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Abstract. We de�ne a class of shared objects called snapshot objects,
and give a necessary and su�cient condition for the existence of a wait-

free implementation of such objects from atomic registers. Snapshot ob-

jects can be accessed by means of a read operation that returns the entire
object state, or by a set of operations that do not return values. Our con-

dition for the existence of a wait-free implementation requires that for

any pair of operation invocations, either the two invocations commute
or one overwrites the other.

1 Introduction

The resilient implementation of shared objects is a subject that has received

much recent attention. A shared object is a data structure that is accessed by a

collection of processes by means of a �xed set of operations. An implementation

of a shared object is k-resilient i� any process can complete any operation in a

�nite number of steps, provided at most k other processes fail undetectably. An

N -process implementation is wait-free i� it is (N � 1)-resilient.

Most prior research on resilient shared objects has focused on implementa-

tions based on atomic registers. An atomic register is a shared object consisting

of a single shared variable that can be either read or written in a single operation

[14]. An N -reader,M -writer, L-bit atomic register consists of an L-bit value that

can be read by N processes and can be written by M processes.

Various shared objects have been shown to have wait-free implementations

using only the simplest kind of atomic registers, i.e., single-reader, single-writer,

single-bit atomic registers. These include multi-reader, multi-writer, multi-bit

atomic registers [4, 7, 8, 11, 12, 14, 15, 17, 18, 19, 20, 21], multi-reader, multi-

writer counters [5, 6], and multi-reader, multi-writer composite registers [1, 2, 3,

13]. A composite register is a generalization of an atomic register, consisting of a

set of registers that may be written individually or read collectively in a single
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snapshot operation. Other objects have been shown to have no resilient imple-

mentation from atomic registers, including multiple-register assignment objects

[9], multiply-add registers [5], and read-modify-write objects [9].

In this paper, we consider the problem of precisely characterizing those shared

objects that can be implemented in a resilient manner from single-reader, single-

writer, single-bit atomic registers. We take a signi�cant step towards obtaining

such a characterization by considering a class of shared objects called snapshot

objects, and by establishing a necessary and su�cient condition on such ob-

jects for the existence of a wait-free implementation using only atomic registers.

Snapshot objects can be modi�ed by a �xed set of operations that do not return

values, and can be read in their entirety by any process by means of a special

Read operation. The condition we establish for such objects { hereafter called

the Resiliency Condition { requires that for each pair of operation invocations,

either the two invocations commute or one overwrites the other. Informally, two

invocations commute if the order in which they are applied is irrelevant, and an

invocation p overwrites an invocation q if invoking q and p in sequence results

in the same object state as just invoking p by itself.

In the �rst part of this paper, we show that the Resiliency Condition is

necessary by showing that any snapshot object that fails to satisfy it can be used

to implement a 1-resilient consensus protocol. Loui and Abu-Amara [16] have

shown that such a protocol cannot be implemented using only atomic registers.

It follows that if a snapshot object does not satisfy the condition, then it has

no 1-resilient implementation from atomic registers. With regard to su�ciency,

Aspnes and Herlihy [6] have presented an algorithm that provides a wait-free

implementation for a large class of objects. This class includes any snapshot

object that satis�es the Resiliency Condition, thereby showing the condition to

be su�cient. Thus, a given snapshot object either has a wait-free implementation

from atomic registers, or does not even have a 1-resilient implementation.

Unfortunately, Aspnes and Herlihy's implementation has unbounded space

complexity. In the second part of this paper, we present a bounded, wait-free

implementation for a class of snapshot objects that satisfy the condition. The

requirement for an object to be in this class is that the relationship between each

pair of operations is static: that is, for any pair of operations P and Q, either each

invocation of P commutes with each invocation of Q, or each invocation of P (Q)

overwrites each invocation of Q (P ). This class of objects turns out to be quite

large and includes many objects for which bounded, wait-free implementations

have been presented in the literature. It also includes many objects for which

no bounded, wait-free implementation was previously known. An example of

such an object is one consisting of four variables w, x, y, and z, with atomic

operations for reading all four variables, or writing all four variables, or writingw

and x, or writing y and z, or writing any individual variable. That such an object

has a wait-free implementation may be surprising, given that multiple-register

assignments cannot be implemented from atomic registers without waiting [9].

