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Abstract

We examine the \granularity" of statements of the form \await B ! S", where B is a boolean

expression over program variables and S is a multiple-assignment. We consider two classes of such

statements to have the same granularity i� any statement of one class can be implemented without

busy-waiting by using statements of the other class. Two key results are presented. First, we show

that statements of the form \await B ! S" can be implemented without busy-waiting by using

simpler statements of the form \await X", \X := y", and \y := X", where y is a private boolean

variable and X is a shared singler-reader, multi-writer boolean variable. Second, we show that if

busy-waiting is not allowed, then there is no general mechanism for implementing statements of the

form \await B", where B is an N -writer expression, using only assignment statements and state-

ments of the form \await C", where C is an (N�1)-writer expression. It follows from these results

that the granularity of waiting depends primarily on the number of processes that may write each

program variable. These results also show that, from a computational standpoint, operations that

combine both waiting and assignment, such as the P semaphore primitive, are not fundamental.

Keywords: Atomicity, busy-waiting, conditional mutual exclusion, idle-waiting, implementations,

linearizability, mutual exclusion, shared data, synchronization primitives.

1 Introduction

Atomic operations are commonly categorized by \granularity": an operation is said to be �ne-grained

if it can be easily implemented in terms of low-level machine instructions, and is said to be coarse-

grained otherwise. Coarse-grained atomic operations are used when developing concurrent programs in

a top-down fashion; under this approach, a program is �rst developed using coarse-grained operations,

and then each coarse-grained operation is implemented by �ne-grained ones.
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In this paper, we consider the latter problem, i.e., that of implementing one kind of atomic operation

in terms of another. Our speci�c goal is to determine the extent to which such implementations can be

achieved without busy-waiting. This has been recognized as an important question for many years, as

evidenced by the following quote taken from a paper written by Dijkstra in 1976 [8].

To what extent the ideal \no unbounded repetitions in the individual programs" [busy-

waiting] can be achieved in general | possibly by allowing certain special units of action to

refer to more than one shared variable | is a question to which I don't know the answer at

the moment of this writing.

The disadvantages of busy-waiting are twofold. First, programs with processes that busy-wait may

su�er from performance degradation: a busy-waiting process not only wastes processor cycles, but also

consumes memory bandwidth [10, 19]. Second, and perhaps more importantly, the use of busy-waiting

often results in programs that are di�cult to analyze and prove correct [5].

Recent work on wait-free synchronization has largely answered Dijkstra's question for the case of

operations that only read or write shared variables; representative papers on wait-free synchronization

include [1, 2, 4, 6, 11, 13, 15]. In this paper, we extend this work by considering conditional operations,

i.e., operations with enabling conditions that involve shared variables. The P semaphore primitive is

an example of such an operation: it consists of an assignment \X := X � 1", where X is shared, that

may be executed only when the enabling condition \X > 0" holds. We represent conditional operations

by means of statements of the form \await B ! S", where B is a boolean expression over program

variables and S is a multiple-assignment. This statement can be executed only when its enabling

expression B is true. It is atomically executed (when enabled) by performing its assignment S. We

abbreviate such a statement as \await B" if its assignment is null, and as \S" if its enabling expression

is identically true.

Because conditional operations may require processes to wait, wait-free implementations of them

in general do not exist. Thus, we are left with a large gap in our understanding of the concept of

\granularity". In this paper, we bridge this gap by considering the relative granularity of various classes

of await statements. As suggested above, we consider two classes of such statements to have the same

granularity i� any statement of one class can be implemented without busy-waiting by using statements

of the other class. This notion of granularity extends that used in work on wait-free synchronization.

In the remainder of the paper, two key results are presented.

� First, we prove that statements of the form \await B ! S" can be implemented without busy-

waiting by using simpler statements of the form \await X", \X := y", and \y := X", where y is

a private boolean variable and X is a shared, single-reader, multi-writer boolean variable.1 This

result shows that, from a computational standpoint, operations that combine both waiting and

assignment, such as the P semaphore primitive, are not fundamental.

� Second, we show that if busy-waiting is not allowed, then there is no general mechanism for

implementing statements of the form \await B", where B is an N -writer expression (i.e., one

whose value can be changed by N distinct processes) by using only assignment statements and

statements of the form \await C", where C is an (N � 1)-writer expression.

