) ; I(3.2) ;C(∅, 1.1Q), and (c) T = S(5, 3.2Q, 20, 18) : C(∅, 2.1Q) ; I(3.2) ;C(∅, 1.1Q).

ACM Journal Name, Vol. TBD, No. TBD, TBD 20TBD.

12 · P. Holman and J. Anderson

this dependence can be avoided by using a scheduler for which β+ = β− = 1, as
is done in our example above. However, in general, some parameters may require
the use of iterative computation8 or similar techniques. Since these techniques are
a well-studied area of mathematics, we do not discuss them here.

The next lemma characterizes the cost of allowing jobs to be released off slot
boundaries.

Lemma 3.2. If T is an independent periodic or sporadic task that never suspends,
then each job of T will complete by its deadline when executed within the allocation
of a GIS task U with weight

U.w =

⌈
T.e
Q

⌉
min (�T.d� − B(U) , �T.p�) − 1

,

provided that U.w ∈ (0, 1].

Proof. This proof closely resembles that of the previous lemma. Suppose a
job release occurs t∆ (< 1) time units before a slot boundary. In this case, the
extended release of the first subtask associated with the job will not occur until
the next slot boundary. Following identical reasoning to that given in the pre-
vious lemma, the span of the cycle(s) associated with each job can be at most
min (�T.d − t∆� , �T.p − t∆� + B(U)) ≥ min (�T.d� , �T.p� + B(U))−1. The remain-
der of the proof follows as in the previous lemma.

Figure 4(b) shows the application of Lemma 3.2 to T = S(5, 3.2Q, 20, 18). Ap-
plying the lemma yields U.w = �3.2�

min(�18�−1,20)−1 = 4
16 = 1

4 , which implies that 4
cycles are associated with each job.

With suspensions. The next two lemmas generalize Lemmas 3.1 and 3.2 by adding
support for suspension phases. The key idea is to insert a pessimistic IS delay that
prevents the task from being granted processor time while it may be suspended.
The proof of the following lemma explains this approach in more detail.

Lemma 3.3. If T is an independent multi-phase periodic task and both T.φ and
T.p are integers, then each job of T will complete by its deadline when executed
within the allocation of a GIS task U with weight

U.w =

∑
T [i]∈C(∅)

⌈
T [i].e

Q

⌉

min (�T.d� − B(U) , T.p) − ∑
T [i]∈I

(⌈
T [i].θ

⌉
+

⌈
β−2
U.w

⌉
+ ε + 1

) ,

provided that U.w ∈ (0, 1].

Proof. The lemma will be proved by showing that a per-job static window
layout is capable of ensuring that each job completes on time. The idea is very
similar to that used in the earlier proofs with one exception: in this case, we

8Iterative computations search for a non-trivial value x at which x = f(x) for a given function

f(x). The process begins with a value x0 and iterates using xk+1 := f(xk) until xk+1 = xk

holds.

ACM Journal Name, Vol. TBD, No. TBD, TBD 20TBD.

Locking under Pfair Scheduling · 13

associate each subtask with only one execution phase. When a suspension follows
an execution phase, we insert an IS delay after the last subtask window of that
phase to ensure that the next phase does not begin until after the suspension has
ended. We describe this approach in more detail below.

Consider the first phase T [1]. For simplicity, assume T [1] ∈ C(∅). This phase
must be associated with at least

⌈
T [1].e

Q

⌉
subtasks. At some point at or before the

extended deadline of the last subtask associated with this phase, denoted td, the
suspension9 that follows (if one indeed exists) is initiated. This suspension ends at
or before time td + T [2].θ. Hence, the first subtask associated with J [3] should not
be released before time td +

⌈
T [2].θ

⌉
to ensure that allocated processor time is not

wasted. Letting tr denote the release of this successor subtask, this last restriction
implies that tr = td +

⌈
T [2].θ

⌉
is desired. By Lemma 2.2, tr ≥ td−

(⌈
β−2
T.w

⌉
+ ε + 1

)

when the release is not delayed. It follows that a delay of
⌈
T [2].θ

⌉
+

⌈
β−2
T.w

⌉
+ ε + 1

is sufficient to ensure the desired separation.
Using the above approach, we can insert IS delays to account for all suspen-

sions. We now explain how a weight can be selected for U when this approach is
used. As in Lemma 3.1, the windows associated with each job must span at most
min (�T.d� , T.p + B(U)) slots. However, this case differs from that in Lemma 3.1
in that this span reflects the span after inserting all IS delays. To select a task
weight, we must determine the maximum span when no delays are present.

Inserting a delay has the effect of shifting all future releases and deadlines by
the magnitude of the delay. Since the delay inserted for a specific suspension phase
T [i] has a magnitude of

⌈
T [i].θ

⌉
+

⌈
β−2
U.w

⌉
+ ε + 1 (as explained above), it follows

that the total expansion of the span caused by all delays in a single job is given by∑
T [i]∈I

(⌈
T [i].θ

⌉
+

⌈
β−2
U.w

⌉
+ ε + 1

)
. Hence, the span without these delays must be at

most min (�T.d� , T.p + B(U)) − ∑
T [i]∈I

(⌈
T [i].θ

⌉
+

⌈
β−2
U.w

⌉
+ ε + 1

)
. The remainder

of the theorem follows as in Lemma 3.1.

Figure 4(c) shows the result of applying Lemma 3.3. In this example, T =
P(5, 3.2Q, 20, 18) and each job consists of phases C(∅, 2.1Q), I(3.2), and C(∅, 1.1Q)
(in the stated order). By Lemma 3.3, U.w = �2.1�+�1.1�

min(�18�−1,20)−(�3.2�+0+1+1) = 5
11 .

Lemma 3.4. If T is an independent multi-phase periodic or sporadic task, then
each job of T will complete by its deadline when executed within the allocation of a
GIS task U with weight

U.w =

∑
T [i]∈C(∅)

⌈
T [i].e

Q

⌉

min (�T.d� − B(U) , �T.p�) − 1 − ∑
T [i]∈I

(⌈
T [i].θ

⌉
+

⌈
β−2
U.w

⌉
+ ε + 1

) ,

provided that U.w ∈ (0, 1].

9Since critical sections are not considered, each execution phase must be followed by a suspension
phase. (Consecutive phases of the same type are assumed to be merged.)

ACM Journal Name, Vol. TBD, No. TBD, TBD 20TBD.

14 · P. Holman and J. Anderson

Proof. This proof follows the same reasoning as the proofs of Lemmas 3.2 and
3.3. Specifically, the windows associated with each job must span no more than
min (�T.d� , �T.p� + B(T)) − 1 slots by reasoning identical to that in Lemma 3.2.
As in Lemma 3.3, this span must be shortened to account for inserted delays. The
remainder of the proof follows as in Lemma 3.3.

In Figure 4(d), the task T is described by S(5, 3.2Q, 20, 18) and each job consists
of phases C(∅, 2.1Q), I(3.2), and C(∅, 1.1Q) (in the stated order). By Lemma 3.4,
U.w = �2.1�+�1.1�

min(�18�−1,20)−1−(�3.2�+0+1+1) = 5
10 = 1

2 .

4. VIABILITY OF INHERITANCE-BASED PROTOCOLS

The most common approach to designing locking protocols is to rely on inheri-
tance to speed the execution of lock-holding tasks [Baker 1991; Caccamo and Sha
2001; de Niz et al. 2001; Rajkumar 1990; 1991; Rajkumar et al. 1988; Sha et al.
1990]. Under such an approach, a lock-holding task takes on (i.e., “inherits”) the
characteristics of tasks that it either blocks or has the potential to block. The
lock-holding task then executes with these characteristics until releasing the asso-
ciated lock. Unfortunately, the characteristics of Pfair scheduling complicate the
use of such techniques (for reasons explained below). Consequently, the protocols
presented in later sections are not based on inheritance. In this section, we discuss
both the different forms of inheritance that are available under Pfair scheduling
and the problems that can arise from their use.