The remainder of this paper is organized as follows. In Section 2, we de�ne

some notation, and in Section 3, we formally state the Resiliency Condition



and show that it is necessary. In Section 4, we describe the bounded, wait-free

implementation discussed above. Concluding remarks appear in Section 5.

2 De�nitions

A snapshot object is a data structure that is shared by a collection of processes.

Each state of the object is an integer value; one state is designated as the initial

state. A process may inspect or change the state of the object by invoking one

of a �xed set of operations. It is not necessarily the case that all processes can

invoke all operations. Each operation takes zero or more parameters, and when

applied to the object with those parameters, may change the object's state. We

call each such application an invocation of the operation. Only one operation,

the Read operation, returns a value. The Read operation, which can be invoked

by any process, takes no parameters, and returns the state of the object.

An implementation of an object consists of a set of program fragments that

processes execute in order to invoke operations. Within such a program fragment,

the only shared objects that may be invoked are atomic registers (or objects that

may in turn be implemented from atomic registers with the desired resiliency

{ see below). The primary correctness condition for an implementation of an

object is that of linearizability [10].

A process may fail by stopping undetectably, in which case it is said to be

faulty. A process that does not fail is nonfaulty. As described in the introduction,

an implementation of an object is said to be k-resilient i� each nonfaulty process

is able to correctly complete all invocations in a �nite number of steps, provided

at most k processes fail. An implementation of an object for N processes is said

to be wait-free i� it is (N � 1)-resilient.

Unless speci�ed otherwise, we henceforth denote operations using P and Q,

and invocations of operations using p and q. We de�ne an object history as a

sequence s0
p0
! s1

p1
! s2 � � �

pn�1

! sn, where s0 is the initial state of the object,

and for each object state si, si+1 is the state of the object reached by applying

invocation pi when the object is in state si. We denote the last state of the

object in an object history H as hHi. We use Hj to denote the j-th invocation

in H and Hji to denote the sequence of invocations from H that are invoked by

process i. We denote the object history obtained by appending an invocation p

to an object history H as H � p. For an object history H and two invocations p

and q, p and q are said to commute after H i� hH � p � qi = hH � q � pi. Similarly,

p is said to overwrite q after H i� hH � q � pi = hH � pi.

3 Necessary and Su�cient Condition

In this section, we state a condition on snapshot objects and show that it is

necessary and su�cient for the existence of a resilient implementation.

Resiliency Condition: For every history H of the object and for every

pair of invocations p and q of di�erent processes, either p and q commute

after H, or one overwrites the other after H.



Theorem (Necessary and Su�cient Condition): A snapshot object has a

wait-free implementation i� it satis�es the Resiliency Condition. Furthermore,

if an object does not satisfy the Resiliency Condition, then it not only has no

wait-free implementation, it does not even have a 1-resilient implementation.

Proof: The su�ciency of this condition follows from results presented by Aspnes

and Herlihy in [6], where it is shown that any object (and thus any snapshot

object) satisfying the condition has an unbounded, wait-free implementation.

Aspnes and Herlihy's condition is slightly stronger in that they require every pair

of invocations to commute or overwrite, even for invocations of the same process.

However, their algorithm is still correct if our weaker condition is satis�ed.

In the remainder of the proof, we show that the Resiliency Condition is neces-

sary. Speci�cally, we show that any snapshot object that does not satisfy the con-

dition can be used to solve 1-resilient consensus. It has been shown by Loui and

Abu-Amara [16] that 1-resilient consensus cannot be solved using only atomic

registers. Thus, an object that does not satisfy our condition has no 1-resilient

implementation using only atomic registers. We �rst de�ne the 1-resilient con-

sensus problem, and then describe an algorithm that solves 1-resilient consensus

using any snapshot object that does not satisfy the condition.

1-Resilient Consensus Problem: To solve 1-resilient consensus, each non-

faulty process decides either true or false by assigning a local decision variable,

which it may write only once. Provided at most one process fails, every nonfaulty

process must eventually decide, according to the following conditions.

{ Agreement : Each nonfaulty process is required to choose the same value.

