
Universal Constructions for Large Objects �

James H. Anderson and Mark Moir

Dept. of Computer Science, University of North Carolina at Chapel Hill

Abstract

We present lock-free and wait-free universal constructions for implementing large

shared objects. Most previous universal constructions require processes to copy the

entire object state, which is impractical for large objects. Previous attempts to

address this problem require programmers to explicitly fragment large objects into

smaller, more manageable pieces, paying particular attention to how such pieces are

copied. In contrast, our constructions are designed to largely shield programmers

from this fragmentation. Furthermore, for many objects, our constructions result

in lower copying overhead than previous ones.

Fragmentation is achieved in our constructions through the use of load-linked ,

store-conditional , and validate operations on a \large" multi-word shared variable.

Before presenting our constructions, we show that these operations can be e�ciently

implemented from similar one-word primitives.

1 Introduction

This paper extends recent research on universal lock-free and wait-free constructions of

shared objects [3, 4]. Such constructions can be used to implement any object in a lock-

free or a wait-free manner, and thus can be used as the basis for a general methodology

for constructing highly-concurrent objects. Unfortunately, this generality often comes

at a price, speci�cally space and time overhead that is excessive for many objects. A

particular source of ine�ciency in previous universal constructions is that they require

processes to copy the entire object state, which is impractical for large objects. In this

paper, we address this shortcoming by presenting universal constructions that can be used

to implement large objects with low space overhead.

We take as our starting point the lock-free and wait-free universal constructions pre-

sented by Herlihy in [4]. In these constructions, operations are implemented using \retry

loops". In Herlihy's lock-free universal construction, each process's retry loop consists of

the following steps: �rst, a shared object pointer is read using a load-linked (LL) opera-

tion, and a private copy of the object is made; then, the desired operation is performed

on the private copy; �nally, a store-conditional (SC) operation is executed to attempt to

\swing" the shared object pointer to point to the private copy. The SC operation may

fail, in which case these steps are repeated. This algorithm is not wait-free because the

SC of each loop iteration may fail. To ensure termination, Herlihy's wait-free construction

employs a \helping" mechanism, whereby each process attempts to help other processes

by performing their pending operations together with its own. This mechanism ensures

�Work supported, in part, by NSF contract CCR 9216421, and by a Young Investigator Award from

the U.S. Army Research O�ce, grant number DAAHO4-95-1-0323.

that if a process is repeatedly unsuccessful in swinging the shared object pointer, then it

is eventually helped by another process (in fact, after at most two loop iterations).

As Herlihy points out, these constructions perform poorly if used to implement large

objects. To overcome this problem, he presents a lock-free construction in which a large

object is fragmented into blocks linked by pointers. In this construction, operations are

implemented so that only those blocks that must be accessed or modi�ed are copied.

Herlihy's lock-free approach for implementing large objects su�ers from three short-

comings. First, the required fragmentation is left to the programmer to determine, based

on the semantics of the implemented object. The programmer must also explicitly deter-

mine how copying is done. Second, Herlihy's approach is di�cult to apply in wait-free

implementations. In particular, directly combining it with the helping mechanism of

his wait-free construction for small objects results in excessive space overhead. Third,

Herlihy's large-object techniques reduce copying overhead only if long \chains" of linked

blocks are avoided. Consider, for example, a large shared queue that is fragmented as a

linear sequence of blocks (i.e., in a linked list). Replacing the last block actually requires

the replacement of every block in the sequence. In particular, linking in a new last block

requires that the pointer in the previous block be changed. Thus, the next-to-last block

must be replaced. Repeating this argument, it follows that every block must be replaced.

Our approach for implementing large objects is also based upon the idea of fragmenting

an object into blocks. However, it di�ers from Herlihy's in that it is array-based rather

than pointer-based, i.e., we view a large object as a long array that is fragmented into

blocks. Unlike Herlihy's approach, the fragmentation in our approach is not visible to

the user. Also, copying overhead in our approach is often much lower than in Herlihy's

approach. For example, we can implement shared queues with constant copying overhead.

Our constructions are similar to Herlihy's in that operations are performed using retry

loops. However, while Herlihy's constructions employ only a single shared object pointer,

we need to manage a collection of such pointers, one for each block of the array. We

deal with this problem by employing LL, SC, and validate (VL) operations that access

a \large" shared variable that contains all block pointers. This large variable is stored

across several memory words.1 In the �rst part of the paper, we show how to e�ciently

implement them using the usual single-word LL, SC, and VL primitives. We present two

such implementations, one in which LL may return a special value that indicates that a

subsequent SC will fail | we call this a weak -LL | and another in which LL has the

usual semantics. In both implementations, LL and SC on a W -word variable take O(W)

time and VL takes constant time. The �rst of these implementations is simpler than the

second because weak-LL does not have to return a consistent multi-word value in the case

of interference by a concurrent SC. Also, weak-LL can be used to avoid unnecessary work

in universal algorithms (there is no point performing private updates when a subsequent

SC is certain to fail). For these reasons, we use weak-LL in our universal constructions.