4.1 Forms of Inheritance

Although conventional inheritance protocols are not directly applicable in Pfair-
scheduled systems, many of the concepts underlying them are applicable. Since
tasks are characterized only by weights, two obvious classes of inheritance-based
protocols exist. The first class consists of static-weight inheritance protocols, under
which weight changes are not permitted. Scheduling disruptions caused by blocking
can be ameliorated under this restriction by decoupling the choice of which task
executes in a slot, and which task is actually charged for the quantum. More
specifically, critical sections can be executed more quickly by temporarily re-routing
quanta from a blocked task to the task that is causing the blocking. The second
class consists of dynamic-weight inheritance protocols, under which weight changes
are permitted. Below, we describe some of the more obvious inheritance protocols
and the characteristics of each.

Simple locking . Figure 5(a) provides a concrete example of how low-weight tasks
can cause significant disruptions in Pfair systems. During slot 2, task W obtains
a lock that is needed to execute a critical section requiring two quanta. When S,
T , and U request this lock in slots 3–4, they are forced to wait until the lock is
released by W . Due to W ’s low weight, this does not happen until sometime after
slot 14. In the meantime, all quanta allocated to S, T , and U are wasted (because
they are waiting for the lock).10 We will use this same scenario to illustrate the
protocols described below.

10In practice, IS delays would be used to prevent scheduling of the blocked tasks. This is not done
in the examples given in this section so that the magnitude of disruptiveness will be apparent.

ACM Journal Name, Vol. TBD, No. TBD, TBD 20TBD.

Locking under Pfair Scheduling · 15

S

U

V

W

1/2

1/3

1/3

1/5

1/10

0 5 10

T

TIME

TASKS SCHEDULE

(a) Simple locking

S

U

V

W

1/2

1/3

1/3

1/5

1/10

0 5 10

T

TIME

TASKS SCHEDULE

(c) Deadline/allocation inheritance

S

U

V

W

1/2

1/3

1/3

1/5

1/10

0 5 10

T

TIME

TASKS SCHEDULE

(b) Rate inheritance

Lock is obtained

Inherited quantum

Wasted quantum

Allocated quantum

Lock is held

Lock is requested

Lock is released

LEGEND

Fig. 5. A series of two-processor Pfair schedules for a task set consisting of five tasks with weights
1
2
, 1

3
, 1

3
, 1

5
, and 1

10
, respectively, that may request locks. The insets illustrate the following static-

weight locking scenarios: (a) simple locking, (b) rate inheritance, and (c) deadline/allocation
inheritance.

Rate inheritance. Rate inheritance is based on the concept of priority inheritance
[Sha et al. 1990]. Under this protocol, a lock-holding task T inherits the highest
execution rate (i.e., weight) of the tasks that it blocks (if that weight is higher than
its normal weight). This protocol is easily implemented by swapping the association
of weights to tasks, i.e., the lock-holding task and the blocked task with the highest
weight temporarily swap identities (scheduling parameters).

Figure 5(b) illustrates rate inheritance. In slot 3, W swaps with T and then with
S in slot 4. As a result, W executes within S’s quanta in slots 6 and 8.

One problem with rate inheritance is that the task with the highest weight may
not have the highest priority at a given instant. For instance, in Figure 5(b),
the priority of task U is higher than that of task S in slot 7. The next form of
inheritance addresses this concern.

Deadline inheritance. Under deadline inheritance, a lock-holding task swaps iden-
tities with whichever blocked task has the highest priority at each time instant.
This strategy improves upon rate inheritance, but at the expense of more swap-
ping overhead. Specifically, both approaches may perform a swap when a task is
initially blocked, but deadline inheritance may perform additional swaps each time

ACM Journal Name, Vol. TBD, No. TBD, TBD 20TBD.

16 · P. Holman and J. Anderson

a lock-holding task consumes a quantum.
Figure 5(c) illustrates deadline inheritance. In slot 3, W swaps with T . However,

this swap is undone in slot 4 when W swaps with S. When W is executed in slot 6
(within S’s quantum), U becomes the highest priority task, causing W to take on
U ’s identity.

Allocation inheritance. An alternative form of inheritance that achieves the same re-
sult as deadline inheritance is allocation inheritance (which closely resembles band-
width inheritance, as proposed for uniprocessor systems in [Lamastra et al. 2001]).
To avoid the additional swapping overhead produced by deadline inheritance, the
quanta allocated to all blocked tasks can be redirected to the lock-holding task for
the duration of its critical section, i.e., multiple sets of scheduling parameters may
be mapped to the same task at a given instant. Although this approach reduces
swapping overhead, it requires support for many-to-one mappings from parameter
sets to tasks. In addition to the overhead required to maintain such a mapping, care
must also be taken to ensure that each lock-holding task utilizes only one quantum
in each slot. (Recall that parallel execution is not allowed.)

Figure 5(c) also illustrates the schedule as it would appear under allocation in-
heritance. In slot 3, the allocations of both U and V are redirected to W . S’s
allocation is then redirected to W in slot 4. Hence, at the start of slot 6, W is
actually associated with four different sets of parameters (i.e., those normally asso-
ciated with S, U , V , and W). In slot 6, two of these sets are scheduled. However,
W can only utilize one of the two quanta.

The potential for parallel allocation of quanta is a fundamental shortcoming of
all forms of static-weight inheritance. To avoid this problem, subtask releases can
be selectively postponed using IS delays. Unfortunately, such reactive behavior
is difficult to characterize accurately when performing analysis, which necessitates
the use of pessimistic assumptions. This added pessimism offsets, and may even
outweigh, the provided benefits. Alternatively, a dynamic-weight scheme like that
described next could be used.

Weight inheritance. Under weight inheritance, the lock-holding task adds to its
weight the weight of each task that it blocks. (Weight inheritance also bears resem-
blance to bandwidth inheritance.) By changing its weight, the lock-holding task is
able to effectively serialize its quanta in that it avoids the simultaneous allocation
of multiple quanta. Weight inheritance is not illustrated in Figure 5 for reasons
explained in the next section.

4.2 Problems

There are two primary problems that limit the effectiveness of inheritance-based
schemes in Pfair systems. First, as explained in the previous section, dynamic-
weight inheritance is the most effective form of inheritance in concept, due to the
ability to serialize inherited processor time. Unfortunately, under Pfair scheduling
(and likely under any other real-time rate-based approach), instantaneous weight
changes must be forbidden to ensure schedulability [Srinivasan and Anderson 2003b].
Although improved reweighting techniques have been proposed [Anderson et al.
2003; Srinivasan and Anderson 2003a], these approaches either lack worst-case pre-
ACM Journal Name, Vol. TBD, No. TBD, TBD 20TBD.

Locking under Pfair Scheduling · 17

dictability [Anderson et al. 2003] or place additional restrictions on the system
[Srinivasan and Anderson 2003a]. Accounting for delayed weight changes compli-
cates worst-case analysis and necessitates the use of overly conservative weights,
both of which offset the benefit of the protocol.

Unfortunately, even static-weight schemes are somewhat impractical due to the
dependency between blocking overhead and task weights. Consider two tasks, T
and U , that share a common lock. To account for the possibility that T blocks U ,
U.w must be increased based on the worst-case blocking that can occur, which is
determined by T.w. However, changing U.w changes the worst-case duration for
which U can block T , which necessitates a compensatory change in T.w. Hence, as-
signing weights under an inheritance protocol is an optimization problem. Finding
an optimal solution is almost certainly an intractable problem.

Despite these issues, inheritance-based schemes remain an interesting avenue for
future study, particularly for soft real-time systems. In addition, recent work [Block
et al. 2005] on “fine-grained” reweighting techniques for Pfair scheduling shows con-
siderable improvement over existing techniques. Unfortunately, due to significant
differences between the system model considered in [Block et al. 2005] and that
considered here, it is unclear whether fine-grained reweighting (or the concepts un-
derlying it) can be used to produce an effective dynamic-weight locking protocol
for hard real-time systems.