{ Nontriviality : There is a run in which all nonfaulty processes decide true and

a run in which all nonfaulty processes decide false. 2

If an object X does not satisfy the Resiliency Condition, then there is an

object history H for X, and invocations p and q by di�erent processes such that

p and q do not commute after H, and neither overwrites the other after H. Call

the processes that invoke p and q, u and v, respectively. We now describe how

X can be used to solve 1-resilient consensus.

Assuming, for a moment, that all the invocations in H have been applied

to X in order, we can solve 1-resilient consensus as follows. Process u invokes p

and then reads the state of the object. Similarly, process v invokes q and then

reads the state of the object. The only states that can be returned by u's read

are hH �pi, hH �p � qi, and hH � q �pi. Note that hH �pi 6= hH � q �pi because p does

not overwrite q, and hH � p � qi 6= hH � q � pi because p does not commute with

q. Thus, u can determine from the state it reads whether q was invoked �rst.

Similarly, v can determine whether q was invoked �rst. We call this technique

tie-breaking and the invocations p and q tie-breakers.

In the above description of the tie-breaking technique, we assumed that the

invocations in H had been applied to X in order. The problem remains of \re-

playing" the invocations in H. This is di�cult because we have no way of syn-

chronizing the processes to ensure that the invocations are applied in the correct



order. The key to solving this problem is to attempt to replay the invocations in

the correct order, and to detect any errors in the replaying, taking appropriate

action to ensure that a consistent decision is still reached.

The operations in H are replayed as follows. We use a bounded, wait-free

counter CTR, and a composite register LIST of size L+1, where L is the number

of invocations in H. It follows from the results in [1, 2, 3, 5, 6, 13] that such

objects can be implemented from atomic registers in a wait-free (and therefore

1-resilient) manner. Each process i performs the invocations in Hji in the order

in which they appear in H. To perform an invocation in H, process i uses the

Replay procedure shown in Fig. 1. If, after all calls to Replay have taken place, the

LIST variable has values 1 through L in positions 1 through L, then the object

history H was correctly replayed. If two invocations in H occur out of order,

then the associated increment and read statements of Replay are also executed

out of order, so LIST will not contain the correct values. We use this fact to

detect the situation in which H is correctly replayed. Note that it is possible

that H is correctly replayed, and the values in LIST are incorrect, so it will

appear as if H were not correctly replayed. This can happen if the increment

of CTR for one invocation happens before the read of CTR for the previous

invocation, but the invocations themselves occurred in the correct order. The

important point is that whenever it is detected that H was replayed correctly,

H was replayed correctly. We now describe what each process does after it has

�nished performing all of its invocations from H.

After replaying their invocations inH, processes u and v determine a decision

value by executing Finish u and Finish v (Fig. 1), respectively; this value is

recorded in the variable DV. Each other process, after replaying its invocations

in H, waits for one of u and v to update DV, and then returns the value decided.

At most one process can fail, so one of u and v eventually updates DV.

In some circumstances, processes u and v decide on a default value, and in

other circumstances they use their tie-breaking invocations p and q to modify

the object, and then reach a decision based on the state of the object. It is

important to note that one process might be using its tie-breaker while the

other is \dropping out" with a default value. When a process drops out, it does

not apply its tie-breaker invocation.

We now show that the algorithm satis�es the Agreement requirement by con-

sidering all possible ways in which processes u and v determine a decision value

during invocations of Finish u and Finish v, respectively. In the proof, we con-

sider the cases of LIST being incorrect and LIST being incomplete separately.

To be incorrect, some element i of LIST must contain a non-zero value other

than i. To be incomplete, some element of LIST must still contain zero. It is

important to note that each element of LIST is written only once; thus, if LIST

is incorrect, then it will continue to be incorrect, and if LIST is complete and

correct, then it will continue to be complete and correct.