1An m-reader, n-writer variable can be read or waited on by m processes and can be written by n processes. For

simplicity, we do not distinguish between reading and waiting when classifying variables in this way.
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As intermediate steps in establishing the former result, we present solutions to two synchronization

problems. The �rst is a solution to a new synchronization problem, de�ned here for the �rst time,

called the conditional mutual exclusion problem. The second is a new solution to the mutual exclusion

problem in which processes do not busy-wait and in which only single-reader, single-writer boolean

variables are used.

It follows from the two results mentioned above that the granularity of waiting depends primarily

on the number of processes that can write each shared variable. Other characteristics, such as the

number of processes that may read or wait on each shared variable, the size of each shared variable, and

the number of shared variables that can be accessed within a single statement, are not as important.

Further, these results establish that Dijkstra's ideal, \no busy-waiting", can be realized by using \special

units of action" of the form \await X ", \X := y", and \y := X", where y is a private boolean variable

and X is a shared, single-reader boolean variable that can be written by any process.

The rest of this paper is organized as follows. In Section 2, we present our model of concurrent

programs and de�ne what it means to implement an await statement of one class by using await

statements of another class. The results mentioned in the preceding paragraph are explained in more

detail in Section 3 and are formally established in Sections 4 through 6. Concluding remarks appear in

Section 7.

2 Concurrent Programs and Implementations

A concurrent program consists of a set of processes and a set of variables. A process is a sequential

program consisting of labeled statements, and is speci�ed using guarded commands [7] and await

statements. Each variable of a concurrent program is either private or shared. A private variable is

de�ned only within the scope of a single process, whereas a shared variable is de�ned globally and may

be accessed by more than one process. Each process of a concurrent program has a special private

variable called its program counter : the statement with label k in process p may be executed only when

the value of the program counter of p equals k. To facilitate the presentation, we assume that shared

variables appear only in await statements. For an example of the syntax we employ for programs, see

Figure 2.

A program's semantics is de�ned by its set of \fair histories". As de�ned formally in the full paper,

a history is a structure that represents a single execution of a program. In the usual way, we represent a

history of a program as a sequence t0
s0
!t1

s1
!� � �, where t0 is an initial state of the program and ti

si
!ti+1

denotes the fact that state ti+1 is reached from state ti via the execution of statement si. Informally,

a history of a program is fair i� each statement of the program is either in�nitely often disabled

for execution in the history or is in�nitely often executed in the history. Unless otherwise noted, we

henceforth assume that all histories are fair.

When reasoning about the correctness of a concurrent program, safety properties are de�ned using

invariants and progress properties are de�ned using leads-to assertions. An assertion B (over program

variables) is an invariant of a program i� B holds in each state of every history of the program. We say

that predicate B leads-to predicate C in a program, denoted B 7! C, i� for each history t0
s0
!t1

s1
!� � � of

the program, if B is true at some state ti, then C is true at some state tj where j � i.

As stated in the introduction, we consider two classes of await statements to have the same gran-
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ularity i� any statement of one class can be implemented without busy-waiting by using statements of

the other class. We de�ne this notion of an implementation precisely by de�ning what it means to im-

plement one program by another. Our notion of an implementation is de�ned with respect to programs

because a given await statement's implementation may depend on the context in which that statement

appears. If program P is implemented by program Q, then we refer to P as the implemented program,

and Q as the implementation. (Presumably, P has \coarse-grained" await statements, whereas Q has

\�ne-grained" ones.)

In the full paper, we formally de�ne the conditions required of an implementation. Informally,

an implementation is obtained by replacing each await statement of the implemented program by a

program fragment that has the same \e�ect" as that statement when executed in isolation. Such a

program fragment is restricted to be free of unbounded busy-waiting loops. Although di�erent program

fragments in di�erent processes may be executed concurrently (i.e., their statements may be interleaved),

each program fragmentmust \appear" to be atomic; this condition is formalized by requiring all histories

of the implementation to be linearizable [9].