5. SUPPORTING SHORT CRITICAL SECTIONS

In this section, we present protocols for use with locks that guard short (relative to
Q) critical sections. In experiments conducted by Ramamurthy [Ramamurthy 1997]
on a 66 MHz processor, critical-section durations for a variety of common objects
(e.g., queues, linked lists, etc.) were found to be in the range of tens of microseconds.
On modern processors, these operations will likely require no more than a few
microseconds. Since quantum sizes typically range from hundreds of microseconds
to milliseconds, the protocols described in this section should be widely applicable.
In the next section, we consider support for longer critical sections.

5.1 Concept

When some task T is granted a lock �, each task U with a pending request for � is
necessarily delayed for the duration of T ’s critical section. However, this unavoid-
able delay may be amplified drastically if T is preempted. Any such preemption
effectively lengthens T ’s critical section. As explained earlier, this is particularly
problematic under Pfair scheduling because each task is executed at an approxi-
mately steady rate. Hence, if T has a low weight and its critical section is preempted
before completing, then a lengthy delay is likely. Indeed, when the critical section is
short, such a preemption effectively increases the critical-section duration by several
orders of magnitude.

Fortunately, when using quantum-based scheduling with a sufficiently long quan-
tum, the preemption of lock-holding tasks is avoidable. In particular, when T ’s
critical-section duration is shorter than Q, its execution may span at most two
quanta, which implies that T can be preempted at most once before relinquish-
ing the lock. On the other hand, if T ’s critical section always begins sufficiently
early within a quantum, then T will always release the lock before the next slot

ACM Journal Name, Vol. TBD, No. TBD, TBD 20TBD.

18 · P. Holman and J. Anderson

boundary. In practice, critical sections can be forced to start “sufficiently early”
within a quantum by automatically blocking lock requests for critical sections that
are at risk of being preempted. Whereas a task can only be blocked due to the
unavailability of the requested lock in a traditional system, a task may be blocked
due to either unavailability or the timing of the request under this approach.

To illustrate this approach, consider a lock request made by some task T , for
which the associated critical section has worst-case duration e (< Q). The pro-
posed approach introduces an interval of automatic blocking (of the lock request in
question) at the end of each quantum, as illustrated below. We refer to this interval
as a blocking zone and denote its length by B.

Q−B

Q

B Blocked

Normal

���
���
���
���

QUANTUM
���
���
���
���

T ’s request is safe at any time instant not within that request’s blocking zone, and
unsafe otherwise. Additionally, T ’s request is said to be active if T is currently
scheduled, and inactive otherwise. As long as B ≥ e, T ’s critical section can be
guaranteed to execute completely within a single quantum by simply granting the
requested lock only if T ’s request is both safe and active. In this way, the nonpre-
emptivity inherent under quantum-based scheduling can be exploited to support
short critical sections. Indeed, this approach is applicable under any scheduling
approach that is based on the use of a quantum.

5.2 Zone Placement

There are several ways to apply the previous concept when designing a locking
protocol. We refer to all protocols based on this concept as zone-based protocols.
In this section, we briefly discuss some of the different rules for determining the
placement of zones.

Request-based zones. The most aggressive approach is to provide supplementary
information with each issued lock request (i.e., details can be provided as input
parameters to RequestLock). Whether the request is within its blocking zone at a
given time can then be determined based upon this information and the state of the
system. This approach introduces additional overhead into the lock-management
algorithms, but also provides the most flexibility and can ensure that no critical
section is delayed longer than necessary to ensure safety. For the latter reason, we
focus on this approach when performing analysis later.

Group-based zones. Rather than associating a unique blocking zone with each
request, each blocking zone can be associated with a group of critical sections.
Under such an approach, B must be sufficiently long to prevent the preemption of
each critical section in the group. The primary benefits of using such groupings are
to simplify runtime accounting and to reduce the memory overhead of the protocol.
To illustrate the former benefit, consider two of the most obvious groupings: group
according to the requesting task or group according to the requested lock.

If a single blocking zone is used for all critical sections of a given task, then when
ACM Journal Name, Vol. TBD, No. TBD, TBD 20TBD.

Locking under Pfair Scheduling · 19

a task is scheduled, an interrupt11 that marks the start of its blocking zone can
also be scheduled to occur on the assigned processor. Accounting for the overhead
of the blocking zone is simplified in this case since each quantum requires only one
such interrupt.

If, instead, a single blocking zone is used for all critical sections guarded by a
given lock, then up to |Γ| interrupts are needed in each quantum to signal the start
of each lock’s blocking zone. Although the use of more interrupts produces more
overhead, the degree of unnecessary automatic blocking will likely be lower than
when using task-based groups. This follows from the fact that locks are often used
to synchronize operations of comparable complexity (and hence duration). On the
other hand, the durations of critical sections of a given task may vary considerably.

Impact of timer precision. Real timers typically cannot generate interrupts at
arbitrary times. Instead, expiration times (or delays) must be given as multiples of
a timer-specific time unit. This unit defines the precision12 of the timer.

Due to this practical restriction, it may be necessary to start blocking zones
prematurely. Specifically, each zone that is initiated by an interrupt should be
started at the latest possible timer expiration time that occurs before the ideal
starting time of the zone. This conservative placement is always guaranteed to be
within u of the ideal placement, where u denotes the timer’s minimum time unit.
Despite this, when u reflects a significant fraction of a quantum, timer error may
be prohibitively high.

Indeed, there are several more issues relating to the use of realistic timers, in-
cluding jitter and the handling of interrupts. Because we primarily focus on the use
of request-based zones in the remainder of the paper, we forgo further discussion
of these issues and leave them as topics for future work.

5.3 Requirements and Additional Notation

In the sections that follow, we present two protocols based on the notion of blocking
zones. These protocols differ only in their handling of delayed requests found at slot
boundaries. The first protocol maintains these requests, while the second protocol
discards them, forcing the requesting tasks to re-issue them later. Hence, inactive
requests may exist under the first protocol, but not under the second protocol. In
this section, we begin by describing the base requirements of these protocols and
by defining notational conventions used in the analysis presented later.

Requirements. The following requirements must be satisfied by a zone-based pro-
tocol.

(R1) A requesting task must eventually be granted the lock.

(R2) Each critical section must execute completely within a single quantum.

(R2) requires that the zone associated with each request be at least the maximum
duration of the request’s critical section.

11We do not consider whether a hardware or software interrupt (or some other form of signaling

mechanism) is most appropriate here, since this will likely depend on the target architecture.
12This is also called the resolution or granularity of the timer.

ACM Journal Name, Vol. TBD, No. TBD, TBD 20TBD.

20 · P. Holman and J. Anderson

Notation. First, let T [i].B denote the length of the blocking zone associated with
the request of a locking phase T [i]. This length is assumed to be sufficiently long
to satisfy (R2). The following shorthand notations bound the worst-case blocking
caused by each task within a single quantum.

—Let T.ê(�) = max
{

T [i].e
∣∣ T [i].R = �

}
. T.ê(�) is the duration of the longest

critical section of T requiring �. This value is also an upper bound on the duration
of blocking caused by T ’s requests for � in a single quantum.

—Let Qm(T, �) = maxsumm(M−1) { U.ê(�) | U 	= T }. Qm(T, �) is an upper bound
on the amount of time required to service competing requests of a single request
of task T across m quanta while respecting a FIFO prioritization.

—Let I(T, �) =
∑

U �=T

U.ê(�). I(T, �) is an upper bound on the amount of time

required to service all competing requests of a single request of task T while
respecting a FIFO prioritization. Notice that lim

m→∞Qm(T, �) = I(T, �).