Case 1 - Process u reads LIST[L + 1] 6= 0, or reads incorrect LIST, or reads

incomplete LIST. Process u drops out and returns true. Either process v drops

out and returns true, or process v applies its tie-breaker. If process v applies its



shared variables procedure Replay(j : 1::L)

LIST : array[1::L + 1] of 1::L+ 1; CTR := CTR + 1;

DV : f none, true, false g; invoke Hj on X;

CTR : 0::L y := CTR;

initially LIST[j] := y;

(8j : 1 � j � L+ 1 :: LIST [j] = 0) ^ return

DV = none ^ CTR = 0

local variables

x : array[1::L + 1] of 1::L+ 1;

y : 1::L;

val : integer

procedure Finish u() returns boolean procedure Finish v() returns boolean

x := LIST; LIST[L+ 1] := 1;
if x[L+ 1] = 0 ^ x := LIST;

(8j : 1 � j � L :: x[j] = j) then if (8j : 1 � j � L :: x[j] = j) then

invoke p on X; invoke q on X;

read val from X; read val from X;

DV := (val = hH � q � pi); DV := (val 6= hH � p � qi);
return(DV) return(DV)

else else

DV := true; DV := true;

return(true) return(true)
� �

Fig. 1. Replaying a Sequence of Invocations.

tie-breaker, then because u does not apply its tie-breaker, v reads hH � qi, and

thus returns true.

Case 2 - Process u reads LIST[L + 1] = 0 and LIST is complete and correct.

Process u applies its tie-breaker. Process v has not yet set LIST [L+ 1] to 1, so

it has not yet read LIST. Thus, when process v reads LIST, it is correct and

complete, so process v also applies its tie-breaker. As described above, when

both processes u and v apply their tie-breaker operations, they both decide on

the same value.

Case 3 - Process v reads incorrect LIST. Process v drops out and returns true.

Either process u reads LIST with the same error, or process u reads LIST before

the erroneous value is written, in which case that element of LIST is zero. In

either case, process u drops out and returns true.

Case 4 - Process v reads incomplete LIST. Process v drops out and returns true.

If process u reads LIST before process v, then it also reads LIST incomplete,

and drops out returning true. If process u reads LIST after process v, then it

reads LIST[L+ 1] = 1, and drops out, returning true.



Case 5 - Process v reads complete and correct LIST. Process v applies its tie-

breaker. Either process u drops out and returns true, or process u applies its

tie-breaker. If process u drops out, then process v reads hH � qi, and thus also

returns true. If process u applies its tie-breaker, then the values decided upon

by processes u and v are the same, as in Case 2.

In each case, both processes decide on the same value, so the Agreement require-

ment is ful�lled. The Nontriviality requirement is straightforward because if the

calls to Replay occur sequentially and in the correct order according to H, and if

both u and v apply their tie-breakers, then both decide false if process u applies

its tie-breaker �rst, and true if process v applies its tie-breaker �rst. 2

4 Implementation of a Subclass of Snapshot Objects

In this section, we describe a bounded, wait-free implementation for a subclass

of the snapshot objects shown by Aspnes and Herlihy [6] to have wait-free, but

unbounded, implementations. We �rst describe the subclass of objects imple-

mented, and then give an informal description of the implementation itself.

4.1 Subclass of Snapshot Objects Implemented

In the Resiliency Condition stated in Section 3, the relationship between oper-

ations is dynamic in the sense that invocations of a pair of operations P and Q

may commute after one history, while an invocation of one overwrites an invoca-

tion of the other after another history. We provide a bounded implementation for

snapshot objects in which operations are related statically. That is, for any pair

of operations P and Q, either each invocation of P commutes with each invoca-

tion of Q after every history, or each invocation of P overwrites each invocation

of Q after every history, or each invocation of Q overwrites each invocation of P

after every history. We say that P and Q commute, P overwrites Q, or Q over-

writes P , respectively. We also require several other properties of the operations

being implemented. We de�ne these properties next, and then give an example

object, to which we refer throughout the description of the implementation.

We require that for each operation P , there is a function f that takes two

arguments { a state of the object v and a list x of parameters for the operation {

and returns the state of the object that is the result of applyingP with parameter

list x to v. Note that for each operation P , either P overwrites P or P commutes

with P . If P does not overwrite P , in which case P commutes with P , then we

require that three functions, initialize, compose, and apply exist, such that

(8v; x :: apply(v; initialize(x)) = f(v; x)), and

(8v; x; i :: apply(v; compose(i; x)) = f(apply(v; i); x)):

The intuition here is that the initialize function takes a parameter list and

returns an intermediate form, which is a bounded integer value representing that

parameter list. The intermediate form is used to represent the composition of



parameters from multiple invocations of the operation. The compose function

takes a value of the intermediate form i and the parameter list x for another

invocation of the operation, and returns a new value of the intermediate form

that represents the composition of x with the parameters represented by i. The

apply function takes a state of the object v and a value of the intermediate

form i and returns a new state of the object that is the result of applying the

operation to the object in state v with each of the parameters represented by

i. For example, for three invocations with parameters x, y, and z of an op-

eration represented by function f , the new object state is f(f(f(v; x); y); z).