Our wait-free universal construction is the �rst such construction to incorporate tech-

niques for implementing large objects. In this construction, we impose an upper bound on

the number of private blocks each process may have. This bound is assumed to be large

enough to accommodate any single operation. The bound a�ects the manner in which

processes may help one another. Speci�cally, if a process attempts to help too many other

processes simultaneously, then it runs the risk of using more private space than is avail-

able. We solve this problem by having each process help as many processes as possible

with each operation, and by choosing processes to help in such a way that all processes

1The multi-word operations considered here access a single variable that spans multiple words. Thus,

they are not the same as the multi-word operations considered in [1, 2, 5, 6], which access multiple

variables, each stored in a separate word. The multi-word operations we consider admit simpler and

more e�cient implementations than those considered in [1, 2, 5, 6].

shared var X : record pid : 0::N � 1; tag : 0::1 end;

BUF : array[0::N � 1; 0::1] of array[0::W � 1] of wordtype

initially X = (0; 0) ^ BUF [0; 0] = initial value of the implemented variable V

private var curr : record pid : 0::N � 1; tag : 0::1 end; i: 0::W � 1; j: 0::1

initially j = 0

proc Long Weak LL(var r : array[0::W � 1]

of wordtype) returns 0::N

1: curr := LL(X);

for i := 0 to W � 1 do

2: r[i] := BUF [curr :pid ; curr :tag][i]

od;

3: if VL(X) then return N

4: else return X .pid �

proc Long SC (val : array[0::W � 1] of wordtype)

returns boolean

4: j := 1� j;

for i := 0 to W � 1 do

5: BUF [p; j][i] := val [i]

od;

6: return SC (X; (p; j))

Figure 1: W -word weak-LL and SC using 1-word LL, VL, and SC. W -word VL is implemented

by validating X.

are eventually helped. If enough space is available, all processes can be helped by one

process at the same time | we call this parallel helping. Otherwise, several \rounds" of

helping must be performed, possibly by several processes | we call this serial helping.

The tradeo� between serial and parallel helping is one of time versus space.

The remainder of this paper is organized as follows. In Section 2, we present imple-

mentations of the LL, SC, and VL operations for large variables discussed above. We then

present our lock-free and wait-free universal constructions and preliminary performance

results in Section 3. We end the paper with concluding remarks in Section 4. Due to

space limitations, we defer detailed proofs to the full paper.

2 LL and SC on Large Variables

In this section, we implement LL, VL, and SC operations for a W -word variable V ,

where W > 1, using the standard, one-word LL, VL, and SC operations.2 We �rst present

an implementation that supports only the weak-LL operation described in the previous

section. We then present an implementation that supports a LL operation with the usual

semantics. In the latter implementation, LL is guaranteed to return a \correct" value

of V , even if a subsequent SC operation will fail. Unfortunately, this guarantee comes

at the cost of higher space overhead and a more complicated implementation. In many

applications, however, the weak-LL operation su�ces. In particular, in most lock-free and

wait-free universal constructions (including ours), LL and SC are used in pairs in such a

way that if a SC fails, then none of the computation since the preceding LL has any e�ect

on the object. By using weak-LL, we can avoid such unnecessary computation.

2.1 Weak-LL, VL, and SC Operations for Large Variables

We begin by describing the implementation of weak-LL, VL, and SC shown in Figure 1.3

The Long Weak LL and Long SC procedures implement weak-LL and SC operations on a

W -word variable V. Values of V are stored in \bu�ers", and a shared variable X indicates

which bu�er contains the \current" value of V. The current value is the value written

2We assume that the SC operation does not fail spuriously. As shown in [1], a SC operation that does

not fail spuriously can be e�ciently implemented using LL and a SC operation that might fail spuriously.
3Private variables in all �gures are assumed to retain their values between procedure calls.

to V by the most recent successful SC operation, or the initial value of V if there is no

preceding successful SC. The VL operation for V is implemented by simply validating X.

A SC operation on V is achieved by writing the W -word variable to be stored into a

bu�er, and by then using a one-word SC operation on X to make that bu�er current. To

ensure that a SC operation does not overwrite the contents of the current bu�er, the SC

operations of each process p alternate between two bu�ers, BUF [p; 0] and BUF [p; 1].

A process p performs a weak-LL operation on V in three steps: �rst, it executes a

one-word LL operation on X to determine which bu�er contains the current value of V ;

second, it reads the contents of that bu�er; third, it performs a VL on X to check whether

that bu�er is still current. If the VL succeeds, then the bu�er was not modi�ed during

p's read, and the value read by p from that bu�er can be safely returned. If the VL fails,

then the weak-LL rereads X in order to determine the ID of the last process to perform a

successful SC; this process ID is then returned. We call the process whose ID is returned

a witness of the failed weak-LL. As we will see in Section 3.2, the witness of a failed

weak-LL can provide useful state information that held \during" the execution of that

weak-LL. Note that if the VL of line 3 fails, then the bu�er read by p is no longer current,

and hence a subsequent SC by p will fail. This implementation yields the following result.