In definition of Qm(T, �), maxsumm {a1, . . . , an} denotes the maximum value pro-
duced by summing min(m,n) elements from the multiset {a1, . . . , an}. The follow-
ing examples illustrate this notation:

—maxsum2{2, 2, 1} = max{2 + 2, 2 + 1, 2 + 1} = 4;
—maxsum4{2, 2, 1} = max{2 + 2 + 1} = 5;
—maxsum0{2, 2, 1} = max{0} = 0.

In the analysis that follows, a lock-requesting task T may be blocked due to two
sources. First, T is actively blocked when one of its competitors is granted the lock
before T and executes its critical section while T ’s request is both safe and active.
A lock cannot be granted during a blocking zone (i.e., when T is unsafe), even if no
competing requests are present. Blocking caused solely by blocking zones is called
automatic blocking , as explained earlier.

5.4 Skip Protocol

Under the Skip Protocol (SP), delayed requests for locks are retained across slot
boundaries, thereby ensuring that the FIFO prioritization is respected across slots.
Due to this latter fact, the SP ensures that each competing task can block a request
at most once. The primary cost of this approach is that the scheduler must either
save and later restore the state of delayed requests at slot boundaries (i.e., as the
set of executing tasks changes), or simply ignore (i.e., skip over) inactive requests
when deciding which task will be granted a lock. In either case, this extra work
translates into increased runtime overhead.

Due to FIFO prioritization and the fact that locks are not held across slot bound-
aries, request starvation is not possible. Hence, (R1) holds under the SP as long as
T [i].e < Q also holds for each locking phase T [i]. To ensure that (R2) is satisfied,
T [i].B > T [i].e must also hold for each such locking phase to ensure that each criti-
cal section completes by the slot boundary that follows its start. Hence, we assume
that the following relationship holds for each such locking phase T [i].

Q > T [i].B > T [i].e (8)
ACM Journal Name, Vol. TBD, No. TBD, TBD 20TBD.

Locking under Pfair Scheduling · 21

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

��
��
��
��

Blocking zone
marker

Critical section

Normal
BLOCKING

ACTIVE

AUTOMATIC

EXECUTION OF
COMPETITORS

5 10 15 200

Blocking

BLOCKING

Wasted

TIME

T
lock

granted

lo
ck

re
qu

es
te

d

Fig. 6. Worst-case blocking under the SP for a lock-requesting phase T [i] when I(T, �) = 4.239Q

and T [i].B = 0.1Q. T ’s request is initiated at the start of a blocking zone and competing requests
execute only when T is both scheduled and not within a blocking zone. The blocking of each form
experienced by T is shown with black bars at the top of the figure. The number of blocking zones
crossed (while scheduled) is 1 + � 4.239Q

Q−0.1Q
� = 1 + �4.71� = 5.

(The Q > T [i].B inequality is a trivial requirement that is needed to ensure that
T [i] is considered safe at the start of each quantum.)

Basic analysis. To account for synchronization overhead, we present theorems and
proofs that equate locking phases, assumed to execute under specified conditions,
to non-locking phases. By substituting non-locking phases in this manner, we
produce a description of a multi-phase independent task, which can then be used
with Lemmas 3.1–3.4 to select an appropriate task weight. The next theorem
handles the use of the SP.

Theorem 5.1. Given a phase T [i] ∈ C(�), where � is managed by the Skip Pro-
tocol and all blocking zones of � satisfy (8), phase T [i] is equivalent to

C
(
∅, T [i].e + I(T, �) +

(⌊
I(T, �)

Q − T [i].B

⌋
+ 1

)
· T [i].B

)
.

Proof. Due to the FIFO prioritization being respected across slots, I(T, �) is a
trivial upper bound on the active blocking experienced by T [i]. In the worst case,
competitors of T execute for at least Q − T [i].B time units within each quantum
in which T is scheduled, and hence hold the lock until at least the start of T ’s
blocking zone. In this case, which is depicted in Figure 6, T is preempted no more
than

⌊
I(T,�)

Q−T [i].B

⌋
times after issuing the request before � is granted. (Since the

blocking zone in the slot in which T is granted the lock is not counted, we use a
floor expression rather than a ceiling.) In addition, if T ’s request is initiated at the
start of a blocking zone, then T is blocked by an additional blocking zone. Hence,
the duration of phase T [i] is at most the sum of the durations of (i) T [i]’s critical
section, (ii) I(T, �) units of active blocking, and (iii)

(⌊
I(T,�)

Q−T [i].B

⌋
+ 1

)
·T [i].B units

of automatic blocking.

Improved analysis. Stronger restrictions, like (R3) given below, produce less over-
ACM Journal Name, Vol. TBD, No. TBD, TBD 20TBD.

22 · P. Holman and J. Anderson

head.

(R3) All active requests present at the start of a slot are serviced within that
slot.

Notice that (R3) is a stronger requirement than both (R1) and (R2). Unlike (R1)
and (R2), this restriction bounds the total time required by any combination of
competing requests (up to M) that are serviced within the same slot. The mea-
surements of Ramamurthy, cited earlier, suggest that (R3) can be expected to hold
in many cases.

For (R3) to be satisfied with respect to a request for � made by a locking phase
T [i], the total processing time required by T ’s worst-case mix of M − 1 competing
requests for � (i.e., Q1(T, �)), must be strictly less than the length of time over
which T ’s request is safe (i.e., Q − T [i].B). The condition given below is sufficient
to ensure that (R3) holds for a lock �.(

∀T : T.ê(�) > 0 : Q1(T, �) ≤ Q − max
{

T [i].B
∣∣∣ T [i].R = �

})
(9)

The T.ê(�) > 0 constraint in the above condition simply restricts attention to tasks
with critical sections that require �.

Unfortunately, some systems may not satisfy the condition given in (9). However,
for such systems, it is still possible to apply a less-strict condition to individual
critical sections in order to produce blocking estimates tighter than those provided
by Theorem 5.1. Theorem 5.2, given next, considers the condition

1
m

Qm(T, �) ≤ Q − T [i].B, (10)

which focuses on a specific phase T [i] of a task T that requires �. This condi-
tion generalizes (9) by providing an integer parameter m (≥ 1) that determines
the strictness of the condition. Informally, m denotes the maximum number of
blocking zones that can be crossed (while scheduled) before a task is granted the
requested lock. Increasing m has the effect of weakening the condition. Condition
(9) corresponds to the strictest case in which all critical sections satisfy (10) for
m = 1. Theorem 5.1 then reflects the limiting behavior as m → ∞.

Theorem 5.2. Given a phase T [i] ∈ C(�) that satisfies (10) for some m ≥ 1,
where � is managed by the Skip Protocol and all blocking zones of � satisfy (8), phase
T [i] is equivalent to

C
(
∅, T [i].e + Qm+1(T, �) + m · T [i].B

)
.

Proof. Condition (10) implies that Qm(T, �) ≤ m
(
Q − T [i].B

)
holds. Infor-

mally, this condition states that the amount of processing time required by the
competitors of T [i] across m slots cannot consume all of the processor time avail-
able outside of T ’s blocking zones in those slots. Hence, T is guaranteed to receive
the lock within the mth slot in which it is scheduled after issuing the lock request,
if not sooner. This scenario is depicted in Figure 7. Including the quantum in
which T issues the lock request, T is actively blocked across at most m + 1 quanta.
Hence, the total duration of active blocking cannot exceed Qm+1(T, �) time units.
In addition, T may be automatically blocked in each of these quanta except for
ACM Journal Name, Vol. TBD, No. TBD, TBD 20TBD.

