
Fast, Long-Lived Renaming�

(Extended Abstract)

Mark Moir and James H. Anderson

Department of Computer Science

The University of North Carolina at Chapel Hill

Chapel Hill, North Carolina 27599-3175, USA

April 1994

Abstract

We consider wait-free solutions to the renaming problem for shared-memory multiprocessing systems

[3, 5]. In the renaming problem, processes are required to choose new names in order to reduce the

size of their name space. Previous solutions to the renaming problem have time complexity that is

dependent on the size of the original name space, and allow processes to acquire names only once. In

this paper, we present several new renaming algorithms. Most of our algorithms have time complexity

that is independent of the size of the original name space, and some of our algorithms solve a new, more

general version of the renaming problem called long-lived renaming. In long-lived renaming algorithms,

processes may repeatedly acquire and release names.

Keywords: fast renaming, long-lived renaming, shared-memory multiprocessors, synchronization prim-

itives, wait-free synchronization

1 Introduction

In the M -renaming problem [2], each of k processes is required to choose a distinct value, called a name,

that ranges over f0; :::;M � 1g. Each process is assumed to have a unique process identi�er ranging over

f0::N � 1g. It is further required that k � M < N . Thus, an M -renaming algorithm is invoked by k

processes in order to reduce the size of their name space from N to M .

Renaming is useful when processes perform a computation whose time complexity is dependent on the

size of the name space containing the processes. By �rst using an e�cient renaming algorithm to reduce the

size of the name space, the time complexity of that computation can be made independent of the size of the

original name space.

The renaming problem has been studied previously for both message-passing [2] and shared-memory

multiprocessing systems [3, 5]. In this paper, we consider wait-free implementations of renaming in asyn-

chronous, shared-memory systems. A renaming algorithm is wait-free i� each process is guaranteed to acquire

a name after a �nite number of that process's steps, regardless of the execution speeds of other processes.

Previous research on the renaming problem has focused on one-time renaming: each process acquires a

name only once. In this paper, we also consider long-lived renaming, a new, more general version of renaming

in which processes may repeatedly acquire and release names.

�Work supported, in part, by NSF Contract CCR 9216421. Email: fanderson,moirg@cs.unc.edu. Phone: (919)962-1757.

Fax: (919)962-1799

1

Reference M Time Complexity Long-Lived?

[3] k(k+ 1)=2 O(Nk) No

[3] 2k� 1 O(N4k) No

[5] 2k� 1 O(Nk2) No

Thm. 1 k(k+ 1)=2 O(k) No

Thm. 2 2k � 1 O(k4) No

Thm. 3 k(k+ 1)=2 O(Nk) Yes

Table 1: A comparison of M -renaming algorithms that employ only atomic reads and writes.

A solution to the long-lived renaming problem is useful in settings in which processes repeatedly access

identical resources. The speci�c application that motivated us to study this problem is the implementation of

shared objects. The complexity of a shared object implementation is often dependent on the size of the name

space containing the processes that access that implementation. For such implementations, performance can

be improved by restricting the number of processes that concurrently access the implementation, and by using

long-lived renaming to acquire a name from a reduced name space. This is the essence of a methodology we

are developing for the implementation of resilient, scalable shared objects. For details of this methodology,

and the use of long-lived renaming, see [1]. In that paper, we presented a simple long-lived renaming

algorithm. To our knowledge, this is the only previous work on long-lived renaming. In this paper, we

present several new long-lived renaming algorithms, one of which is a generalization of the algorithm we

presented in [1].

In the �rst part of the paper, we present three renaming algorithms that use only atomic read and write

instructions. It has been shown that if M < 2k� 1, then M -renaming cannot be implemented in a wait-free

manner using only atomic reads and writes [6]. Previous papers have given wait-free algorithms for one-time

renaming that employ only reads and writes [3, 5], including some that have an optimal name space of

M = 2k � 1. However, in all of these algorithms, the time complexity of choosing a name is dependent

on N . Thus, these algorithms su�er from the same shortcoming that the renaming problem is intended to

overcome, namely time complexity that is dependent on the size of the original name space.

Our read/write algorithms for one-time renaming yield various-sized name spaces, includingM = 2k�1.

In contrast to prior algorithms, our one-time algorithms have time complexity that depends only on k, the

number of participating processes. These algorithms employ a novel technique that uses \building blocks"

based on the \fast path" mechanism employed by Lamport's fast mutual exclusion algorithm [7].

We also present a read/write algorithm for long-lived renaming that yields a name space of size k(k+1)=2.

This algorithm uses a modi�ed version of the one-time building block that allows processes to \reset" the

building block, so that it may be used repeatedly. Unfortunately, this modi�cation results in time complexity

that is dependent on N . Nevertheless, this result breaks new ground by showing that long-lived renaming

can be implemented with only reads and writes.

Previous and new renaming algorithms that use only read and write operations are summarized in Table

1. We leave open the question of whether read and write operations can be used to implement long-lived

renaming with a name space of size 2k � 1 and with time complexity that depends only on k.