By applying the axioms stated above, this expression can be transformed into

apply(v; compose(compose(initialize(x); y); z)). This allows the combined e�ect

of these invocations to be computed without knowing the state of the object in

advance, which is important to our implementation. Many natural operations

satisfy these requirements, and in particular, if the size of the object is bounded,

these functions can be constructively shown to exist for any operation that com-

mutes with itself. The snapshot objects implemented here are further restricted

to have �nitely many operations and �nitely many processes. The following ex-

ample object satis�es all of our requirements.

Example: Our example object is comprised of four 16-bit registers. We use the

notation hw; x; y; zi to denote states of the object, and ignore the details of cod-

ing states of the object to and from natural numbers. The object's initial state

is h0; 0; 0; 0i. The following operations are available: CLR (clear all registers),

SET(u) (set all registers to u), CNZ (clear the leftmost non-zero register), and

RNZ (reverse the bits of the leftmost non-zero register). As with all snapshot

objects, we also have a Read operation that reads the entire object. For this ex-

ample, CLR and SET overwrite all four operations (including themselves), CNZ

commutes with CNZ, RNZ commutes with RNZ, and CNZ overwrites RNZ. 2

4.2 Implementation Overview

Before proceeding with a detailed description of the implementation, a brief

overview is in order. We divide operations into overwriting and commuting

classes, and de�ne a partial order over these classes. We order the classes in

any total order consistent with this partial order. Invocations write to a com-

posite register. The total ordering, along with a system of tags maintained in

the composite register, allows the state of the object to be computed from an

atomic snapshot of the composite register. We now describe how the classes and

partial order for a particular object are constructed.

4.3 Constructing Overwriting and Commuting Classes

Any operation that does not overwrite itself (and thus commutes with itself) is

put into a commuting class of its own. We then de�ne the overwriting classes to

be the maximal subsets of the remaining operations such that all operations in

an overwriting class overwrite each other. Every operation is in exactly one class,



because each operation that was not put into a commuting class overwrites at

least itself, and thus is in an overwriting class. Next, we de�ne a relation � over

the classes as follows:A � B i� (9P;Q : P 2 A;Q 2 B :: P overwrites Q) ^ A 6=

B. The overwrites relation is transitive [6], so � is transitive and irreexive, and

thus de�nes an irreexive partial order over the overwriting and commuting

classes. We label the classes 1 to C according to some arbitrary total order that

extends the partial order de�ned by the � relation. It is important to note that

for any pair of operations P and Q in di�erent classes, if P overwrites Q then P 's

class comes before Q's class in this labeling. The implemented object is speci�ed

using four data structures, anc, ow, func, and init, which are described below.

Example (continued):Operations CNZ and RNZ do not overwrite themselves,

and are thus put into commuting classes { call them S and T , respectively. The

remaining operations { CLR and SET { overwrite each other, so we have just

one overwriting class U containing both operations. The � relation gives U � S,

U � T , and S � T . There is only one total order (U; S; T ) that extends this

partial order, so the classes S, T , and U are labeled 2, 3, and 1, respectively. 2

4.4 Data Structures

The anc data structure is a square array of boolean values. Letting A (B) de-

note the i-th (j-th) class in the total order, anc[i; j] is true i� A � B. Thus,

anc represents each class's ancestors in the partial order { that is, the set of

classes whose operations overwrite operations in that class. The ow data struc-

ture is a one-dimensional array of boolean values. The value of ow[i] is true i�

the i-th class is an overwriting class. The func data structure is a C�M array of

functions, where M is the number of operations in the largest overwriting class,

or three, whichever is greater. These functions, which represent the operations,

are of di�erent types for overwriting and commuting classes. For an overwriting

class, we have the functions that represent the operations in that class. For a

commuting class, the �rst three positions contain the apply, compose, and ini-

tialize functions, respectively (which is why M is at least three). The init data

structure represents the initial state of the object.