Locking under Pfair Scheduling · 23

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

��
��
��
��

�
�
�
�

Critical section

Blocking zone
marker

BLOCKING
ACTIVE

BLOCKING

Blocking

EXECUTION OF
COMPETITORS

5 10 15 200

lo
ck

re
qu

es
te

d

NormalAUTOMATIC

Wasted

TIME

T
lock

granted

Fig. 7. Worst-case blocking under the SP for a lock-requesting phase T [i] when Q5(T, �) = 4.25Q

and T [i].B = 0.1Q. Since 1
5
Q5(T, �) = 0.85Q, (10) holds for m = 5. The resulting worst-case

scenario is depicted. The number of blocking zones crossed (while scheduled) is 5 (i.e., m), while
active blocking occurs within 6 (i.e., m + 1) quanta.

the last one, in which the lock is finally granted. Therefore, the request spans at
most m blocking zones. Hence, the duration of phase T [i] is at most the sum of the
durations of (i) T [i]’s critical section, (ii) Qm+1(T, �) units of active blocking, and
(iii) m · T [i].B units of automatic blocking.

5.5 Rollback Protocol

Under the Rollback Protocol (RP),13 delayed requests are discarded (failed) at
slot boundaries and must be re-issued by the requesting tasks when they resume
execution. Hence, FIFO prioritization only applies to requests issued within the
same slot. The RP sacrifices the guarantee that a request will be blocked by at
most one request of each competing task in order to avoid the additional overhead of
maintaining requests across multiple slots. A side effect is that preventing starvation
(i.e., guaranteeing (R1)) is more difficult. To guarantee starvation avoidance, we
restrict consideration of the RP to cases in which (R3) holds.

The next theorem characterizes the worst-case duration of a locking phase under
the RP.

Theorem 5.3. Given a phase T [i] ∈ C(�), where � satisfies (9), � is managed by
the Rollback Protocol, and all blocking zones of � satisfy (8), phase T [i] is equivalent
to

C
(
∅, T [i].e + 2 · Q1(T, �) + T [i].B

)
.

Proof. The case considered here is almost identical to the m = 1 case of The-
orem 5.2. However, since a requesting task T can have its request rejected due to
crossing a slot boundary, its request can potentially be blocked by the same group
of competitors in each slot. From (R3) and this observation, it follows that T ’s

13The term rollback refers to the fact that a requesting task may need to re-issue a discarded

request. This should not be confused with the “undo” processes commonly found in transaction-

based systems.

ACM Journal Name, Vol. TBD, No. TBD, TBD 20TBD.

24 · P. Holman and J. Anderson

request can be delayed due to active (respectively, automatic) blocking for no more
than 2 · Q1(T, �) (respectively, T [i].B) time units.

6. SUPPORTING LONG CRITICAL SECTIONS

In this section, we present a simple server-based protocol to support critical sections
of arbitrary length. This protocol focuses on avoiding the problems associated with
inheritance-based approaches. The resulting protocol is simple to use and analyze,
but is expected to yield only mediocre performance. The primary purpose of this
protocol is to provide a baseline performance measurement that can be used to
evaluate the performance of the SP, RP, and other protocols. The specific goals of
the design are listed below.

(1) Blocking durations should be independent of the weights of requesting tasks.

(2) Requesting tasks should not be required to change weights.

(3) Modifying task parameters should impact performance in a predictable way.

(4) The protocol should not introduce substantial per-slot overhead.

6.1 Static-weight Server Protocol

When using lock servers, a server task V executes all critical sections guarded
by � in place of the requesting tasks. Such servers are actually quite common in
practice. In addition to implementing critical section and kernel calls, such special
processes are often used to implement basic communication services, such as remote
procedure calls (RPCs).

Issues. The primary issue when using server tasks is the scheduling of the server.
Many approaches have been proposed to exploit the structure of the system in
which the servers will execute. For instance, in fixed-priority systems, servers can
be scheduled as normal tasks and inherit the priority of the requesting tasks while
servicing requests. This policy, called priority tracking , addresses the potential
for priority inversion14 caused by the server’s processing of requests on behalf of
low-priority tasks. For example, kernel threads in the LynxOS use this approach
[Lynx Real-time Systems 1993]. Similarly, in reservation-based systems (e.g., see
[Caccamo and Sha 2001; de Niz et al. 2001]), the reservation15 of the requesting
task can be passed to the server. This ensures that the processor time consumed
by the server is properly charged against the requesting tasks.

To satisfy Goal 1, we consider only the use of server tasks with statically defined
weights. When using servers, the duration of a locking phase is determined by
the worst-case responsiveness of the associated server task. This responsiveness, in
turn, depends on the scheduling of the server and the amount of processor time
required to complete the operations. We refer to the server protocol considered
here as the Static-weight Server Protocol (SWSP).

14A priority inversion occurs when a task is prevented from executing by a lower priority task.
15A reservation is a form of rate-enforcement mechanism. Specifically, tasks are assigned processor

time budgets that are consumed as the tasks execute. When the budgets are exhausted, the tasks
become ineligible to execute. Additional rules define when and how budgets are replenished.

ACM Journal Name, Vol. TBD, No. TBD, TBD 20TBD.

Locking under Pfair Scheduling · 25

T [1] T [2] T [3] T [4] T [5]

suspended

Job is
released

Job
completes

T [2] T [4]T [2] T [4]

PHASE
(non-locking) (non-locking) (non-locking)(locking) (locking)

IS delay IS delayT

suspended

TIME

issued issued
request response request response

received received

Fig. 8. Illustration of the behavior of a five-phase task T with weight 7/19 when all locking phases
use the SWSP. Phases T [1], T [3], and T [5] do not require locks, and hence are executed locally
by T while phases T [2] and T [4] are executed remotely by lock servers. Phase transitions are
shown across the top of the figure and time is shown across the bottom. Arrows show when each
request begins and ends. Unshaded boxes show where T executes locally while boxes containing
X’s denote unutilized processor time.

Detailed description. Let V (�) denote the server task that implements lock �. Each
server is assumed to maintain a FIFO-ordered request queue, WAIT (�). As long as
WAIT (�) is non-empty, V (�) releases subtasks as early as is permitted under the
GIS task model. On the other hand, if V (�) finds that WAIT (�) is empty, then it
delays the release of its next subtask until WAIT (�) becomes non-empty again. We
further assume that a requesting task T issues its request via a synchronous call
with behavior similar to an RPC, i.e., T is suspended until the response is received.

Figure 8 illustrates the behavior of one job of a five-phase task T when all locking
phases use the SWSP. As shown, server delays can be treated just as any other
form of suspension with one exception: the local processing required to initiate
the request and process the response must be factored into the execution-time
estimates of the phases that precede and succeed, respectively, the locking phase.
(When using the SP and the RP, this overhead can be factored into the locking
phase’s requirements.)

Analysis. Before continuing, we define additional shorthand expressions unique to
the SWSP analysis. First, let δ (A,w) denote the shortest interval of time over
which a task with weight w that does not experience IS delays is guaranteed to
receive at least A quanta, where A is a positive integer. By Lemma 2.3,

δ (A,w) =
⌈

A + β − 1
w

⌉
+ ε.

Informally, δ (A,w) is one slot less than the worst-case span of any A+1 consecutive
windows, as illustrated in Figure 9.

The following theorem and corollary equate an SWSP locking phase to a sus-
pension phase. Recall that I(θ) denotes a suspension phase of maximum duration
θ.

Theorem 6.1. Given a phase T [i] ∈ C(�), where � is managed by the SWSP,
phase T [i] is equivalent to

I
(

δ

(⌈
T [i].e + I(T, �)

Q

⌉
, V (�).w

))
.

ACM Journal Name, Vol. TBD, No. TBD, TBD 20TBD.

26 · P. Holman and J. Anderson

TIME

w=3/8

0 5 1510

Worst case for A=2

Fig. 9. The marked interval shows the interval that defines δ (A,w) when w = 3
8 ,

A = 2, β = 2, and ε = 0. In this case, δ (A,w) = �(2 + 2− 1)8
3�+ 0 = 8. As shown,

δ (A,w) is one slot shorter than the longest span of any A+1 consecutive windows.