One way to ensure linearizable execution is to use critical sections. This is the approach taken in

most implementations presented in this paper. In such an implementation, each statement of the form

\await B ! S" is implemented by executing the assignment S as a critical section. Observe that the

critical section that implements S can be executed only when the enabling predicate B holds. This

aspect of conditional synchronization is not taken into account in traditional synchronization paradigms

such as the mutual exclusion problem. We will have more to say about this in Section 4.

3 Results

In this section, we outline the results presented in the remainder of the paper. As mentioned in the

introduction, our most important contribution is to show that the granularity of waiting depends pri-

marily on the number of processes that may write each program variable. This conclusion is based on

two key results, which are given in Theorems 1 and 2 below. In these theorems, we consider programs

called \k-primitive programs".

k-Primitive Programs: A program is k-primitive i� each of its await statements is either of the

form \await X", \X := y", or \y := X", where y is a private boolean variable and X is a shared,

single-reader, k-writer, boolean variable. 2

We �rst consider a number of lemmas that are needed in order to establish Theorem 1.

Lemma 1: Any program can be implemented by a program in which each await statement is either

of the form \await B" or \S". 2

We establish this lemma in Section 4 by considering a variant of the mutual exclusion problem

called the conditional mutual exclusion problem. In the conditional mutual exclusion problem, there

is a predicate associated with each process that must be true when that process executes its critical

section. This problem is motivated by our desire to implement statements of the form \await B ! S"
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by using statements of the form \await B" and \S". Our solution to this problem shows that it is

possible to implement any statement that combines both waiting and assignment in terms of statements

that do not. The next two lemmas show that we can simplify await statements of the form \await B"

and \S", respectively.

Lemma 2: Any program in which each await statement is either of the form \await B" or \S" can

be implemented by a program in which each await statement is either of the form \await X" or \S",

where X is a shared, single-reader, multi-writer boolean variable.

Proof Sketch: We use B1; : : : ; BN to denote the enabling predicates of statements of the form \await

B" appearing in the implemented program. The implementation is obtained by replacing each state-

ment of the form \await Bk" by a statement of the form \await Xk", where Xk is a shared boolean

variable that di�ers from any appearing in the implemented program; Xk is initially true i� predicate

Bk is initially true. Each assignment \S" of the implemented program that may possibly modify Bk is

modi�ed to assign Xk := Bk. This ensures that Xk = Bk is kept invariant for each k. 2

Lemma 3: Any program in which each await statement is either of the form \await X" or \S",

where X is a shared, single-reader, multi-writer boolean variable, can be implemented by a k-primitive

program for some k.

Proof Sketch: In Section 5, we prove that the mutual exclusion problem can be solved without busy-

waiting using only single-reader, single-writer, boolean variables. As shown in the full paper, it is

straightforward to use this solution to the mutual exclusion problem to obtain a k-primitive implemen-

tation. The required implementation is obtained by �rst implementing each assignment \S" as a critical

section and by then modifying the program so that only single-reader boolean variables are used. (The

latter is easy to do since assignments of the implemented program are executed as critical sections.) 2

The preceding three lemmas establish the following theorem.

Theorem 1: Any program can be implemented by a k-primitive program for some k. 2

According to Theorem 1, any program can be \reduced" to one in which each await statement is

as �ne-grained as possible, with the exception of multi-writer variables. In Section 6, we prove that,

in general, this \multi-writer barrier" cannot be crossed. In particular, we consider a variant of the

termination detection problem in which an \observer" process detects the termination of two \worker"

processes. We �rst show that this problem can be solved without busy-waiting if the observer is allowed

to wait on an expression that may be modi�ed by both workers. We then show that such a solution is

impossible if the observer can wait on only one worker at a time. This result establishes the following

theorem.

Theorem 2: There exists a program that cannot be implemented by any 1-primitive program. 2
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4 Conditional Mutual Exclusion

In this section, we de�ne the conditional mutual exclusion problem. We then present a program that

solves this problem in which processes do not busy-wait and in which only await statements of the

form \await B" and \S" are used. Our solution to this problem is used in the proof of Lemma 1 in

Section 3. In the conditional mutual exclusion problem, there are N processes, each of which has the

following structure.

do true !