In many applications of renaming, it is important to achieve a name space that is as small as possible.

For example, in our methodology for implementing scalable, resilient shared objects [1], a process accesses

a wait-free shared object implementation using a name acquired from a renaming algorithm as a process

identi�er. The time complexity of such wait-free shared object implementations often increases dramatically

with the size of the name space containing the processes that access the implementation. We are therefore

motivated to designM -renaming algorithms for the smallest possible value ofM . By de�nition,M -renaming

for M < k is impossible, so with respect to the size of the name space, k-renaming is optimal.

In the second part of the paper, we consider long-lived k-renaming algorithms. As was previously men-

2

Reference Time Complexity Bits / Variable Instructions Used

Thm. 4 O(k) 1 write and test and set

Thm. 4 O(k=b) b set �rst zero and clear bit

Thm. 5 O(log k) O(log k) bounded decrement and atomic add

Thm. 6 O(log(k=b)) O(log k) above, set �rst zero, and clear bit

Table 2: A comparison of long-lived k-renaming algorithms.

tioned, it is impossible to implement k-renaming using only atomic read and write operations. Thus, all

of our k-renaming algorithms employ stronger read-modify-write operations. Our long-lived k-renaming

algorithms are summarized in Table 2.

The remainder of the paper is organized as follows. Section 2 contains de�nitions used in the rest of

the paper. In Sections 3 and 4, we present one-time and long-lived renaming algorithms that employ only

atomic reads and writes. In Section 5, we present long-lived renaming algorithms that employ stronger

read-modify-write operations. Concluding remarks appear in Section 6.

2 De�nitions

Our programming notation should be self-explanatory; as an example of this notation, see Figure 2. In

this and subsequent �gures, each line of a program is assumed to be executed atomically, unless otherwise

speci�ed. When reasoning about programs, we de�ne safety properties using invariant assertions. A state

assertion is an invariant i� it holds initially and is not falsi�ed by any statement execution.

Notational Conventions: The predicate p@i holds i� process p's program counter has the value i. We

use p@S as shorthand for (9i : i 2 S :: p@i). We use p:i to denote statement i of process p, and p:var to

denote p's local variable var. It is assumed that 0 < k � M < N , and that p and q range over 0::N � 1. 2

In the one-time M -renaming problem, each of k processes with distinct process identi�ers ranging over

f0; :::; N � 1g chooses a distinct value ranging over f0; :::;M � 1g. A solution to the M -renaming problem

consists of a wait-free procedure Getname for each process p that, when called by process p, returns a value

ranging over f0; :::;M � 1g. We assume that each process calls its Getname procedure at most once. For

p 6= q, the same value cannot be returned to both p and q.

In the long-lived M -renaming problem, each of N distinct processes repeatedly executes a remainder

section, acquires a name by assigning p:name := Getname(), uses that name in a working section, and then

releases the name by calling Putname(). The organization of these processes is shown in Figure 1. It is

assumed that the remainder section guarantees that at most k processes are outside their remainder sections

at any time. A solution to the long-lived M -renaming problem consists of wait-free Getname and Putname

procedures, along with associated shared variables. If process p is in its working section, then it is required

that 0 � p:name < M . If distinct processes p and q are in their working sections, then it is further required

that p:name 6= q:name .

Among other well-known operations, our algorithms use set �rst zero, clear bit, and bounded decrement.

The set �rst zero(X;m) operation atomically accesses a variable of m-bits, which are indexed from 0 to

m � 1. If all bits of X are set, then set �rst zero(X;m) returns m and does not modify X. Otherwise,

set �rst zero(X;m) sets the bit with the smallest index among clear bits in X and returns the index of

that bit. The clear bit(X; i) operation clears the ith bit of variable X. For m = 1, the set �rst zero and

clear bit operations can be trivially implemented using test and set and write operations. For m > 1, these

operations can be implemented, for example, using the atom�0andset and fetch and and operations on the

BBN TC2000 multiprocessor [4]. The bounded decrement operation is similar to the commonly-available

3

process p = � 0 � p < N � =

private variable name : 0::M � 1 =� Name received �=

while true do

Remainder Section; =� Ensure at most k processes access renaming instance concurrently �=

name := Getname(); =� Get a name between 0 and M � 1 �=

Working Section;

Putname(name) =� Release the name obtained �=

od

Figure 1: Organization of processes accessing a long-lived renaming algorithm.

fetch and decrement operation, except that it does not modify a variable whose value is zero.

We measure the time complexity of our algorithms in terms of the worst case number of shared variable

accesses. A variable is considered to be private if at most one process can access that variable and shared

otherwise. We measure the time complexity for one-time renaming as the worst case number of shared

variable accesses executed by a process in acquiring a name. We measure the time complexity for long-

lived renaming as the worst case number of shared variable accesses executed by a process in acquiring and

releasing a name once.