Proof. Since I(T, �) is a trivial upper bound on the time required by compet-
ing requests, the server cannot consume more than

⌈
T [i].e+I(T,�)

Q

⌉
quanta without

completing T ’s critical section. Since the server remains active while T ’s request is
pending, it follows that the server completes T ’s critical section after a delay of at
most δ

(⌈
T [i].e+I(T,�)

Q

⌉
, V (�).w

)
slots.

Assigning server weights. We now describe a simple algorithm for assigning weights
to servers. Our algorithm focuses on dividing a fixed fraction of the processor
bandwidth reserved for servers, denoted ∂, among those servers in proportion to
their requirements. Let

U(T, �) =

∑
T [i]∈C(�)

T [i].e

T.p
.

Informally, U(T, �) is T ’s utilization of lock �. Also, let

U(�) =
∑
T∈τ

U(T, �),

which is the total utilization of lock � by all tasks in τ . (We also refer to this
quantity as the lock utilization of �.) ∂ can be proportionally distributed among
the servers by using lock utilizations like relative weights,16 as suggested by the
formula below.

V (�).w =
U(�)∑

�′∈Γ

U(�′)
· ∂

7. EXPERIMENTAL RESULTS

In this section, we present a simple experimental comparison of the zone-based and
server-based protocols. Specifically, we consider the mean synchronization overhead
experienced under each approach by randomly generated task sets for which (R3)
holds. Based on Ramamurthy’s observations [Ramamurthy 1997], this is expected
to be the most common scenario in practice.

16In the presented formula, we ignore the unit upper limit on weights. An algorithm for dividing
bandwidth while respecting such a restriction can be found in [Chandra et al. 2000].

ACM Journal Name, Vol. TBD, No. TBD, TBD 20TBD.

Locking under Pfair Scheduling · 27

Synchronization overhead is the difference between the total weight of all tasks
under Pfair scheduling and the utilization of the task set τ , which is defined as
shown below.

τ.u =
∑
T∈τ

T.e

T.p

For these experiments, we restrict attention to task sets in which T.p = T.d for all
T ∈ τ . The results presented here are a small fraction of the results from a broader
comparison that can be found in [Holman 2004].

Setup. Task sets were generated for each of 2-, 4-, 8-, and 16-processor systems.
The task count and total utilization were systematically varied over the ranges
5 · log2 M, . . . , 30 · log2 M and 0.2 · M, . . . , 0.8 · M , respectively. In addition, the
lock count was systematically varied over the range log2 M, . . . , 10 · log2 M . These
ranges were all chosen arbitrarily based on ranges that seem likely to occur in real
systems. To ensure that (R3) held, critical section durations were upper bounded
by 0.025, i.e., 2.5% of the slot length. When generating individual tasks, a max-
imum phase count of twenty-four was imposed. Also, critical sections occurred in
consecutive phases with probability 1

4 . Finally, all T.p values were randomly chosen
from the range 50, . . . , 2000.

Sampling . To enable a quantitative comparison, only valid task sets were con-
sidered. A task set must satisfy several constraints to be considered valid. First,
under the zone-based protocols, all locks must satisfy (R3) and the task set must be
schedulable on M processors. (Since the analysis presented earlier for the SP and
the RP is based on M , we must verify that the task set is actually schedulable on
M processors for the analysis to be correct.) Second, the task set must be feasible
under the SWSP when using an unlimited number of processors. Feasibility can be
checked by computing task weights for the special case in which each server is as-
signed a unit weight. Such a case is guaranteed to produce the lowest possible task
weights under the SWSP due to the fact that each server exhibits the best possible
responsiveness. Hence, if a task weight exceeds unity under these conditions, then
the task set is not schedulable under the SWSP, regardless of the processor count.

Results. The calculated overhead is plotted against the total lock utilization of
the task set in Figure 10. In each inset, the sample means are shown for each
approach with 99% confidence intervals. As shown, the RP and SP consistently
outperform the SWSP, which produces more than an order of magnitude higher
overhead. Indeed, the server weights actually account for the bulk of this overhead.

Due to the large scale of the SWSP’s overhead, the relative overhead of the
SP and RP cannot be determined from Figure 10. Figure 11 omits the SWSP
to enable such a comparison. Indeed, these results show exactly what the earlier
analysis suggests: the performance is comparable for small values of M , but the
SP increasingly outperforms the RP as M is increased. The explanation for this
is simple. Recall that the idea underlying the RP is to avoid the need to save
and restore request state at slot boundaries by sacrificing the guarantee that a
request cannot be blocked by the same competing request multiple times. Since
only one competing request is present on each processor per slot, the impact of this

ACM Journal Name, Vol. TBD, No. TBD, TBD 20TBD.

28 · P. Holman and J. Anderson

 0

 1

 2

 3

 4

 5

 6

 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009

T
ot

al
 W

ei
gh

t -
 T

ot
al

 U
til

iz
at

io
n

Lock Utilization

Inflation vs. Lock Utilization (2 Processors)

SWSP
SP
RP

(a) M = 2

 0

 5

 10

 15

 20

 0.005 0.01 0.015 0.02

T
ot

al
 W

ei
gh

t -
 T

ot
al

 U
til

iz
at

io
n

Lock Utilization

Inflation vs. Lock Utilization (8 Processors)

SWSP
SP
RP

(c) M = 8

 0

 2

 4

 6

 8

 10

 12

 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016

T
ot

al
 W

ei
gh

t -
 T

ot
al

 U
til

iz
at

io
n

Lock Utilization

Inflation vs. Lock Utilization (4 Processors)

SWSP
SP
RP

(b) M = 4

 0

 5

 10

 15

 20

 25

 0.005 0.01 0.015 0.02 0.025

T
ot

al
 W

ei
gh

t -
 T

ot
al

 U
til

iz
at

io
n

Lock Utilization

Inflation vs. Lock Utilization (16 Processors)

SWSP
SP
RP

(d) M = 16

Fig. 10. Plots show synchronization overhead under the SP, RP, and SWSP as a function of lock
utilization. The 99% confidence interval is show for each point. The figure shows (a) the M = 2,
(b) the M = 4, (c) the M = 8, and (d) the M = 16 cases.

sacrifice is directly proportional to M . Hence, as M increases, the SP guarantees
less synchronization overhead since it maintains that guarantee while the RP does
not.

However, it is important to note that the benefit of using the RP instead of the
SP is not reflected in this experiment. By not maintaining requests across slots, the
RP produces less per-slot overhead than the SP, which will result in more useful
processor time per slot (i.e., a larger Q value). Hence, when the performance of
the RP and SP is comparable, the RP should be preferred. These issues and others
are discussed in much greater detail in [Holman 2004].

8. CONCLUSION

In this paper, we have addressed the problem of providing support for lock-based
synchronization in Pfair-scheduled multiprocessor systems. We began by gener-
alizing support for periodic and sporadic tasks under Pfair scheduling. Next, we
considered the viability of using inheritance-based protocols. As part of this dis-
cussion, we compared several forms of inheritance that are available under Pfair
scheduling. After this, we presented protocols, along with supporting analysis, to
handle both short (relative to Q) critical sections and critical sections of arbitrary
ACM Journal Name, Vol. TBD, No. TBD, TBD 20TBD.