Noncritical Section;

Entry Section;

Critical Section;

Exit Section

od

Associated with each process i is an enabling predicate B[i] that must be true when that process

enters its critical section. An enabling predicate's value can be changed only by a process in its critical

section. It is assumed that each critical section execution terminates. By contrast, a process is allowed

to halt in its noncritical section. No variable appearing in any entry or exit section may be referred

to in any noncritical section. Also, with the exception of enabling predicates, no such variable may be

referred to in any critical section. Let ES(i) (CS(i)) be a predicate that is true i� the value of process

i's program counter equals a label of a statement appearing in its entry section (critical section). Let

BCS(i) be a predicate that is true i� the value of process i's program counter equals the label of the

�rst statement in its critical section. (For simplicity, we assume that this statement is executed once

per critical section execution.) Then, the requirements that must be satis�ed by a program that solves

this problem are as follows.

� Mutual Exclusion: (8i; j : i 6= j :: CS(i) ) :CS(j)) is an invariant. Informally, at most one

process can execute its critical section at a time.

� Synchrony : (8i :: BCS(i) ) B[i]) is an invariant. Informally, when a process �rst enters its

critical section, its enabling predicate is true.

� Progress: (8i :: ES(i) 7! CS(i) _ :B[i]) holds. Informally, if a process is in its entry section

and its enabling predicate continuously holds, then that process eventually executes its critical

section.

We also require that each process in its exit section eventually enters its noncritical section; this re-

quirement holds trivially for all solutions considered in this paper, so we will not consider it further.

Observe that the conditional mutual exclusion problem reduces to the mutual exclusion problem when

each process's enabling predicate is always identically true.

If busy-waiting is allowed, then it is straightforward to use a solution to the mutual exclusion problem

to obtain a program that solves the conditional mutual exclusion problem. In particular, consider the

program given in Figure 1, which is taken from [5]. In this program, ENTRY and EXIT denote entry

and exit sections from an N -process solution to the mutual exclusion problem. In order to execute

its critical section, process i repeatedly executes ENTRY and EXIT, checking B[i] in between. The
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process i

do true !

Noncritical Section;

ENTRY;

do :B[i] ! EXIT; ENTRY od;

Critical Section;

EXIT

od

Figure 1: Using mutual exclusion to solve conditional mutual exclusion.

critical section is entered only if B[i] is true; otherwise, EXIT and ENTRY are executed again. Note

that when process i has executed ENTRY but not EXIT, it is e�ectively within its \mutual exclusion

critical section".

In the mutual exclusion problem, a process gets to its critical section by establishing \priority"

over other processes. In the conditional mutual exclusion problem, a process may have to relinquish

and establish priority over other processes an unbounded number of times before executing its critical

section. To see this, observe that the enabling predicate of a given process u may be repeatedly falsi�ed

and established by other processes; if u is in its entry section, then in the former case, u must relinquish

priority over other processes, and in the latter case, u must again establish priority. It is this aspect of

the conditional mutual exclusion problem that makes a solution without busy-waiting problematic.

A program that solves the conditional mutual exclusion problem without busy-waiting is given in

Figure 2. This program is derived from Peterson's solution to the N -process mutual exclusion problem

given in [18]. Processes \transit" through N + 1 levels numbered from 0 to N . Starting from level N;

processes compete to enter level 0. A process at level 0 executes its critical section. Q[u] represents

process u's current level, and u:q is a private copy of Q[u]. The await statement shown in Figure 2

allows a process at level j + 1 to enter level j only if there are at most j processes in levels 0 through

j. Observe that, if process u's enabling predicate B[u] is false, then process u's await statement is

disabled.2 T [j] records the process that arrived last at level j. The always section in Figure 2 is

used to de�ne two expressions C(u) and D(u), which appear as shorthand in the program text; in the

de�nition of these expressions, we implicitly assume that p, v, and w each range over f0; : : : ; N � 1g.

Roughly speaking, C(u) enables process u to proceed when there is no process at level 0 and u is at the

lowest numbered level among those processes whose enabling predicates hold. D(u) enables process u

to proceed if there is another process v that arrived later at process u's current level and that process

is not at level 0.