3 One-Time Renaming using Atomic Reads and Writes

In this section, we present renaming algorithms that employ only atomic read and write operations. We start

by presenting a one-time (k(k+ 1)=2)-renaming algorithm that has O(k) time complexity. We then describe

how this algorithm can be combined with previous results [5] to obtain a (2k � 1)-renaming algorithm with

O(k4) time complexity. It has been shown that renaming is impossible for fewer than 2k � 1 names when

using only reads and writes, so with respect to the size of the resulting name space, this algorithm is optimal.

In the next section, we present a long-lived (k(k+1)=2)-renaming algorithm that has time complexityO(Nk).

This is the �rst long-lived renaming algorithm that employs only read and write operations.

Our one-time (k(k + 1)=2)-renaming algorithm is based on a \building block", which we describe next.

3.1 The One-Time Building Block

The building block, depicted in Figure 2, is in the form of a wait-free code segment that assigns to a private

variable dir one of three values, stop, right, or down. If each of n processes executes this code segment at

most once, then at most 1 process receives a value of stop, at most n� 1 processes receive a value of right,

and at most n � 1 processes receive a value of down. We say that a process that receives a value of down

\goes down", a process that receives a value of right \goes right", and a process that receives a value of stop

\stops". Figure 2 shows n processes accessing a building block, and the maximum number of processes that

receive each value.

The code fragment shown in Figure 2 shows how the building block described above can be implemented

using atomic read and write operations. The technique employed is essentially that of the \fast path" used

in Lamport's fast mutual exclusion algorithm [7]. A process that stops corresponds to a process successfully

\taking the fast path" in Lamport's algorithm. The value assigned to dir by a process p that fails to \take

the fast path" is determined by the branch p takes: if p detects that Y holds, then p goes right, and if p

detects that X 6= p holds, then p goes down.

To see that the code fragment shown in Figure 2 satis�es the requirements of our building block, note

that it is impossible for all n processes to go right | a process can go right only if another process previously

assigned Y := true. Second, the last process p to assign X := p cannot go down, because if it tests X, then

it detects that X = p, and therefore stops. Thus, it is impossible for all n processes to go down. Finally,

because Lamport's algorithm prevents more than one processes from \taking the fast path", it is impossible

4

n

n−1

n−1

1
stop right

down

shared variable X : f?g [f0::N � 1g;

Y : boolean

initially X = ? ^ :Y

private variable dir : fstop; right;downg

X := p;

if Y then dir := right

else

Y := true;

if X = p then dir := stop

else dir := down

�

�

Figure 2: The one-time building block and the code fragment that implements it.

for more than one process to stop. Thus, the code fragment shown in Figure 2 satis�es the requirements of

the building block.

In the next section, we show how these building blocks can be combined to solve the renaming problem.

The basic approach is to use such building blocks to \split" processes into successively smaller groups.

Because at most one process stops at any particular building block, a process that stops can be immediately

given a unique name associated with that building block. Furthermore, when the size of a group has been

decreased often enough that at most one process remains in the group, that process (if it exists) can be given

a name immediately.

3.2 Using the One-Time Building Block to Solve Renaming

In this section, we use k(k� 1)=2 one-time building blocks arranged in a \grid" to solve one-time renaming;

this approach is depicted in Figure 3 for k = 5. In order to acquire a name, a process p accesses the building

block at the top left corner of the grid. If p receives a return value of stop, then p acquires the name

associated with that building block. Otherwise, p moves either right or down in the grid, according to the

return value received. This is repeated until the p receives a return value of stop at some building block,

or p has accessed k � 1 building blocks. The name returned is calculated based on the p's �nal position in

the grid. In Figure 3, each grid position is labeled with the name associated with that position. Because no

process takes more than k � 1 steps, only the upper left triangle of the grid is used, as shown in Figure 3.

The algorithm is presented more formally in Figure 4. A process acquires a name by calling the Getname

procedure. The Grid procedure and associated variable declarations provide the grid of building blocks, each

of which is implemented using the code segment shown in Figure 2. The grid position at the ith row and jth

column, where 0 � i < k and 0 � j < k, is referred to as (i; j); the top left corner of the grid is (0; 0). We

say that a grid position (i; j) is downstream from a grid position (i0; j0) i� i � i0 and j � j0. Grid position

(i; j) is i+ j steps away from grid position (0; 0). We now sketch the proof of a lemma that is central to the

correctness proof for this algorithm.

Lemma 1: At most k � i � j processes reach grid positions downstream from grid position (i; j).