Example (continued): In our example, anc and ow are de�ned as follows.

anc =

1 2 3

(U ) (S) (T )

1 (U ) 0 1 1

2 (S) 0 0 1

3 (T ) 0 0 0

ow =

1 2 3

(U ) (S) (T )

1 0 0

The following functions represent operations CLR and SET in class U .

func[1; 1](obj; u)� h0; 0; 0; 0i

func[1; 2](obj; u)� hu; u; u; ui



The �rst clears all registers, and the second sets all registers to the value of the

parameter. The following functions represent the operation CNZ in class S.

func[2; 1](obj; i) � obj with �rst i non-zero registers cleared f apply g

func[2; 2](i; u) � min(i + 1; 4) f compose g

func[2; 3](u) � 1 f initialize g

The initialize function starts a count of how many registers to clear. The compose

function increments the count, and the apply function clears the number of reg-

isters that the count indicates. The following functions represent the operation

RNZ in class T .

func[3; 1](obj; i) �

�
obj with �rst non-zero reg. reversed if i = 1

obj if i 6= 1
f apply g

func[3; 2](i; u) � 1� i f compose g

func[3; 3](u) � 1 f initialize g

The initialize function notes that the bits of the leftmost non-zero register are

to be reversed. The compose function toggles the value of the intermediate form

to indicate whether the bits of the leftmost non-zero register should be reversed.

If the value of the intermediate form is 1, then the apply function reverses the

bits of the leftmost non-zero register, otherwise the object is unchanged. 2

Having described how the implemented object is speci�ed, we now describe

the composite register used in the implementation, and the algorithm itself.

4.5 Composite Register Used in the Implementation

The composite register used by the implementation is a C � 2N array R of

cells, where N is the number of processes. Each cell contains the following �elds:

valid , op, pars, tag , atags, seen, cnt , and done. The valid �eld is a boolean value

that is used to invalidate a cell, signifying that the invocations it represents

were overwritten while in progress. The op �eld is used to identify the last

operation performed in the cell. The pars �eld records the intermediate form

of composing parameters in a commuting class, and the most recent parameter

in an overwriting class. The tag �eld is used by classes \lower" in the partial

order to detect when they have been overwritten by this operation, and by cells

in the same overwriting class to determine which is the most recent invocation.

The atags (ancestor tags) �elds are used to record copies of the values of the tag

�elds of all cells, and are examined in order to detect whether the invocations

represented in this cell have been overwritten. The seen �eld is used to record

tags currently in use by other cells in this class. The cnt �eld is used to record

how many consecutive times the tags recorded in the seen �eld have been seen.

The seen and cnt �elds are used to bound the size of the tag �elds. The done

�eld is used to indicate that an invocation has completed.



type

tag type = record seq: integer; alt: boolean; uniq: 0::4CN(N + 1) + 1 end;

f seq �eld in above de�nition can be restricted to range over 0::10N g

cell type = record valid: boolean; op: 1::M ; pars: 0::B; tag: tag type;
atags: array[1::2] of array[1::C; 0::2N � 1] of tag type;

seen: array[0::2N � 1] of 0::4CN(N + 1) + 1; cnt: array[0::2N � 1] of 0::3;

done: boolean end; f Object states, etc. are assumed to range within 0::B g

shared constant

anc: array[1::C, 1::C] of boolean; f Indicates ancestors in partial order g
ow: array[1::C] of boolean; f True for overwriting classes g
func: array[1::C; 1::M ] of 0::B � 0::B ! 0::B; f Initialize, compose, apply g
init: 0::B f Initial value of object g

shared variable

R : array[1::C; 0::2N � 1] of cell type; f Representation of shared object g

initially

(8i : 1 � i � C :: (8j : 0 � j < 2N :: :R[i; j]:valid ^ R[i; j]:tag:seq = 0))

de�nitions

sametags(v; tags; j) � (8i : anc[i; j] :: (8n :current(v; i; n) :: v[i; n]:tag = tags[i; n]))