Locking under Pfair Scheduling · 29

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009

T
ot

al
 W

ei
gh

t -
 T

ot
al

 U
til

iz
at

io
n

Lock Utilization

Inflation vs. Lock Utilization (2 Processors)

SP
RP

(a) M = 2

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0.005 0.01 0.015 0.02

T
ot

al
 W

ei
gh

t -
 T

ot
al

 U
til

iz
at

io
n

Lock Utilization

Inflation vs. Lock Utilization (8 Processors)

SP
RP

(c) M = 8

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016

T
ot

al
 W

ei
gh

t -
 T

ot
al

 U
til

iz
at

io
n

Lock Utilization

Inflation vs. Lock Utilization (4 Processors)

SP
RP

(b) M = 4

 0

 0.5

 1

 1.5

 2

 0.005 0.01 0.015 0.02 0.025

T
ot

al
 W

ei
gh

t -
 T

ot
al

 U
til

iz
at

io
n

Lock Utilization

Inflation vs. Lock Utilization (16 Processors)

SP
RP

(d) M = 16

Fig. 11. Plots show synchronization overhead under the SP and RP as a function of lock utilization.
The 99% confidence interval is show for each point. The figure shows (a) the M = 2, (b) the
M = 4, (c) the M = 8, and (d) the M = 16 cases. These plots are close-ups of those shown in
Figure 10.

length. For the former case, we demonstrated how the quantum-based nature of
Pfair scheduling can be exploited to avoid the preemption of lock-holding tasks.
For the latter case, we presented a simple server-based protocol that emphasizes
ease-of-use. The protocols presented in this paper have the advantage that they
can be applied on a per-lock basis, and hence can be used together in the same sys-
tem. Finally, we presented a simple experimental evaluation of the synchronization
overhead suffered under each presented protocol when (R3) holds.

Due to length considerations, we have not presented all results relating to this
work. A more complete coverage of this topic can be found in [Holman 2004]. Addi-
tional results not presented here include a more extensive experimental comparison
of the proposed protocols, sample pseudo-code implementations of the SP and RP,
and optimization techniques that strive to reduce the worst-case synchronization
overhead.

APPENDIX

In this appendix, we derive the basic properties of scheduling summarized earlier
in Section 2.

ACM Journal Name, Vol. TBD, No. TBD, TBD 20TBD.

30 · P. Holman and J. Anderson

Window placement . Theorem 2.1 is established by a trivial extension of the lemma
shown below.

Lemma A.1. The following formulas define the placement of relaxed windows:

r(Ti) =
⌊

i − β+

T.w

⌋
d(Ti) =

⌈
(i − 1) + β−

T.w

⌉
.

Proof. These formulas follow directly from (5), which implies that the release
and deadline of a subtask Ti are defined as follows:

r(Ti) = min { k | k ∈ Z ∧ i · Q − fluid(T, 0, k + 1) < Q · β+ } ; and
d(Ti) = min { k | k ∈ Z ∧ (i − 1) · Q − fluid(T, 0, k) ≤ −Q · β− } .

In the above formulas, Z denotes the set of all integers. Informally, the r(Ti)
constraint identifies the earliest slot (k) such that the upper lag constraint (Q ·β+)
is not violated when the ith quanta is received in that slot (i.e., in the interval
[k, k + 1)). The subtask release corresponds to the start of this slot, i.e., time k.17

On the other hand, the d(Ti) constraint identifies the earliest time k such that the
lower lag bound (−Q · β−) is violated when only i − 1 quanta are received by k.
It follows that the ith quantum must be received in the interval [k − 1, k), at the
latest. Hence, the subtask deadline occurs at time k.

Applying (2) and rearranging terms to isolate k produces the following equivalent
forms.

r(Ti) = min
{

k

∣∣∣∣ k ∈ Z ∧ k >
i − β+

T.w
− 1

}

d(Ti) = min
{

k

∣∣∣∣ k ∈ Z ∧ k ≥ (i − 1) + β−
T.w

}

The lemma follows.

Window overlap. Lemma A.2, shown below, bounds the number of slots by which
consecutive subtask windows can overlap in the absence of IS delays.

Lemma A.2. Each pair of consecutive subtasks Ti and Ti+1 satisfy the inequality
shown below. ⌈

β − 2
T.w

⌉
+ ε ≤ d(Ti) − r(Ti+1) ≤

⌈
β − 2
T.w

⌉
+ ε + 1

If Ti is the last subtask in a cycle, then

d(Ti) − r(Ti+1) = B(T) def=
⌈

β− − 1
T.w

⌉
+

⌈
β+ − 1
T.w

⌉
+ ε.

Proof. The following derivation establishes the upper bound.

17Notice that the release time may be negative. It is important to understand that time 0 is

simply a reference point that records when scheduling begins. Since no scheduling occurs prior to

this point, windows with negative release times are effectively truncated to begin at time 0.

ACM Journal Name, Vol. TBD, No. TBD, TBD 20TBD.

Locking under Pfair Scheduling · 31

d(Ti) − r(Ti+1)
=

(⌈
(i−1)+β−

T.w

⌉
+ εd

)
−

(⌊
(i+1)−β+

T.w

⌋
− εr

)
, by Theorem 2.1

≤
⌈

β++β−−2
T.w

⌉
+

⌊
i+1−β+

T.w

⌋
+ 1 −

⌊
i+1−β+

T.w

⌋
+ εr + εd, �a + b� ≤ �a� + �b� + 1

=
⌈

β++β−−2
T.w

⌉
+ 1 + εr + εd , simplification

=
⌈

β−2
T.w

⌉
+ ε + 1 , by (6) and (7)

The following derivation establishes the lower bound.

d(Ti) − r(Ti+1)
=

(⌈
(i−1)+β−

T.w

⌉
+ εd

)
−

(⌊
(i+1)−β+

T.w

⌋
− εr

)
, by Theorem 2.1

≥
⌈

β++β−−2
T.w

⌉
+

⌊
i+1−β+

T.w

⌋
−

⌊
i+1−β+

T.w

⌋
+ εr + εd , �a + b� ≥ �a� + �b�

=
⌈

β++β−−2
T.w

⌉
+ εr + εd , simplification

=
⌈

β−2
T.w

⌉
+ ε , by (6) and (7)

When Ti is the last subtask in a cycle, then i
T.w is an integer since E(T) | i holds.

This leads to the derivation shown below.

d(Ti) − r(Ti+1)
=

(⌈
(i−1)+β−

T.w

⌉
+ εd

)
−

(⌊
(i+1)−β+

T.w

⌋
− εr

)
, by Theorem 2.1

= i
T.w +

⌈
β−−1
T.w

⌉
− i

T.w −
⌊

1−β+
T.w

⌋
+ εr + εd , since i

T.w is an integer

=
⌈

β−−1
T.w

⌉
−

⌊
1−β+
T.w

⌋
+ εr + εd , simplification

=
⌈

β−−1
T.w

⌉
+

⌈
β+−1
T.w

⌉
+ εr + εd , �−a� = −�a�

=
⌈

β−−1
T.w

⌉
+

⌈
β+−1
T.w

⌉
+ ε , by (7)

The above derivations establish the lemma.

Window span. Lemma A.3, shown below, bounds the number of slots spanned by
a sequence of n consecutive windows.

Lemma A.3. Every sequence of consecutive subtasks Ti+1, . . . , Ti+n satisfies the
following:

⌈
n + β − 2

T.w

⌉
+ ε ≤ d(Ti+n) − r(Ti+1) ≤

⌈
n + β − 2

T.w

⌉
+ ε + 1

When Ti+1 begins a cycle (i.e., E(T) | i holds) and subtask i + n ends a cycle (i.e.,
E(T) | (i + n) holds),

d(Ti+n) − r(Ti+1) =
n

T.w
+ B(T) .

Proof. The following derivation establishes the upper bound in the first claim.
ACM Journal Name, Vol. TBD, No. TBD, TBD 20TBD.