5

0 1 2 3 4

8

9 10 11

12 13

14

6 75

Figure 3: k(k + 1)=2 building blocks in a grid, depicted for k = 5.

shared variable X : array[0::k� 2; 0::k � 2] of f?g[f0::N � 1g;

Y : array[0::k� 2; 0::k� 2] of boolean

initially (8i; j : 0 � i < k� 1 ^ 0 � j < k � 1 :: X[i; j] = ? ^ :Y [i; j])

procedure Grid(row; col : 0::k� 2; p : 0::N � 1) returns fstop; right;downg

private variable dir : fstop; right;downg;

X[row; col] := p;

if Y [row ; col] then dir := right

else

Y [row ; col] := true;

if X[row; col] = p then dir := stop

else dir := down

�

�;

return dir

procedure Getname() returns 0::k(k + 1)=2

private variable move : fstop; right; downg;

i; j : 0::k� 1

i; j;move := 0; 0;down;

while i+ j < k � 1 ^ move 6= stop do =� Move down or across grid until stopping or reaching edge �=

move := Grid(i; j; p); =� Access building block at this position to get direction or stop �=

if move = down then =� Move according to direction acquired �=

i := i+ 1

elseif move = right then

j := j + 1

�

od;

return i(k� (i� 1)=2) + j =� Calculate name based on position in grid �=

Figure 4: One-time renaming using a grid of building blocks.

6

i

j

i−1

j−1

Figure 5: Inductive step for proof of Lemma 1.

Proof Sketch: By induction on i + j. The lemma trivially holds for i+ j = 0, because it is assumed that

at most k processes access the renaming algorithm. For the inductive step, consider Figure 5.

We inductively assume that Lemma 1 holds for grid positions that are fewer than i+ j steps away from

(0; 0). In particular, we assume that at most k � i � j + 1 processes reach grid positions downstream from

(i; j � 1) and similarly for (i � 1; j). The lemma can be falsi�ed by a process moving right from a building

block in column j � 1 at or below row i, or by a process moving down from a building block in row i� 1 at

or to the right of column j. Below we argue that the former case is impossible; the proof for the latter case

is similar.

Suppose, towards a contradiction, that k� i� j processes have already reached positions downstream of

(i; j), and that another process p moves right from a building block in column j� 1 at or below row i. After

p moves right, k � i � j + 1 processes have reached positions downstream of (i; j), so the lemma does not

hold. We show that this is impossible. By the inductive assumption, there are only k � i � j + 1 processes

downstream of (i; j� 1). In the scenario described above, all of these k� i� j+ 1 processes are downstream

from (i; j) after p moves right. Thus, after process p moves right, all processes that have accessed building

blocks in column j � 1 at or below row i have moved right. This implies that there is some building block

in column j � 1 at or below row i such that all processes that accessed that building block moved right.

Recall that if n processes access a building block, then at most n� 1 of them move right. Thus, the scenario

described above is impossible. 2

A process acquires a name either by stopping at a building block in the grid, or by taking k � 1 steps in

the grid. At most one process stops at each building block, and by Lemma 1, at most one process reaches

each of the grid positions that is k � 1 steps from (0; 0). Thus, all processes acquire distinct names. Also,

because each process takes at most k� 1 steps in the grid, and because each building block access has time

complexity O(1), this algorithm has time complexity O(k). A full assertional correctness proof is given for

this algorithm in the full version of the paper. The algorithm shown in Figure 4 yields the following result.

Theorem 1: Using reads and writes, one-time (k(k + 1)=2)-renaming can be implemented with time com-

plexity O(k). 2

Using the algorithm described above, k processes can reduce the size of their name space from N to

k(k+2)=2 with time complexityO(k). Using the algorithm presented in [5], k processes can reduce the size of

their name space fromN to 2k�1 with time complexityO(Nk2). Combining the two algorithms, k processes

can reduce the size of their name space from N to 2k� 1 with time complexity O(k) +O((k(k+ 1)=2)k2) =

O(k4). Thus, we have the following result. By the results of [6], this algorithm is optimal with respect to

the size of the name space.

Theorem 2: Using reads and writes, one-time (2k�1)-renaming can be implemented with time complexity

O(k4). 2

7

4 Long-Lived Renaming using Atomic Reads and Writes

In this section, we present a long-lived renaming algorithm that uses only atomic read and write operations.

Processes using a long-lived renaming algorithm are organized as shown in Figure 1. Recall from Section 2

that a solution to the long-lived renaming problem consists of Getname and Putname procedures, along with

associated shared variables. The Getname and Putname procedures allow processes to repeatedly acquire

and release names.

The long-lived renaming algorithm presented in this section is based on the grid algorithm presented in

the previous section. To enable processes to release names as well as acquire names, we modify the one-time

building block. The modi�cation allows a process to \reset" a building block that it has accessed. This

algorithm yields a name space of size k(k + 1)=2 and has time complexity O(Nk).

Before presenting this long-lived renaming algorithm, we �rst describe the modi�ed building block that

is used in the algorithm.

4.1 The Long-Lived Building Block

The long-lived building block is similar to the one-time building block used in the previous section. However,

after a process has accessed the long-lived building block, and has acquired a return value of stop, down, or

right, the process can \reset" the building block. As seen in Figure 6, processes are required to access and

reset the building block alternately. We have the same requirements of the values returned as before, but

now only for processes outside their remainder sections. That is, if it is guaranteed that at most n processes

are outside their remainder sections at any time, then at most one process is in its working section with

dir = stop, at most n�1 processes are in their working sections with dir = right , and at most n�1 processes

are in their working sections with dir = down . By resetting a building block, a process records that it is no

longer in the working section.