Theorem 1: Weak-LL, VL, and SC operations for aW -word variable can be implemented

using LL, VL, and SC operations for a one-word variable with time complexity O(W),

O(1), and O(W), respectively, and space complexity O(NW). 2

2.2 LL, VL, and SC Operations for Large Variables

We now show how to implement LL and SC with the \usual" semantics. Although the

weak-LL operation implemented above is su�cient for our constructions, other uses of

\large" LL and SC might require the LL operation to always return a correct value from

V . This is complicated by the fact that all W words of V cannot be accessed atomically.

Our implementation of LL, VL, and SC operations for aW -word variable V is shown in

Figure 2. Like the previous implementation, this one employs a shared variable X, along

with a set of bu�ers. Also, a shared array A of \tags" is used for bu�er management.

Bu�er management di�ers from that described in the previous subsection in several

respects. First, each process p now has 4N + 2 bu�ers, BUF [p; 0] to BUF [p; 4N + 1],

instead of just two. Another di�erence is that each bu�er now contains more information,

speci�cally an old value of V , a new value of V , and two control bits. The control bits are

used to detect concurrent read/write conicts. These bits, together with the tags in array

A, are employed to ensure that each LL returns a correct value, despite any interference.

Figure 2 shows two procedures, Long LL and Long SC , which implement LL and SC

operations on V, respectively. As before, a VL on V is performed by simply validating X.

The Long LL procedure is similar to the Long Weak LL procedure, except that, in the

event that the VL of X fails, more work is required in order to determine a correct return

value. The bu�er management scheme employed guarantees the following two properties.

(i) A bu�er cannot be modi�ed more than once while some process reads that bu�er.

(ii) If a process does concurrently read a bu�er while it is being written, then that process

obtains a correct value either from the old �eld or from the new �eld of that bu�er.

In the full paper, we prove both properties formally. We now describe the implemen-

tation shown in Figure 2 in more detail, paying particular attention to (i) and (ii).

In describing the Long LL procedure, we focus on the code that is executed in the event

that the VL of X fails, because it is this code that distinguishes the Long LL from the

Long Weak LL procedure of the previous subsection. If a process p executes the Long LL

type buftype = record b, c: boolean; new , old : array[0::W � 1] of wordtype end;

tagtype = record pid : 0::N � 1; tag : 0::4N + 1 end

shared var X : tagtype; BUF : array[0::N � 1; 0::4N + 1] of buftype; A: array[0::N � 1] of tagtype

initially X = (0; 0) ^ BUF [0; 0]:b = BUF [0; 0]:c ^ BUF [0; 0]:new = initial value of L

private var val1 , val2 : array[0::W � 1] of wordtype ; curr , di� : tagtype; i; j: 0::W � 1; bit : boolean

initially j = 1 and tag 0 is the \last tag sucessfully SC 'd"

proc Long LL() returns array[0::W � 1]

of wordtype

1: curr := LL(X);

for i := 0 to W � 1 do

2: val1 [i] := BUF [curr :pid ; curr :tag]:new [i]

od;

3: if VL(X) then return val1

else

4: curr := X ;

5: A[p] := curr ;

for i := 0 to W � 1 do

6: val1 := BUF [curr :pid ; curr :tag]:new [i]

od;

7: bit := BUF [curr :pid ; curr :tag]:b;

for i := 0 to W � 1 do

8: val2 [i] := BUF [curr :pid ; curr :tag]:old [i]

od;

9: if BUF [curr :pid ; curr :tag]:c = bit then

return val2 else return val1

� �

proc Long SC (newval : array[0::W � 1]

of wordtype)

10: read A[j];

j := (j + 1) mod N �;

11: select di� : di� =2 (flast N tags readg [

flast N tags selectedg [

flast tag successfully SC 'dg);

12: if :VL(X) then return false �;

13: bit := :BUF [p; di�]:c;

14: BUF [p; di�]:c := bit ;

for i := 0 to W � 1 do

15: BUF [p; di�]:old [i] := val1 [i]

od;

16: BUF [p; di�]:b := bit ;

for i := 0 to W � 1 do

17: BUF [p; di�]:new [i] := newval [i]

od;

18: return SC (X; (p; di�))

Figure 2: W -word LL and SC using 1-word LL, VL, and SC . W -word VL is trivially imple-

mented by validating X.

procedure and its VL of X fails, then p might have read a corrupt value from the bu�er

due to a concurrent write. In order to obtain a correct return value, p reads X again to

ascertain the current bu�er, and then reads the entire contents of that bu�er: new, b,

old , and c. The �elds within a bu�er are written in the reverse of the order in which they

are read in the Long LL procedure. Thus, by property (i), p's read can \cross over" at

most one concurrent write by another process. By comparing the values it reads from the

b and c �elds, p can determine whether the crossing point (if any) occurred while p read

the old �eld or the new �eld. Based on this comparison, p can choose a correct return

value. This is the essence of the formal proof required to establish property (ii) above.