The propositions that are needed to prove Mutual Exclusion and Synchrony are as follows. In these

assertions, i@fSg holds i� the program counter of process i equals some value in set S.

invariant (8i : 0 � i < N :: i@f5g ) B[i])

2Although it is clear that the await statement of Peterson's algorithmmust be modi�ed to take the enabling predicates

into account, choosing a correct modi�cation out of the many possible alternatives is not trivial.
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shared var Q; T : array[0::N � 1] of 0::N ;

B : array[0::N � 1] of boolean

initially (8 i :: Q[i] = N ^ T [i] = N )

always C(u) � (8 p : p 6= u :: (B[p] ) Q[p] > u:q) ^ Q[p] 6= 0)

D(u) � (9 v; w : v 6= u :: w = u:q ^ v = T [w] ^ Q[v] 6= 0)

process u f u ranges over 0::N � 1 g

private var u:q : 0::N

initially u:q = N

do true !

0: Noncritical Section;

1: Q[u]; T [N � 1]; u:q := N � 1; u; N � 1;

2: do u:q 6= 0 !

3: await B[u] ^ (C(u) _ D(u));

4: Q[u]; T [u:q� 1]; u:q := u:q � 1; u; u:q � 1

od;

5: Critical Section;

6: Q[u]; u:q := N; N

od

Figure 2: Conditional mutual exclusion algorithm.

invariant (8i : 0 � i < N :: i@f5; 6g ) Q[i] = 0)

invariant (8j : 0 � j < N :: (Np :: Q[p] � j) � j + 1)

Observe that the �rst invariant implies that Synchrony holds, and the second and third imply that

Mutual Exclusion holds. To see the latter, observe that, by substituting 0 for j in the third invariant,

we have (Np :: Q[p] � 0) � 1, which, by the second invariant, implies (Np :: p@f5g) � 1.

Establishing the third invariant is the crux of the proof. Observe that process u may falsify this

invariant only by decrementing its level, Q[u], upon executing statement 4. However, as shown in the

full paper, statement 3 allows process u to decrement Q[u] only when (Np :: Q[p] < Q[u]) < Q[u]

holds. This clearly implies that the third invariant is not violated. In the full paper, we give assertional

proofs for the above invariants, and de�ne a well-founded ranking to prove that the program satis�es

the Progress requirement.

5 Fine-Grained Mutual Exclusion

In this section, we present a solution to the mutual exclusion problem in which processes do not busy-

wait and in which only single-reader, single-writer boolean variables are used; we call such a solution

�ne-grained . Our solution to this problem is used in the proof of Lemma 3 in Section 3. As explained
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shared var P;Q; T : array[u; v] of boolean

initially P [u] = true ^ P [v] = true ^ Q[u] = true ^ Q[v] = true

process u process v

private var u:x : boolean private var v:x : boolean

do true ! do true !

0: Noncritical Section; 0: Noncritical Section;

1: P [u] := false; 1: P [v] := false;

2: Q[u] := false; 2: Q[v] := false;

3: u:x := T [v]; 3: v:x := :T [u];

4: T [u] := u:x; 4: T [v] := v:x;

5: P [u] := u:x; 5: P [v] := :v:x;

6: Q[u] := :u:x; 6: Q[v] := v:x;

7: if u:x ! 7: if v:x !

8: await P [v] 8: await P [u]

[] :u:x ! [] :v:x !

9: await Q[v] 9: await Q[u]

�; �;

10: Critical Section; 10: Critical Section;

11: P [u] := true; 11: P [v] := true;

12: Q[u] := true 12: Q[v] := true

od od

Figure 3: Two-process mutual exclusion algorithm.

in Section 4, the mutual exclusion problem is a special case of the conditional mutual exclusion problem

in which each process's enabling predicate is always identically true. For the mutual exclusion problem,

the requirements given in Section 4 reduce to the following.

� Mutual Exclusion: (8i; j : i 6= j :: CS(i) ) :CS(j)) is an invariant.

� Progress: ES(i) 7! CS(i) holds for each i.

As shown in the full paper, an N -process, �ne-grained solution to the mutual exclusion problem can

be obtained by \nesting" N �1 di�erent two-process, �ne-grained solutions. The basic idea is to require

each process to \compete" with each of the other N � 1 processes in a �xed linear order. It follows

that, in order to solve the N -process case, it su�ces to solve the two-process case. Such a solution,

consisting of two processes u and v, is depicted in Figure 3. The program is similar to the two-process

solution given by Peterson in [18] and also to that given by Kessels in [12], but uses only single-reader,

single-writer boolean variables.