In the long-lived building block, each process has its own Y -bit, instead of all processes writing the

same Y -variable. Thus, instead of reading a single Y -variable, each process reads all N Y -bits. The time

complexity for accessing the long-lived building block is therefore O(N). In order to \reset" the building

block, a process p resets its bit Y [p].

We now prove that our long-lived building block has the properties described above. In order to simplify

the proof, we assume that each numbered code fragment in Figure 6 is executed atomically. Note that each

such fragment accesses at most one shared variable. The invariants used to prove that the required properties

hold are listed below. In accordance with the de�nition of the building block, we �rst assume that at most

n processes access the building block concurrently.

invariant jfp :: p@f1::5ggj � n (I1)

The next four invariants are used to prove that if at most n processes access the building block con-

currently, then at most one process is in its working section with dir = stop, at most n � 1 processes are

in their working sections with dir = right, and at most n � 1 processes are in their working sections with

dir = down . The proofs of these invariants are straightforward, and are therefore omitted. The proof of (I3)

uses (I2), the proof of (I6) uses (I1), and the proof of (I7) uses (I4).

invariant p@4) p:dir 6= right (I2)

invariant (p@f4; 5g ^ p:dir 6= right) = Y [p] (I3)

invariant p@f2; 3g) p:dir 6= stop (I4)

invariant (p@5 ^ p:dir = down)) X 6= p (I5)

invariant (jfp :: p@f2::5ggj= n)) (9p : p@f2::5g :: X = p) (I6)

invariant (p 6= q ^ p@5 ^ p:dir = stop)) (Y [p] ^ (q@f0::1g _ (q@2 ^ q:i � p) _

(q@3 ^ q:dir = right) _ (q@f2; 3; 4g ^ X 6= q) _ (q@5 ^ q:dir 6= stop))) (I7)

8

shared variable X : f?g [f0::N � 1g;

Y : array[0::N � 1] of boolean

initially X = ? ^ (8p : 0 � p < N :: p@0 ^ :Y [p])

private variable dir : fstop; right;downg; =� Direction for process to leave box �=

h : 0::N � 1

while true do

0: Remainder Section;

1: X;h; dir := p; 0;down; =� Access the long-lived building block (statements 1 through 4) �=

while h < N ^ dir 6= right do

2: if Y [h] then dir := right

else h := h+ 1

�

od;

3: if dir 6= right then

Y [p] := true;

4: if X 6= p then dir := down

else dir := stop

�

�;

Working Section;

5: Y [p] := false =� Reset the long-lived building block �=

od

Figure 6: Implementation of the long-lived building block.

The following three invariants show that the building block is correct.

invariant jfp :: p@5 ^ p:dir = stopgj � 1 (I8)

Proof: (I8) follows from (I7) 2

invariant jfp :: p@5 ^ p:dir = downgj < n (I9)

Proof: Initially, the left-hand side is zero, so (I9) holds. By the assumption that (I9) holds before a

statement execution, it follows that (I9) can only be falsi�ed by establishing q@5 ^ q:dir = down when

jfp :: p@5 ^ p:dir = downgj = n � 1 holds. The only statement that can establish q@5 ^ q:dir = down

is q:4. By (I5) and (I6), X = q holds in this case. Thus, q:4 establishes q@5 ^ q:dir = stop, and therefore

does not falsify (I9). 2

invariant jfp :: p@f3::5g ^ p:dir = rightgj < n (I10)

Proof: Initially, the left-hand side is zero, so (I10) holds. By the assumption that (I10) holds before a

statement execution, it follows that (I10) can only be falsi�ed by establishing q@f3::5g ^ q:dir = right when

jfp :: p@f3::5g ^ p:dir = rightgj = n� 1 holds. The only statement that can establish q@f3::5g ^ q:dir =

right is q:2. By (I1) and (I3), (8i : 0 � i < N :: :Y [q:i]) holds in this case, so q:2 does not establish

q@f3::5g ^ q:dir = right, and therefore does not falsify (I10). 2

Having described the modi�ed building block and proved it correct, we now proceed to describe the

long-lived renaming algorithm.

9

4.2 Using the Long-Lived Building Block to Solve Long-Lived Renaming

Our �rst long-lived renaming algorithm is similar to the one-time renaming algorithm presented in the

previous section. We use a grid of long-lived building blocks, analogous to the grid shown in Figure 3 for

the one-time renaming algorithm. This implementation of this grid, shown in Figure 7, provides procedures

LL Grid and LL Reset.

In order to access the building block at grid position (i; j), process p calls LL Grid(i; j; p); similarly for

LL Reset(i; j; p). Note that the LL Grid procedure is implemented using statements 1 through 4 in Figure

6, and that the LL Reset procedure is implemented using statement 5 in Figure 6.

As in the one-time algorithm presented in the previous section, a process acquires a name by starting at

the top left corner of the grid, and moving through the grid according to the return value received from each

building block. However, in this algorithm, after a process has accessed a building block and received a return

value other than stop, the process \resets" that building block before proceeding to the next building block

in the grid. This allows the grid to be \reused" by processes that release their names by calling Putname,

and then subsequently call Getname again. The Getname and Putname procedures are shown in Figure 7.