In describing the Long SC procedure, we focus on the bu�er selection mechanism |

once a bu�er has been selected, this procedure simply updates the old , new , b, and c �elds

of that bu�er as explained above. The primary purpose of the bu�er selection mechanism

is to ensure that property (i) holds. Each time a process p executes Long SC, it reads the

tag value written to A[r] by some process r (line 10). The tag values are read from the

processes in turn, so after N SC operations on V , p has read a tag from each process.

Process p selects a bu�er for its SC by choosing a new tag (line 11). The new tag is

selected to di�er from the last N tags read by p from A, to di�er from the last N tags

selected by p, and to di�er from the last tag used in a successful SC by p. The last of

these three conditions ensures that p does not overwrite the current bu�er, and the �rst

two conditions ensure that property (i) holds. We explain below how tags are selected.

First, however, we explain why the selection mechanism ensures property (i).

Observe that, if process q's VL of X (line 3) fails, then before reading from one of p's

proc Read Tag(v)

if v 2 Read Q then

delete(Read Q ; v);

enqueue(Read Q ; v)

else

enqueue(Read Q ; v);

delete(Select Q ; v);

y := dequeue(Read Q);

if y =2 Last Q then

enqueue(Select Q ; y)

� �

proc Store Tag(v)

delete(Select Q ; v);

enqueue(Last Q ; v);

y := dequeue(Last Q);

if y =2 Read Q then

enqueue(Select Q ; y)

�

proc Select Tag()

returns 0::4N + 1

y := dequeue(Select Q);

enqueue(Select Q ; y);

return y

Figure 3: Pseudo-code implementations of operations on tag queues.

bu�ers BUF [p; v] (lines 6 to 9), q writes (p; v) to A[q] (line 5). If p selects and modi�es

BUF [p; v] while process q is reading BUF [p; v], then p does not select BUF [p; v] again

for any of its next N SC operations. Thus, before p selects BUF [p; v] again, p reads A[q]

(line 10). As long as (p; v) remains in A[q], it will be among the last N tags read by p,

and hence p will not select BUF [p; v] to be modi�ed. Therefore, property (i) holds.

We conclude this subsection by describing how the tag selection in line 11 can be

e�ciently implemented. To accomplished this, each process maintains three local queues

| Read , Last , and Select . The Read queue records the last N tags read and the Last

queue records the last tag successfully written (using SC) to X. All other tags reside in

the Select queue, from which new tags are selected.

The tag queues are maintained by means of the Read Tag , Store Tag , and Select Tag

procedures shown in Figure 3. In these procedures, enqueue and dequeue denote the

normal queue operations, delete(Q; v) removes tag v from Q (and does not modify Q if v

is not in Q), and x 2 Q holds i� tag x is in queue Q.

Process p selects a tag (line 11 of Figure 2) by calling Select Tag . Select Tag moves the

front tag in p's Select queue to the back, and returns that tag. If that tag is subsequently

written to X by a successful SC operation (line 18), then p calls Store Tag to move the

tag from the Select queue to the Last queue. The tag that was previously in the Last

queue is removed and, if it is not in the Read queue, is returned to the Select queue.

When process p reads a tag (p; v) (line 10), it calls Read Tag to record that this tag

was read. If (p; v) is already in the Read queue, then Read Tag simply moves (p; v) to the

end of the Read queue. If (p; v) is not already in the Read queue, then it is enqueued into

the Read queue and removed from the Select queue, if necessary. Finally, the tag at the

front of the Read queue is removed because it is no longer one of the last N tags read. If

that tag is also not the last tag written to X, then it is returned to the Select queue.

The Read queue always contains the last N tags read, and the Last queue always

contains the last tag successfully written to X. Thus, the tag selected by Select Tag is

certainly not the last tag successfully written to X, nor is it among the last N tags read.

In the full paper, we show that maintaining a total of 4N + 2 tags ensures that the tag

selected is also not one of the last N tags selected, as required.

By maintaining a static index table that allows each tag to be located in constant

time, and by representing the queues as doubly-linked lists, all of the queue operations

described above can be implemented in constant time. Thus, we have the following result.

Theorem 2: LL, VL, and SC operations for a W -word variable can be implemented

using LL, VL, and SC operations for a one-word variable with time complexity O(W),

O(1), and O(W), respectively, and space complexity O(N2W). 2

B blocks

Bank of pointers to current blocks Process p’s replacement pointers

Process p’s replacement
for last object block

MEM array made up
of S−word blocks

Figure 4: Implementation of the MEM array for large object constructions.

3 Large Object Constructions

In this section, we present our lock-free and wait-free universal constructions for large

objects. We begin with a brief overview of previous constructions due to Herlihy [4].

Herlihy presented lock-free and wait-free universal constructions for \small" objects

as well as a lock-free construction for \large" objects [4]. As described in Section 1,

an operation in Herlihy's small-object constructions copies the entire object, which can

be a severe disadvantage for large objects. In Herlihy's large-object construction, the

implemented object is fragmented into blocks, which are linked by pointers. With this

modi�cation, the amount of copying performed by an operation can often be reduced by

copying only those blocks that are a�ected by the operation. However, because of this

fragmentation, a signi�cant amount of creative work on the part of the sequential object

designer is often required before the advantages of Herlihy's large-object construction can

be realized. Also, this approach provides no advantage for common objects such as the

queue described in Section 1. Finally, Herlihy did not present a wait-free construction

for large objects. Our lock-free and wait-free universal constructions for large objects

are designed to overcome all of these problems. These constructions are described next

in Sections 3.1 and 3.2, respectively. In Section 3.3, we present performance results

comparing our constructions to Herlihy's.