The two variables T [u] and T [v] together correspond to the variable TURN of Peterson's algorithm,

and are used as a tie-breaker in the event that both processes attempt to enter their critical sections

at the same time. Process u attempts to establish T [u] = T [v] and process v attempts to establish
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T [u] 6= T [v]. Variables P [u] and Q[u] are used by process u to \signal" the value of T [u] to process v.

P [u] is used to signal that T [u] is true and Q[u] is used to signal that T [u] is false. Observe that, while

the value of T [u] is being determined in statements 3 and 4 of process u, the appropriate value to signal

is not known, and thus P [u] and Q[u] are both kept false. Also, when process u is in its noncritical

section (where it may halt) P [u] and Q[u] are both kept true; this ensures that process v does not

become forever blocked in its entry section. Variables P [v] and Q[v] are similarly used by process v to

signal the value of T [v] to process u, except their roles are reversed: P [v] is used to signal that T [v]

is false, and Q[v] is used to signal that T [v] is true. The algorithm ensures that both processes never

simultaneously wait on variables that are false. Avoiding such a situation is the principal problem that

arises when designing a �ne-grained solution to the mutual exclusion problem, as busy-waiting cannot

be employed to break deadlocks.

The propositions that are needed to prove Mutual Exclusion are as follows.

invariant u@f10g ) ( T [u] ^ (P [v] _ v@f2; 3g _ (:v:x ^ v@f4; 5g) ) _

:T [u] ^ (Q[v] _ v@f3g _ (v:x ^ v@f4::6g) ) )

invariant v@f10g ) ( T [v] ^ (P [u] _ u@f2; 3g _ (u:x ^ u@f4; 5g) ) _

:T [v] ^ (Q[u] _ u@f3g _ (:u:x ^ u@f4::6g) ) )

From the above two invariants, we can infer that :(u@f10g ^ v@f10g) is an invariant; this implies

that the Mutual Exclusion requirement holds. In the full paper, we give assertional proofs for these

invariants, and use a well-founded ranking to prove that the program satis�es the Progress requirement.

6 Necessity of Multi-Writer Variables

In this section, we establish Theorem 2 of Section 3 by showing that there exists a program that cannot

be implemented by any 1-primitive program. We do so by considering a variation of the termination

detection problem. In our version of this problem, there are two \worker" processes u and v and an

\observer" process w. The structure of each process is shown in Figure 4. The \state" of process u is

given by the shared variable UB ; u is \busy" if UB is true and is \idle" otherwise. Process v's state is

given by the shared variable VB , which is de�ned similarly.

Each of the workers u and v executes in cycles. In the beginning of each cycle, a decision is nondeter-

ministically made to either halt, thereby leaving the given worker's state variable forever unchanged, or

to continue. Note that it is possible for a worker to halt while it is in the \busy" state. The decision to

continue can be made only if at least one of the workers is busy. If the given worker decides to continue,

then its state variable is nondeterministically updated. This updating is preceded by an \initialization

section" and followed by an \update section". These two program fragments are executed in order to

inform the observer w of a possible state change. The observer executes its \waiting section" until it

detects that both workers are idle, in which case it sets variable w:done to true. (Note that it is possible

that the two workers are never both idle.)

The conditions that must be satis�ed by a program that solves this problem are as follows.

� Reference: Variables UB , VB , u:done, v:done, and w:done cannot appear in any initialization,

update, or waiting section.
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shared var UB ; VB : boolean

initially UB = true ^ VB = true

process u process v

private var u:busy; u:done : boolean private var v:busy; v:done : boolean

initially u:busy = true ^ u:done = false initially v:busy = true ^ v:done = false

do true ! do true !