To prove this algorithm correct, we prove a lemma similar to Lemma 1. Again referring to Figure 5,

we inductively assume that at most k � i � j + 1 processes concurrently occupy positions downstream of

(i�1; j), and similarly for (i; j�1). Again, we assume towards a contradiction that k�i�j processes already

occupy positions downstream of (i; j). Suppose that process p is about to test a Y -bit in a building block

(h; j � 1) for some h � i. By the inductive assumption and the assumption that k � i� j processes already

occupy positions downstream of (i; j), it can be shown that no Y -bit in the building block at (h; j�1) is set.

Therefore, process p does not move right. The proof that a process does not falsify the lemma by moving

down from a building block in row i� 1 and at or to the right of column j is somewhat more di�cult. The

key observation is that the last process p to write X[i�1; h] for any h � j cannot go down from row i�1. It

can be shown that process p, and all processes that do go down from row i� 1 do not have Y -bits set in any

building block in column j�1 at or below row i. Using this, it can be shown that the last process to occupy

a position downstream from (i; j) does so by moving right from (h; j�1) for some h � i. As is argued in the

�rst case, this is impossible. A complete assertional proof is given in the full paper. This algorithm yields

the following result.

Theorem 3: Using reads and writes, long-lived (k(k + 1)=2)-renaming can be implemented with time

complexity O(Nk). 2

5 Long-Lived Renaming Algorithms using Read-Modify-Writes

In this section, we present three long-lived renaming algorithms. By using read-modify-write operations,

these algorithms achieve signi�cantly better performance than the algorithms presented in the previous

section. Furthermore, these algorithms all yield a name space of size k, which is clearly optimal (the lower

bound results of [6] do not apply to algorithms that employ read-modify-write operations).

The �rst algorithm has time complexity O(k=b). This is achieved using set �rst zero and clear bit. As

discussed in Section 2, these operations can be implemented, for example, using operations available on the

BBN TC2000 [4]. The second algorithm in this section has time complexity O(logk), which is a signi�cant

improvement over the �rst algorithm. To achieve this improvement, this algorithm uses a primitive operation

called bounded decrement. We do not know of any systems that provide bounded decrement as a primitive

operation. However, as noted in Section 6, this operation can be e�ciently implemented in a lock-free manner

using the commonly-available fetch and decrement operation. Finally, we describe how the techniques from

these two algorithms can be combined to obtain an algorithm whose time complexity is better than that of

either algorithm.

10

shared variable X : array[0::k� 2; 0::k � 2] of f?g[f0::N � 1g;

Y : array[0::k� 2; 0::k� 2] of array[0::N � 1] of boolean

initially (8i; j; h :: 0 � i < k� 1 ^ 0 � j < k � 1 ^ 0 � h < N :: X[i; j] = ? ^ :Y [i; j][h])

procedure LL Grid(row; col : 0::k� 2; p : 0::N � 1) procedure LL Reset(row; col : 0::k� 2; p : 0::N � 1)

returns fstop; right;downg Y [row ; col][p] := false;

private variable dir : fstop; right;downg; return

h : 0::N

X[row; col]; h;dir := p; 0;down;

while h < N ^ dir 6= right do

if Y [row ; col][h] then dir := right

else h := h+ 1

�

od;

if dir 6= right then

Y [row ; col][p] := true;

if X[row; col] 6= p then dir := down

else dir := stop

�

�;

return dir

procedure Getname() returns 0::k(k + 1)=2

private variable move : fstop; right; downg;

i; j : 0::k� 1

i; j;move := 0; 0;down; =� Start at top left building block in grid �=

while i+ j < k � 1 ^ move 6= stop do =� Move down or across grid until stopping or reaching edge �=

move := LL Grid(i; j; p); =� Access building block at this position to get direction or stop �=

if move 6= stop then

LL Reset(i; j; p); =� Reset block if we didn't stop at it �=

if move = down then i := i+ 1 =� Move according to move �=

else j := j + 1

�

�

od;

return i(k� (i� 1)=2) + j =� Calculate name based on position in grid �=

procedure Putname() returns 0::k(k+ 1)=2

if i+ j < k � 1 then =� If we stopped on a building block ... �=

LL Reset(i; j; p) =� ... then reset that building block �=

�;

return

Figure 7: Long-lived renaming with O(k2) name space and O(Nk) time complexity. Variables i and j are assumed

to retain their values between calls to Getname and Putname.

11

shared variable X : array[0::bk=bc] of array[0::b� 1] of boolean =� b-bit \segments" of the name space �=

initially (8h; g : 0 � h < bk=bc ^ 0 � g < b :: :X[h][g])

private variable h : 0::bk=bc+ 1;

g : 0::b

procedure Getname() returns 0::k� 1

h; g := 0; b;

while g = b do

g := set �rst zero(X[h]; b); =� Set �rst zero bit of X[h] if one exists �=

h := h+ 1

od;

return (b � (h� 1)) + g =� Calculate name �=

procedure Putname()

clear bit(X[h� 1]; g); =� Return name by clearing the bit that was set �=

return

Figure 8: k-renaming using set �rst zero and clear bit. Variables g and h are assumed to retain their values between

calls to Getname and Putname.