3.1 Lock-Free Universal Construction for Large Objects

Our lock-free construction is shown in Figure 5. In this construction, the implemented

object is stored in an array. Unlike Herlihy's small-object constructions, the array is not

actually stored in contiguous locations of shared memory. Instead, we provide the illusion

of a contiguous array, which is in fact partitioned into blocks. An operation replaces only

the blocks it modi�es, and thus avoids copying the whole object. Before describing the

code in Figure 5, we �rst explain how the illusion of a contiguous array is provided.

Figure 4 shows an array MEM , which is divided into B blocks of S words each.

Memory words MEM [0] to MEM [S � 1] are stored in the �rst block, words MEM [S] to

MEM [2S � 1] are stored in the second block, and so on. A bank of pointers, one to each

block of the array, is maintained in order to record which blocks are currently part of the

array. In order to change the contents of the array, an operation makes a copy of each

block to be changed, and then attempts to update the bank of pointers by installing new

type blktype = array[0::S � 1] of wordtype

shared var BANK : array[0::B � 1] of 0::B +NT � 1; =� Bank of pointers to array blocks �=

BLK : array[0::B +NT � 1] of blktype =� Array and copy blocks �=

initially (8k : 0 � k < B :: BANK [k] = NT + k ^ BLK [NT + k] = (kth block of initial value))

private var oldlst , copy : array[0::T � 1] of 0::B +NT � 1; ptrs : array[0::B � 1] of 0::B +NT � 1;

dirty : array[0::B � 1] of boolean; dirtycnt : 0::T ; i, blkidx : 0::B � 1;

blk : 0::B +NT � 1; ret : objrettype

initially (8k : 0 � k < T :: copy [k] = pT + k)

proc Read(addr : 0::BS � 1) returns wordtype

return BLK [ptrs [addr div S]][addr mod S]

proc Write(addr : 0::BS � 1; val : wordtype)

blkidx := addr div S; =� Compute block index from address �=

if :dirty [blkidx] then =� Haven't changed this block before �=

dirty [blkidx] := true; =� Record that block is changed �=

memcpy(BLK [copy [dirtycnt]]; BLK [ptrs [blkidx]]; sizeof (blktype)); =� Copy old block to new �=

oldlst [dirtycnt]; ptrs [blkidx]; dirtycnt := ptrs [blkidx]; copy [dirtycnt]; dirtycnt + 1

�; =� Install new block, record old block, prepare for next one �=

BLK [ptrs [blkidx]][addr mod S] := val =� Write new value �=

proc LF Op(op: optype; pars : paramtype)

while true do =� Loop until operation succeeds �=

1: if Long Weak LL(BANK ; ptrs) = N then =� Load object pointer �=

for i := 0 to B � 1 do dirty [i] := false od; dirtycnt := 0; =� No blocks copied yet �=

2: ret := op(pars); =� Perform operation on object �=

3: if dirtycnt = 0 ^ Long VL(BANK) then return ret �; =� Avoid unnecessary SC �=

4: if Long SC (BANK ; ptrs) then =� Operation is successful, reclaim old blocks �=

for i := 0 to dirtycnt � 1 do copy [i] := oldlst [i] od;

return ret

� �

od

Figure 5: Lock-free implementation for a large object.

pointers for the changed blocks; the other pointers are left unchanged. This is achieved

by using the weak-LL and SC operations for large variables presented in Section 2.1.4 In

Figure 4, process p is preparing to modify a word in the last block, but no others. Thus,

the bank of pointers to be written by p is the same as the current bank, except that the

last pointer points to p's new last block.

When an operation by process p accesses a word in the array, say MEM [x], the block

that currently contains MEM [x] must be identi�ed. If p's operation modi�es MEM [x],

then p must replace that block. In order to hide the details of identifying blocks and of

replacing modi�ed blocks, some address translation and record-keeping is necessary. This

work is performed by special Read and Write procedures, which are called by the sequen-

tial operation in order to read or write the MEM array. As a result, our constructions

are not completely transparent to the sequential object designer. For example, instead of

writing \MEM [1] := MEM [10]", the designer would write \Write(1;Read(10))". However,

as discussed in Section 4, a preprocessor could be used to provide complete transparency.