0: u:done := :UB ^ :VB ; 0: v:done := :UB ^ :VB ;

1: if true ! 2: halt 1: if true ! 2: halt

[] :u:done ! 3: skip [] :v:done ! 3: skip

�; �;

4: Initialization Section; 4: Initialization Section;

5: if true ! 6: UB := UB _ VB 5: if true ! 6: VB := UB _ VB

[] true ! 7: UB := false [] true ! 7: VB := false

�; �;

8: u:busy := UB ; 8: v:busy := VB ;

9: Update Section 9: Update Section

od od

process w

private var w:done : boolean

initially w:done = false

0: Waiting Section;

1: w:done := true

Figure 4: Termination detection problem.

� Boundedness: Each initialization, update, and waiting section must be free of unbounded do-od

loops.

� Termination: Each initialization and update section is guaranteed to terminate. More formally,

we require u@f4g 7! u@f5g, u@f9g 7! u@f0g, v@f4g 7! v@f5g, and v@f9g 7! v@f0g.

� Detection: The observer is able to \detect" that both processes are idle. More formally, de�ne

P detects Q to hold i� P ) Q is an invariant and Q 7! P holds. Then, we require that

w:done detects :UB ^ :VB . Observe that, by the Reference requirement and the program

structure given in Figure 4, :UB ^ :VB is a stable property, i.e., once it becomes true, it

remains true.

The following two lemmas are used below to prove Theorem 2.

Lemma 4: The program in Figure 5 solves the termination detection problem.
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shared var UB ; VB : boolean;

UX ; VX : boolean

initially UB = true ^ VB = true ^ UX = false ^ VX = false

process u process v

private var u:busy; u:done : boolean private var v:busy; v:done : boolean

initially u:busy = true ^ u:done = false initially v:busy = true ^ v:done = false

do true ! do true !

0: u:done := :UB ^ :VB ; 0: v:done := :UB ^ :VB ;

1: if true ! 2: halt 1: if true ! 2: halt

[] :u:done ! 3: skip [] :v:done ! 3: skip

�; �;

4: UX := false; 4: VX := false;

5: if true ! 6: UB := UB _ VB 5: if true ! 6: VB := UB _ VB

[] true ! 7: UB := false [] true ! 7: VB := false

�; �;

8: u:busy := UB ; 8: v:busy := VB ;

9: if u:busy ! 10: skip 9: if v:busy ! 10: skip

[] :u:busy ! 11: UX := true [] :v:busy ! 11: VX := true

� �

od od

process w

private var w:done : boolean

initially w:done = false

0: await UX ^ VX ;

1: w:done := true

Figure 5: Solution to the termination detection problem.

Proof Sketch: For the program in Figure 5, the Reference, Boundedness, and Termination require-

ments trivially hold. In the full paper, we prove that the Detection requirement also holds by showing

that w:done ) :UB ^ :VB is an invariant and that :UB ^ :VB 7! w:done holds. 2

De�ne a program to be k-waiting i� each of its await statements is either of the form \S" or \await

B", where B is a k-writer expression. Note that the program in Figure 5 is 2-waiting since the await

statement of process w waits on a predicate that may be modi�ed by both processes u and v. Observe

that a k-waiting program is not necessarily k-primitive. For example, the program in Figure 5 has

assignments that access multiple shared variables (as required by the program structure in Figure 4),

and thus is not 2-primitive.

Lemma 5: The termination detection problem cannot be solved by any 1-waiting program.

12



Proof Sketch: Assume, to the contrary, that there exists a 1-waiting program P that solves the

termination detection problem. We derive a contradiction by showing that there exists a fair history of

P in which there are in�nitely many statement executions of w. This implies that the waiting section

of w has an unbounded do-od loop, thus violating the Boundedness requirement.

The details of the proof are given in the full paper. The idea is as follows. First, we show that

process u cannot become either directly or indirectly blocked on process v while v@f0g holds. The

proof is based upon the central fact that u is unable to tell whether v will decide to halt or continue.