32 · P. Holman and J. Anderson

d(Ti+n) − r(Ti+1)
=

(⌈
(i+n−1)+β−

T.w

⌉
+ εd

)
−

(⌊
(i+1)−β+

T.w

⌋
− εr

)
, by Theorem 2.1

≤
⌈

n+β++β−−2
T.w

⌉
+

⌊
i+1−β+

T.w

⌋
+ 1 −

⌊
i+1−β+

T.w

⌋
+ εr + εd

, �a + b� ≤ �a� + �b� + 1
=

⌈
n+β++β−−2

T.w

⌉
+ εr + εd + 1 , simplification

=
⌈

n+β−2
T.w

⌉
+ ε + 1 , by (6) and (7)

The following derivation establishes the lower bound in the first claim.

d(Ti+n) − r(Ti+1)
=

(⌈
(i+n−1)+β−

T.w

⌉
+ εd

)
−

(⌊
(i+1)−β+

T.w

⌋
− εr

)
, by Theorem 2.1

≥
⌈

n+β++β−−2
T.w

⌉
+

⌊
i+1−β+

T.w

⌋
−

⌊
i+1−β+

T.w

⌋
+ εr + εd , �a + b� ≥ �a� + �b�

=
⌈

n+β++β−−2
T.w

⌉
+ εr + εd , simplification

=
⌈

n+β−2
T.w

⌉
+ ε , by (6) and (7)

When E(T) | i and E(T) | (i + n) both hold, it follows that both i
T.w and i+n

T.w are
integers. Hence, the derivation shown below establishes the second claim.

d(Ti+n) − r(Ti+1)
=

(⌈
(i+n−1)+β−

T.w

⌉
+ εd

)
−

(⌊
(i+1)−β+

T.w

⌋
− εr

)
, by Theorem 2.1

= i+n
T.w +

⌈
β−−1
T.w

⌉
− i

T.w −
⌊

1−β+
T.w

⌋
+ εr + εd , since i

T.w and i+n
T.w are integers

= n
T.w +

⌈
β−−1
T.w

⌉
−

⌊
1−β+
T.w

⌋
+ εr + εd , simplification

= n
T.w +

⌈
β−−1
T.w

⌉
+

⌈
β+−1
T.w

⌉
+ εr + εd , �−a� = −�a�

= n
T.w +

⌈
β−−1
T.w

⌉
+

⌈
β+−1
T.w

⌉
+ ε , by (7)

= n
T.w + B(T) , by Lemma A.2

This completes the proof.

ACKNOWLEDGMENTS

We are grateful to the anonymous reviewers for their helpful suggestions regarding
an earlier draft of this paper.

REFERENCES

Anderson, J., Block, A., and Srinivasan, A. 2003. Quick-release fair scheduling. In Proceedings
of the 24th IEEE Real-time Systems Symposium. 130–141.

Anderson, J., Ramamurthy, S., and Jeffay, K. 1997. Real-time computing with lock-free
objects. ACM Transactions on Computer Systems 15, 6 (May), 388–395.

Anderson, J. and Srinivasan, A. 2000a. Early-release fair scheduling. In Proceedings of the
12th Euromicro Conference on Real-time Systems. 35–43.

Anderson, J. and Srinivasan, A. 2000b. Pfair scheduling: Beyond periodic task systems. In
Proceedings of the Seventh International Conference on Real-time Computing Systems and
Applications. 297–306.

Anderson, J. and Srinivasan, A. 2001. Mixed Pfair/ERfair scheduling of asynchronous periodic
tasks. In Proceedings of the 13th Euromicro Conference on Real-time Systems. 76–85.

ACM Journal Name, Vol. TBD, No. TBD, TBD 20TBD.

Locking under Pfair Scheduling · 33

Baker, T. 1991. Stack-based scheduling of real-time processes. Real-time Systems 3, 1 (Mar.),
67–99.

Baruah, S., Cohen, N., Plaxton, C., and Varvel, D. 1996. Proportionate progress: A notion

of fairness in resource allocation. Algorithmica 15, 600–625.

Baruah, S., Gehrke, J., and Plaxton, C. G. 1995. Fast scheduling of periodic tasks on multiple
resources. In Proceedings of the 9th International Parallel Processing Symposium. 280–288.

Block, A., Anderson, J., and Bishop, G. 2005. Fine-grained task reweighting on multiproces-
sors. In Proceedings of the 11th IEEE International Conference on Embedded and Real-Time
Computing Systems and Applications (to appear).

Caccamo, M. and Sha, L. 2001. Aperiodic servers with resource constraints. In Proceedings of
the 22nd IEEE Real-time Systems Symposium. 161–170.

Chandra, A., Adler, M., Goyal, P., and Shenoy, P. 2000. Surplus fair scheduling: A

proportional-share cpu scheduling algorithm for symmetric multiprocessors. In Proceedings
of the Fourth Symposium on Operating System Design and Implementation.

de Niz, D., Abeni, L., Saewong, S., and Rajkumar, R. 2001. Resource sharing in reservation-
based systems. In Proceedings of the 22nd IEEE Real-time Systems Symposium. 171–180.

Gai, P., Lipari, G., and di Natale, M. 2001. Minimizing memory utilization of real-time task sets
in single and multi-process or systems-on-a-chip. In Proceedings of the 22nd IEEE Real-time
Systems Symposium. 73–83.

Holman, P. 2004. On the implementation of Pfair-scheduled multiprocessor systems. Ph.D.
thesis, University of North Carolina at Chapel Hill.

Holman, P. and Anderson, J. 2002a. Locking in Pfair-scheduled multiprocessor systems. In
Proceedings of the 23rd IEEE Real-time Systems Symposium. 149–158.

Holman, P. and Anderson, J. 2002b. Object sharing in Pfair-scheduled multiprocessor systems.
In Proceedings of the 14th Euromicro Conference on Real-time Systems. 111–120.

Holman, P. and Anderson, J. 2003. Using hierarchal scheduling to improve resource utilization
in multiprocessor real-time systems. In Proceedings of the 15th Euromicro Conference on Real-
time Systems. 41–50.

Holman, P. and Anderson, J. 2005. Supporting lock-free synchronization in Pfair-scheduled
systems. Journal of Parallel and Distributed Computing (to appear).

Lamastra, G., Lipari, G., and Abeni, L. 2001. A bandwidth inheritance algorithm for real-time
task synchronization in open systems. In Proceedings of the 22nd IEEE Real-time Systems
Symposium. 151–160.

Liu, C. and Layland, J. 1973. Scheduling algorithms for multiprogramming in a hard real-time
environment. Journal of the ACM 30, 46–61.

Lynx Real-time Systems. 1993. LynxOS application writer’s guide. Lynx Real-time Systems,
Inc.

Moir, M. and Ramamurthy, S. 1999. Pfair scheduling of fixed and migrating periodic tasks
on multiple resources. In Proceedings of the Twentieth IEEE Real-time Systems Symposium.
294–303.

Mok, A. 1983. Fundamental design problems for the hard real-time environment. Ph.D. thesis,
Massachussetts Institute of Technology.

Rajkumar, R. 1990. Real-time synchronization protocols for shared memory multiprocessors. In
Proceedings of the International Conference on Distributed Computing Systems. 116–123.

Rajkumar, R. 1991. Synchronization in real-time systems – A priority inheritance approach.
Kluwer Academic Publishers, Boston, Mass.

Rajkumar, R., Sha, L., and Lehoczky, J. 1988. Real-time synchronization protocols for multi-
processors. In Proceedings of the Ninth IEEE Real-time Systems Symposium. 259–269.

Ramamurthy, S. 1997. A lock-free approach to object sharing in real-time systems. Ph.D. thesis,

University of North Carolina at Chapel Hill.

Sha, L., Rajkumar, R., and Lehoczky, J. 1990. Priority inheritance protocols: An approach to
real-time system synchronization. IEEE Transactions on Computers 39, 9, 1175–1185.

ACM Journal Name, Vol. TBD, No. TBD, TBD 20TBD.

34 · P. Holman and J. Anderson

Srinivasan, A. and Anderson, J. 2002. Optimal rate-based scheduling on multiprocessors. In
Proceedings of the 34th Annual ACM Symposium on Theory of Computing. 189–198.

Srinivasan, A. and Anderson, J. 2003a. Efficient scheduling of soft real-time applications on
multiprocessors. In Proceedings of the 15th Euromicro Conference on Real-time Systems. 51–59.

Srinivasan, A. and Anderson, J. 2003b. Fair scheduling of dynamic task systems on multipro-
cessors. In 11th International Workshop on Parallel and Distributed Real-time Systems (on
CD-ROM).

ACM Journal Name, Vol. TBD, No. TBD, TBD 20TBD.