We now turn our attention to the code of Figure 5. In this �gure, BANK is a B-

word shared variable, which is treated as an array of B pointers (actually indices into

the BLK array), each of which points to a block of S words. Together, the B blocks

pointed to by BANK make up the implemented array MEM . We assume an upper bound

T on the number of blocks modi�ed by any operation. Therefore, in addition to the B

4An extra parameter has been added to the procedures of Section 2.1 to explicitly indicate which

shared variable is updated.

blocks required for the object, T \copy blocks" are needed per process, giving a total of

B + NT blocks. These blocks are stored in the BLK array. Although blocks BLK [NT]

to BLK [NT +B� 1] are the initial array blocks, and BLK [pT] to BLK [(p+1)T � 1] are

process p's initial copy blocks, the roles of these blocks are not �xed. In particular, if p

replaces a set of array blocks with some of its copy blocks as the result of a successful SC,

then p reclaims the replaced array blocks as copy blocks. Thus, the copy blocks of one

process may become blocks of the array, and later become copy blocks of another process.

Process p performs a lock-free operation by calling the LF Op procedure. The loop in

the LF Op procedure repeats until the SC at line 3 succeeds. In each iteration, process p

�rst reads BANK into a local variable ptrs using a B-word weak-LL. Recall from Section

2.1 that the weak-LL can return a process identi�er from f0; :::; N�1g if the following SC

is guaranteed to fail. In this case, there is no point in attempting to apply p's operation,

so the loop is restarted. Otherwise, p records in its dirty array that no block has yet been

modi�ed by its operation, and initializes the dirtycnt counter to zero.

Next, p calls the op procedure provided as a parameter to LF Op. The op procedure

performs the sequential operation by reading and writing the elements of the MEM array.

This reading and writing is performed by invoking the Read and Write procedures shown

in Figure 5. The Read procedure simply computes which block currently contains the

word to be accessed, and returns the value from the appropriate o�set within that block.

The Write procedure performs a write to a word of MEM by computing the index blkidx

of the block containing the word to be written. If it has not already done so, the Write

procedure then records that the block is \dirty" (i.e., has been modi�ed) and copies the

contents of the old block to one of p's copy blocks. Then, the copy block is linked into

p's ptrs array, making that block part of p's version of the MEM array, and the displaced

old block is recorded in oldlst for possible reclaiming later. Finally, the appropriate word

of the new block is modi�ed to contain the value passed to the Write procedure.

If BANK is not modi�ed by another process after p's weak-LL, then the object con-

tained in p's version of the MEM array (pointed to by p's ptrs array) is the correct result

of applying p's operation. Therefore, p's SC successfully installs a copy of the object with

p's operation applied to it. After the SC, p reclaims the displaced blocks (recorded in

oldlst) to replace the copy blocks it used in performing its operation. On the other hand,

if another process does modify BANK between p's weak-LL and SC, then p's SC fails. In

this case, some other process completes an operation, so the implementation is lock-free.

Before concluding this subsection, one further complication bears mentioning. If the

BANK variable is modi�ed by another process while p's sequential operation is being

executed, then it is possible for p to read inconsistent values from the MEM array. Ob-

serve that this does not result in p installing a corrupt version of the object, because p's

subsequent SC fails. However, there is a risk that p's sequential operation might cause an

error, such as a division by zero or a range error, because it reads an inconsistent state of

the object. This problem can be solved by ensuring that, if BANK is invalidated, control

returns directly from the Read procedure to the LF Op procedure, without returning to

the sequential operation. The Unix longjmp command can be used for this purpose. The

details are omitted from Figure 5. In the full paper, we prove the following.

Theorem 3: Suppose a sequential object OBJ can be implemented in an array of B

S-word blocks such that any operation modi�es at most T blocks and has worst-case

time complexity C. Then, OBJ can be implemented in a lock-free manner with space

overhead5 O(NB +NTS) and contention-free time complexity O(B + C + TS). 2

It is interesting to compare these complexity �gures to those of Herlihy's lock-free

5By space overhead , we mean space complexity beyond that required for the sequential object.

construction. Consider the implementation of a queue. By storing head and tail \pointers"

(actually, array indices, not pointers) in a designated block, an enqueue or dequeue can be

performed in our construction by copying only two blocks: the block containing the head

or tail pointer to update, and the block containing the array slot pointed to by that pointer.

Space overhead in this case is O(NB + NS), which should be small when compared to

O(BS), the size of the queue. Contention-free time complexity is O(B + C + S), which

is only O(B + S) greater than the time for a sequential enqueue or dequeue. In contrast,

as mentioned in Section 1, each process in Herlihy's construction must actually copy the

entire queue, even when using his large-object techniques. Thus, space overhead is at least

N times the worst-case queue length, i.e.,
(NBS). Also, contention-free time complexity

is
(BS + C), since
(BS) time is required to copy the entire queue in the worst case.

When implementing a balanced tree, both constructions require space overhead of

O(N log(BS)) for local blocks. However, we pay a logarithmic time cost only when

performing an operation whose sequential counterpart modi�es a logarithmic number of

array slots. In contrast, Herlihy's construction entails a logarithmic time cost for copying

for almost every operation | whenever some block is modi�ed, a chain of block pointers

must be updated from that block to the block containing the root of the tree.

3.2 Wait-Free Construction for Large Objects

Our wait-free construction for large objects is shown in Figure 6. As in the lock-free

construction presented in the previous subsection, this construction uses the Read and

Write procedures in Figure 5 to provide the illusion of a contiguous array. The principal

di�erence between our lock-free and wait-free constructions is that processes in the wait-

free construction \help" each other in order to ensure that each operation by each process

is eventually completed. To enable each process to perform the operation of at least one

other process together with its own, each process p now has M � 2T private copy blocks.