(If v decides to halt and u is blocked on v, then the Termination requirement will be violated.) By

symmetry, it follows that process v cannot become either directly or indirectly blocked on process u

while u@f0g holds. Using these key facts, the required fair history can be constructed in a stepwise

fashion: in each step, one of the workers is held at statement 0 and the other worker executes a complete

cyle. This history is constructed so that each worker is idle in�nitely often but both workers are never

simultaneously idle. We show that in this history w must repeatedly check the status of each worker,

i.e., w must busy-wait. 2

Proof of Theorem 2: We show that the program in Figure 5 cannot be implemented by any 1-

primitive program. Suppose, to the contrary, that such an implementation exists. Then, by using the

initialization, update, and waiting sections of that implementation, it would be possible to construct

a 1-waiting program that solves the termination detection problem. This contradicts Lemma 5. It is

worth pointing out that the program in Figure 5 can be implemented by a 2-primitive program by using

the techniques given in Lemmas 2 and 3 in Section 3. 2

7 Concluding Remarks

The primary objective of this paper has been to determine how programs with await statements should

be categorized by granularity. To this end, we presented two key results. First, we showed that any

program can be implemented by a k-primitive program for some k. In a k-primitive program, each

await statement is as simple as possible, with the exception that k-writer variables are allowed. In

establishing this result, we de�ned and solved a new synchronization problem, the conditional mutual

exclusion problem. A surprising consequence of this result is the fact that await statements that

combine both waiting and assignment can be implemented without busy-waiting in terms of those that

do not.

As a second key result, we established the existence of a program that cannot be implemented by

any 1-primitive program. Together, these two results give us a means for categorizing programs by

granularity: the simplest programs are those that can be \reduced" to 1-primitive ones, next are those

that can be \reduced" to 2-primitive ones, etc. These results also show that for N -process programs,

simple statements of the form \awaitX", \X := y", and \y := X" su�ce as synchronization primitives,

where y is a private boolean variable and X is a shared, single-reader, N -writer boolean variable.

Our results are not merely of theoretical interest, but also have important practical consequences.

On any realistic machine, any await statement that has a nontrivial enabling predicate must be im-

plemented by means of busy-waiting at some level. Our results show that the required busy-waiting is

simple. Speci�cally, our results show that any await statement | no matter how complicated | can
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be implemented by busy-waiting on single-reader, multi-writer boolean variables (as would be required

by an implementation of the statement \await X" of the previous paragraph). This stands in sharp

contrast to the case of previous implementations, such as that given in Figure 1, where busy-waiting on

complicated \global" predicates is employed. In a recent paper by Mellor-Crummey and Scott [16], it

is shown that busy-waiting on global predicates is best avoided if programs are required to be scalable,

as such busy-waiting induces an unacceptable degree of memory and interconnect contention.

Our results can be generalized to allow programs with await statements that have multiple guards.

Such statements can be represented as follows.

await B1 ! S1 [] B2 ! S2 [] � � � [] BN ! SN

This statement is atomically executed by performing some assignment Sj whose guard is true. If

more than one guard is true, then the assignment to perform is selected nondeterministically. Such a

statement can be implemented by using a solution to the conditional mutual exclusion problem, with

\B1 _ � � � _ BN" as the enabling predicate. Once inside its critical section, a process would simply

select for execution an assignment whose guard is true.

In this paper, we have primarily limited our attention to determining those implementations that

are possible and those that are impossible. Other issues, such as complexity and performance, are yet to

be considered. In all of our implementations, statements are implemented by using mutual exclusion.

This is partly due to the fact that in our main result, namely the implementation of statements of

the form \await B ! S", no restrictions are placed upon the variables appearing in B or S: such a

statement could conceivably reference every shared variable of a program! Without such restrictions, an

implementationmust ensure that only one such statement is executed at a time. By imposing restrictions

on variable access, it should be possible to implement await statements with greater parallelism. The

development of such implementations is an important avenue for further research.

Another important open question is that of precisely identifying the class of programs that can

be implemented by k-primitive programs but not (k � 1)-primitive ones. Our results merely establish

that any program can be implemented by a k-primitive program for some k. Characterizing the class

of programs that are exactly reducible to k-primitive programs would allow us to precisely categorize

programs by granularity. An important special case is that of identifying the class of programs that are

implementable in terms of 1-primitive programs. Because any program in this class can be implemented

by a program whose statements are as �ne-grained as possible, one could take membership in this class

as a criterion for identifying those programs with an \acceptable" grain of interleaving. Characterizing

this class of programs would thus shed light on the validity of traditional atomicity criteria such as

Reynolds' Rule [3, 14, 17].
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