5.1 Long-Lived Renaming using set �rst zero and clear bit

In this section, we present a long-lived k-renaming algorithm that employs the set �rst zero and clear bit

operations described in Section 2. The algorithm is shown in Figure 8. In order to acquire a name, a process

tests each name in order. Using the set �rst zero operation, up to b names can be tested in one atomic

shared variable access. If k � b, this results in a long-lived renaming algorithm that acquires a name with

just one shared variable access. If k > b, then \segments" of size b of the name space are tested in each

access. To release a name, a process simply clears the bit associated with the name it acquired | that is,

the bit that was set by that process when the name was acquired.

Because each process tests the available names in segments, and because processes may release and

acquire names concurrently, it may seem possible for a process to reach the last segment when none of the

names in that segment are available. The following lemma shows that this is not possible when b = 1. The

proof for b � 1 is a straightforward generalization.

Lemma 2: At most n processes concurrently hold or test names in fk � n; :::; k� 1g, for 1 � n � k.

Proof Sketch: For n = k, the lemma holds because at most k processes concurrently access the renaming

algorithm. We inductively assume that at most n + 1 processes concurrently hold or test names in fk �

n � 1; :::; k� 1g. Suppose, towards a contradiction, that n processes are holding or testing names in fk �

n; :::; k� 1g, and that another process p tests name k � n � 1. If p were to fail to acquire name k � n � 1,

then p would proceed to test name k � n. Then there would be n+ 1 processes testing or holding names in

fk� n; :::; k� 1g, thereby falsifying the lemma. However, when process p tests name k� n� 1, it follows by

the inductive assumption that no process is holding name k � n � 1. Thus, process p acquires name k � n.

2

By Lemma 2, it follows that if process p tests name k � 1, then that name is available. A complete

assertional proof is given in the full paper. The algorithm yields the following result.

Theorem 4: Using set �rst zero and clear bit on b-bit variables, long-lived k-renaming can be implemented

with time complexity O(k=b). 2

12

shared variable X : 0::dk=2e =� Counter of names available on right �=

initially X = dk=2e

private variable side : fleft; rightg =� Which instance to use inductively �=

procedure Getname() returns 0::k� 1

=� Ensure at most dk=2e access right instance and at most bk=2c access left �=

if bounded decrement(X) > 0 then

side := right; =� Get name from right instance �=

return Getname right()

else

side := left; =� Get name from left instance �=

return dk=2e+Getname left()

�

procedure Putname()

if side = right then

Putname right() =� Return name to right instance �=

else

Putname left() =� Return name to left instance �=

�;

if side = right then atomic add(X; 1) �; =� Increment counter again if it was decremented �=

return

Figure 9: k-renaming using bounded decrement. Getname left and Putname left are inductively assumed to imple-

ment long-lived bk=2c-renaming. Similarly, Getname right and Putname right are inductively assumed to implement

long-lived dk=2e-renaming.

5.2 Long-Lived Renaming using bounded decrement and atomic add

In this section, we present a long-lived k-renaming algorithm that employs the bounded decrement and

atomic add operations described in Section 2. In this algorithm, shown in Figure 9, processes are separated

into two groups left and right using the bounded decrement operation. The right group contains at most dk=2e

processes and the left group contains at most bk=2c processes. This is achieved by initializing a variable

X to dk=2e, and having each process perform a bounded decrement operation on X. Processes that receive

positive return values join the right group, and processes that receive zero join the left group. To leave the

right group, a process increments X. To leave the left group, no shared variables are updated.

Because processes must be able to repeatedly join and leave the groups, the normal fetch and decrement

operation is not suitable for this \splitting" mechanism. If X is decremented below zero, then it is possible

for too many processes to be in the left group at once. To see this, suppose that all k processes decrement X.

Thus, dk=2e processes receive positive return values, and therefore join the right group, and bk=2c processes

receive non-positive return values, and therefore join the left group. Now, X = �bk=2c. If a process leaves

the right group by incrementing X, and then decrements X as the result of another call to Getname(),

then that process receives a non-positive return value, and thus joins the left group. Repeating this for

each process in the right group, it is possible for all processes to be in the left group simultaneously. The

bounded decrement operation prevents this from happening by ensuring that X does not become negative.

The algorithm employs two instances left and right of long-lived renaming, which are inductively assumed

to be correct. For notational convenience, we assume that the left instance is accessed by calling the

Getname left and Putname left procedures; similarly for the right instance. A process decides which of

these two instances to access based on which of the two groups it joins. The algorithm that results from

13

\unfolding" this inductively-de�ned algorithm forms a tree. To acquire a name, a process goes down a path

in this tree from the root to a leaf. As the processes progress down the tree, the number of processes that can

simultaneously go down the same path is halved at each level. When this number becomes one, a name can

be assigned, so no more inductive levels are necessary. Thus, the Getname() procedure has time complexity

dlog
2
ke. To release a name, a process simply retraces the path it took through the tree in reverse order,

incrementing X at any node at which it received a positive return value.