(Recall that T is the maximum number of blocks modi�ed by a single operation.)

The helping mechanism used in our wait-free, large-object construction is similar to

that used in Herlihy's wait-free, small-object construction in several respects. To enable

processes to perform each others' operations, each process q begins by \announcing"

its operation and parameters in ANC [q] (line 11 in Figure 6). Also, each process stores

su�cient information with the object to allow a helped process to detect that its operation

was completed and to determine the return value of that operation. This information also

ensures that the operation helped is not subsequently reapplied.

There are also several di�erences between our helping mechanism and Herlihy's. First,

in Herlihy's construction, each time a process performs an operation, it also performs the

pending operations of all other processes. However, in our construction, the restricted

amount of private copy space might prevent a process from simultaneously performing

the pending operations of all other processes. Therefore, in our construction, each process

helps only as many other processes as it can with each operation. In order to ensure that

each process is eventually helped, a help counter is added to the shared variable BANK

used in our lock-free construction. The help �eld indicates which process should be helped

next. Each time process p performs an operation, p helps as many processes as possible

starting from the process stored in the help �eld. This is achieved by helping processes

until too few private copy blocks remain to accommodate another operation (lines 22 to

24). (Recall that the Write procedure in Figure 5 increments dirtycnt whenever a new

block is modi�ed.) Process p updates the help �eld so that the next process to successfully

perform an operation starts helping where p stops.

Our helping mechanism also di�ers from Herlihy's in the way a process detects the

completion of its operation. In Herlihy's construction, completion is detected by means

type anctype = record op: optype; pars : paramtype; bit : boolean end;

retblktype = array[0::N � 1] of record val : objrettype; applied , copied : boolean end

blktype = array[0::S � 1] of wordtype;

banktype = record blks : array[0::B � 1] of 0::B +NM � 1; help: 0::N � 1; ret : 0::N end

shared var BANK : banktype; BLK : array[0::B +NM � 1] of blktype;

ANC : array[0::N � 1] of anctype; =� Announce array �=

RET : array[0::N] of retblktype; =� Blocks for operation return values �=

LAST : array[0::N � 1] of 0::N =� Last RET block updated by each process �=

initially BANK :ret = N ^ (8p :: ANC [p]:bit = RET [N][p]:applied = RET [N][p]:copied) ^

BANK :help = 0 ^ (8k : 0 � k < B :: BANK :blks [k] = NM + k ^ BLK [NM + k] = (kth initial block))

private var oldlst , copy : array[0::M � 1] of 0::B +NM � 1; b, tmp, rb, oldrb: 0::N ; ptrs : banktype;

match, done, bit , a, loop: boolean; applyop: optype; applypars : paramtype; j; try : 0::N � 1;

m: 0::M � 1; dirty : array[0::B � 1] of boolean; dirtycnt : 0::M ; i: 0::B � 1

initially (8k : 0 � k < M :: copy [k] = pM + k) ^ rb = p ^ :bit

proc Apply(q : 0::N � 1)

1: match := ANC [q]:bit ;

2: if RET [rb][q]:applied 6= match then

3: applyop := ANC [q]:op;

4: applypars := ANC [q]:pars ;

5: RET [rb][q]:val := applyop(applypars);

6: RET [rb][q]:applied := match

�

proc Return Block() returns 0::N

7: tmp := Long Weak LL(BANK ; ptrs);

8: if tmp 6= N then

9: return LAST [tmp]

else

10: return ptrs :ret

�

proc WF Op(op: optype; pars : paramtype)

11: ANC [p]; bit := (op ; pars ;:bit); :bit ; =� Announce operation �=

12: b; done := Return Block (); false ;

13: while :done ^ RET [b][p]:copied 6= bit do =� Loop until update succeeds or operation is helped �=

14: if Long Weak LL(BANK ; ptrs) = N then =� Load object pointers �=

15: for i := 0 to B � 1 do dirty [i] := false od; dirtycnt := 0; =� No blocks modi�ed yet �=

16: oldrb ; ptrs :ret := ptrs :ret ; rb; =� Record old return block and install new one �=

17: memcpy(RET [rb]; RET [oldrb]; sizeof (retblktype)); =� Make private copy of return block �=

18: if Long VL(BANK) then =� Check if Long SC will fail �=

for j := 0 to N � 1 do =� Record applied operations �=

19: a := RET [rb][j]:applied ;

20: RET [rb][j]:copied := a

od;

21: Apply(p); try ; loop := ptrs :help; false ; =� Apply own operation �=

22: while dirtycnt + T �M ^ :loop do =� Help processes while su�cient space remains �=

23: Apply(try);

24: try := try + 1 mod N ; if try = ptrs :help then loop := true �

od;

25: LAST [p]; ptrs :help := rb; try ; =� Relay which return block was modi�ed �=

26: if Long SC (BANK ; ptrs) then =� Operation is successful, reclaim old blocks �=