alive(v; cl; i) � v[cl; i]:done ^ v[cl; i]:valid ^ (ow [cl] ) (8n : n 6= i ^ n 6= i�N^
v[cl; n]:done :: v[cl; n]:seen[i] 6= v[cl; i]:tag:uniq _ v[cl; n]:cnt[i] 6= 4))

current(v; j; k) � alive(v; j; k) ^ sametags(v; v[j; k]:atags[0]; j) ^
sametags(v; v[j; k]:atags[1]; j) ^ (ow [j] ) (8n : alive(v; j; n) ^
sametags(v; v[j; n]:atags[0]; j) ^ sametags(v; v[j; n]:atags[1]; j) ::

(v[j; n]:tag:seq; n) � (v[j; k]:tag:seq; k)))

local variables

v : array[1::C; 0::2N � 1] of cell type; f Local copy of object representation g
outval : 0::B; f Output value for Read g
i : 1::C; k : 0::2N � 1; f Counters g
q, r: array[1::C] of 0::2N � 1; f Cell to write in �rst (second) phase g
cell : cell type f Local copy of cell to be written g

Fig. 2. Variable declarations.

4.6 The Algorithm

The implementation consists of two procedures, Read and Invoke, which are listed

in Fig. 3. Associated variable declarations are given in Fig. 2. In this section,

we give a brief description of the algorithm. A formal correctness proof will be

given in the full paper.

The Read procedure determines the state of the object by starting with the



procedure Read () returns 0::B

read v := R; f Take snapshot g
outval := init; f Start with initial object value g
for i := 1 to C, k := 0 to 2N � 1 do f For each class and cell ...g

if current(v; i; k) then f If not overwritten ... g
outval := func[i; v[i; k]:op](v[i; k]:pars; outval) f ... apply operation g

�

od;

return(outval) f Return computed object value g

procedure Invoke (p : 0::N � 1; cl : 1::C; op : 1::M ; inval : 0::B)

if ow[cl] ^ r[cl] = p then q[cl]; r[cl] := N + p; N + p else q[cl]; r[cl] := p; p �;

if :ow[cl] then q[cl]; r[cl] := N + p; p �;

read v := R; f First phase: take snapshot g
cell := v[cl; q[cl]]; f Initialize cell to write g
cell:tag:uniq := (min n :: (8j; h; k :: v[j; h]:atags[0][cl; r[cl]]:uniq 6= n ^

v[j; h]:atags[1][cl; r[cl]]:uniq 6= n ^ v[j;h]:seen[k] 6= n ^ v[cl; q[cl]]:tag:uniq 6= n));

cell.tag.alt, cell.done := v[cl; r[cl]]:tag:alt; false;

for i := 1 to C, k := 0 to 2N � 1 do cell:atags[0][i; k] := v[i; k]:tag od;
for k := 0 to 2N � 1 do f Record observed tags g

if v[cl; q[cl]�N ]:seen[k] 6= v[cl; k]:tag:uniq then cell:cnt[k] := 0

else cell:cnt[k] := min(v[cl; q[cl]�N ]:cnt[k] + 1; 4)
�;

cell:seen[k] := v[cl; k]:tag:uniq f Record uniq values seen g
od;
write R[cl; q[cl]] := cell; f Reserve ancestor tags, uniq, copy other uniq's g

read v := R; f Second phase: take snapshot g
cell := v[cl; r[cl]]; f Initialize cell to write g
cell:op; cell:done; cell:atags[0]; cell:tag:alt; cell:tag:uniq; cell:tag:seq :=

op; true; v[cl; q[cl]]:atags[0]; :cell:tag:alt; v[cl; q[cl]]:tag:uniq; 0;
for i := 1 to C, k := 0 to 2N � 1 do cell:atags[1][i; k] := v[i; k]:tag od;

f Compose subsequent parameter g
if :ow[cl] ^ current(v; cl; r[cl]) then cell:pars := func[cl;2](v[cl; r[cl]]:pars; inval)

elseif :ow[cl] ^ :current(v; cl; r[cl]) then cell:pars := func[cl; 3](inval)

else cell:pars := inval

�;

f Already overwritten? g
cell:valid := (ow[cl] ) (8n : n 6= r[cl] ^ n 6= r[cl]�N ::

v[cl; n]:seen[r[cl]] 6= v[cl; r[cl]]:tag:uniq _ v[cl; n]:cnt < 2));

if ow[cl] then f Choose seq greater than all alive g
cell.tag.seq := (max s :: (9n :: (alive(v; cl; n) ^ v[cl; n]:tag:seq = s))) + 1