Note that with b-bit variables, if b < log
2
dk=2e, then X cannot be initialized to dk=2e, so this algorithm

cannot be implemented. However, in any practical setting, this will not be the case. A complete assertional

correctness proof of the following result is given in the full paper.

Theorem 5: Using bounded decrement and atomic add on b-bit variables, long-lived k-renaming can be

implemented with time complexity O(logk), if b � log
2
dk=2e. 2

Finally, we note that if the set �rst zero and clear bit operations are available, then it is unnecessary to

\unfold" the second algorithm described above so far that at most one process can reach a leaf of the tree. If

the tree is deep enough that at most b processes can reach a leaf, then by Theorem 4, a name can be assigned

with one more shared access. This amounts to \chopping o�" the bottom blog
2
bc levels of the tree. The

time complexity of this algorithm is O(log k � log b) = O(log(k=b)). Thus, using all the operations that are

employed by the �rst two algorithms, it is possible to achieve better time complexity than either of them.

This approach yields the following result.

Theorem 6: Using set �rst zero, clear bit, bounded decrement, and atomic add on b-bit variables, long-lived

k-renaming can be implemented with time complexity O(log(k=b)). 2

6 Concluding Remarks

We have presented two one-time renaming algorithms that employ only atomic read and write operations.

One of these algorithms yields an optimal-size name space. These algorithms improve on previous read/write

renaming algorithms in that their time complexity is independent of the size of the original name space.

In addition, we have de�ned a new version of the renaming problem called long-lived renaming, in which

processes can release names as well as acquire names. We have provided several solutions to this problem,

including one that employs only read and write operations. In comparing these algorithms, there is a trade-o�

between time complexity, the size of the name space achieved, and the availability of the primitives used.

All of our algorithms have the desirable property that time complexity is proportional to the level of

contention. This is an important practical advantage because contention should be low in most well-designed

applications [7].

There are numerous questions left open by our research. For example, it follows from our work that

one-time (2k�1)-renaming can be solved using reads and writes with time complexity O(k4). We would like

to improve on this time complexity while still providing an optimal-size name space. Our fastest read/write

algorithm has time complexity O(k) and yields a name space of size k(k + 1)=2. In this algorithm, there

are pairs of names that cannot be held concurrently, so in fact, these names need not be distinct. It can

be shown that roughly k2=4 names su�ce for large k. However, this modi�cation still does not achieve an

optimal-size name space.

The long-lived renaming algorithm presented in Section 4 yields a name space of size k(k + 1)=2 with

time complexity O(Nk). We would like to improve on this result by obtaining an optimal name space of size

2k � 1 using only read and write operations, and by making the time complexity independent of N .

Our most e�cient long-lived renaming algorithm uses a bounded decrement operation. Although this

operation is similar to the standard fetch and decrement operation, we have been unable to design an e�cient

wait-free implementation of the former using the latter. We have, however, designed an e�cient lock-free

14

implementation in which a process can only be delayed by a very unlikely sequence of events. We believe

this implementation will perform well in practice.

Acknowledgement: We would like to thank Gadi Taubenfeld and Rajeev Alur for helpful discussions about this

work.

References

[1] J. Anderson and M. Moir, \Using k-Exclusion to Implement Resilient, Scalable Shared Objects", to

appear in Proceedings of the 13th Annual ACM Symposium on Principles of Distributed Computing .

[2] H. Attiya, A. Bar-Noy, D. Dolev, D. Koller, D. Peleg, and R. Reischuk, \Achievable Cases in an Asyn-

chronous Environment", Proceedings of the 28th Annual IEEE Symposium on Foundations of Computer

Science, October 1987, pp. 337-346.

[3] A. Bar-Noy and D. Dolev, \Shared Memory versus Message-Passing in an Asynchronous Distributed

Environment", Proceedings of the 8th Annual ACM Symposium on Principles of Distributed Computing ,

ACM, New York, August 1989, pp. 307-318.

[4] BBN Advanced Computers, Inside the TC2000 Computer, February, 1990.

[5] E. Borowsky and E. Gafni, \Immediate Atomic Snapshots and Fast Renaming", Proceedings of the 12th

Annual ACM Symposium on Principles of Distributed Computing , ACM, New York, August 1993, pp.

41-50.

[6] M. Herlihy and N. Shavit, \The Asynchronous Computability Theorem for t-Resilient Tasks", Proceed-

ings of the 25th ACM Symposium on Theory of Computing , 1993, pp. 111-120.

[7] L. Lamport, \A Fast Mutual Exclusion Algorithm", ACM Transactions on Computer Systems, Vol. 5,

No. 1, February, 1987, pp. 1-11.

15