�;

write R[cl; r[cl]] := cell; f Invocation takes e�ect now, if at allg
return

Fig. 3. Read and Invoke procedures.



initial state of the object, and \applying" all operations that have been invoked,

with the following relaxations: any invocation that has been overwritten need

not be applied, and the order of invocations of operations that commute need not

be preserved. The Invoke procedure takes as arguments the process number of

the invoking process, the number of the class containing the operation, an index

into the func array indicating which function to use to apply the operation, and

a value representing the parameters to the invocation. The Invoke procedure

records information in the composite register R so that the Read procedure can

compute the current state of the object from a single snapshot of R.

Within an overwriting class, only the \most recent" invocation a�ects the

state of the object. To identify this invocation, we use a technique originated by

Vitanyi and Awerbuch in [21]. In particular, a sequence number is associated with

each invocation. Conceptually, these sequence numbers grow without bound, and

the \most recent" invocation is the one with the largest sequence number. To

bound the sequence numbers, we use a technique similar to that employed by

Anderson in [3] and by Li, Tromp, and Vitanyi in [15]. The idea is to have each

invocation choose a value uniq that is stored along with its sequence number.

Each invocation also makes a copy of each other cell's uniq value. The uniq

value is chosen so as to be distinct from all corresponding copies. When the uniq

value associated with a given sequence number has been copied by \several"

successive invocations, that sequence number is considered \dead", and is no

longer compared to other sequence numbers. The algorithm ensures that an

invocation has been overwritten before its sequence number is \killed", and that

all sequence numbers that have not been killed remain within a bounded range.

Within a commuting class, multiple invocations of an operation are \col-

lapsed" to appear as one invocation. The technique used for this purpose is

similar to one employed by Anderson and Gro�selj in [5], where a bounded, wait-

free algorithm is presented for a counter object that can be modi�ed using Reset

and Increment operations. In [5], Increment invocations that have been subse-

quently overwritten by a Reset are detected as follows. Increment invocations

make a copy of a tag value stored by the most recent Reset invocation, and

Reset invocations choose a tag value that is not currently stored as a copy. If an

Increment invocation's tag matches that of the most recent Reset, then it is con-

sidered to have occurred after that Reset; otherwise, the Increment is considered

to have been overwritten by some Reset invocation.

Because tags are required to be bounded, complications can arise when a

tag's value \wraps around". This problem is dealt with in [5] by having the In-

crement operation execute in two phases. For details, see [5] or the full version of

this paper. This technique is generalized in several ways in our algorithm. First,

note that each class is potentially an ancestor and a descendant, so operations

must perform roles analogous to those of both the Reset and Increment opera-

tions described above. A further complication arises because an invocation that

overwrites another invocation in a lower class may itself be overwritten by an

invocation in a higher class. We defer a detailed explanation of this complication

to the full paper.



5 Concluding Remarks

We have given a necessary and su�cient condition on snapshot objects for the

existence of a resilient implementation from atomic registers. The condition only

implies the existence of a wait-free implementation with unbounded space com-

plexity. However, we have given an implementation for a large class of such

objects that has polynomial space complexity. Our results show that there is no

middle ground in the resiliency spectrum for snapshot objects: either a particu-

lar snapshot object has a wait-free implementation, or it does not even have a

1-resilient implementation.

An interesting question is whether such a condition exists for more general

objects. A major stumbling block in extending our necessity proof is that it

depends vitally on a Read operation that returns the object state in its entirety.

In our implementation, the Read operation is used to detect which of the tie-

breaker operations was applied �rst. Note that if a process could read only part

of the object's state, it might be impossible to implement such a tie-breaking

mechanism. Also, there are objects that can be used to solve 1-resilient consensus

that do not provide a Read operation; as an example of such an object, consider a

boolean variable, initially false, that is accessed only via test-and-set operations.
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