27: for m := 0 to dirtycnt � 1 do copy [m] := oldlst [m] od;

28: RET [rb][p]:copied ; rb; done := bit ; oldrb ; true =� Prepare copied bit for next time �=

�;
�

�

29: b := Return Block () =� Get current or recent return block �=

od;

30: return RET [b][p]:val =� Get return value of operation �=

Figure 6: Wait-free implementation for a large object.

of a collection of toggle bits, one for each process, that are stored with the current version

of the object. Before attempting to apply its operation, each process p �rst \announces"

a new toggle bit value. When another process helps p, it copies this bit value into the

current version of the object. To detect the completion of its operation, p tests whether

the bit value stored for it in the current version of the object matches the bit value it

previously announced; to access the current version of the object, p �rst reads the shared

object pointer, and then reads the bu�er pointed to by that pointer. In order to avoid

a race condition that can result in an operation returning an incorrect value, Herlihy's

construction requires this sequence of reads to be performed twice. This race condition

arises when p attempts to access the current bu�er, and during p's access, another process

subsequently reclaims that bu�er and privately updates it. By dereferencing the object

pointer and checking its toggle bit a second time, p can ensure that if the �rst bu�er it

accessed has been reclaimed, then p's operation has already been applied. This is because

the process that reclaimed the bu�er helped all other processes with its operation, and

therefore ensured that p's operation was applied. Because our construction does not

guarantee that each process helps all other processes at once, p might have to reread the

shared object pointer and read its toggle bit many times to ensure that its operation has

been applied. We therefore use a di�erent mechanism, explained below, for determining

whether an operation has been applied.

To enable a process to detect that its operation has been applied, and to determine

the return value of the operation, we use a set of \return" blocks. There are N +1 return

blocks RET [0] to RET [N]; at any time, one of these blocks is \current" (as indicated by

a new ret �eld in the BANK variable) and each process \owns" one of the other return

blocks. The current return block contains, for each process q, the return value of q's

most recent operation, along with two bits: applied and copied . These bits are used by

q to detect when its operation has been completed. Roughly speaking, the applied bit

indicates that q's operation has been applied to the object and the copied bit indicates that

another operation has been completed since q's operation was applied. The interpretation

of these bits is determined by ANC [q]:bit . For example, q's operation has been applied

i� q's applied bit in the current return block equals ANC [q]:bit .

To see why two bits are needed to detect whether q's operation is complete, consider

the scenario in Figure 7. In this �gure, process p performs two operations. In the �rst, p's

SC is successful, and p replaces RET [5] with RET [3] as the current return block at line 26.

During p's �rst operation, q starts an operation. However, q starts this operation too late

to be helped by p. Before p's execution of line 26, q reads BANK in line 7 and determines

that RET [5] is the current return block. Now, p starts a second operation. Because p

previously replaced RET [5] as the current return block, RET [5] is now p's private copy,

so p's second operation uses RET [5] to record the operations it helps. When p executes

line 6, it changes q's applied bit to indicate that it has applied q's operation. Note that,

at this stage, q's operation has only been applied to p's private object copy, and p has not

yet performed its SC. However, if q reads the applied bit of RET [5] (which it previously

determined to be the current RET block) at line 13, then q incorrectly concludes that its

operation has been applied to the object, and terminates prematurely.

It is similarly possible for q to detect that its copied bit in some return block RET [b]

equals ANC [q]:bit before the SC (if any) that makes RET [b] current. However, because

q's copied bit is updated only after its applied bit has been successfully installed as part

of the current return block, it follows that some process must have previously applied q's

operation. Thus, q terminates correctly in this case (see line 13).

It remains to describe how process q determines which return block contains the current

state of q's operation. It is not su�cient for q to perform a weak-LL on BANK and read the

ret �eld, because the weak-LL is not guaranteed to return a value of BANK if a successful

p

q

11 7 13

14 26 14 6

BANK.ret = 5 BANK.ret = 3

ANC[q].bit :=1 BANK.ret = 5 RET[5][q].applied = ANC[q].bit

RET[5][q].applied := 1

Figure 7: Process q prematurely detects that its applied bit equal ANC [q]:bit .

SC operation interferes. In this case, the weak-LL returns the ID of a \witness" process

that performs a successful SC on BANK during the weak-LL operation. In preparation

for this possibility, process p records the return block it is using in LAST [p] (line 25)

before attempting to make that block current (line 26). When q detects interference from

a successful SC, q uses the LAST entry of the witness process to determine which return

block to read. The LAST entry contains the index of a return block that was current

during q's weak-LL operation. If that block is subsequently written after being current,

then it is a copy of a more recent current return block, so its contents are still valid. Our

wait-free construction gives rise to the following result.

Theorem 4: Suppose a sequential object OBJ whose return values are at most R words

can be implemented in an array of B S-word blocks such that any operation modi�es at

most T blocks and has worst-case time complexity C. Then, for any M � 2T , OBJ can

be implemented in a wait-free manner with space overhead O(N(NR +MS + B)) and

worst-case time complexity O(dN=min(N; bM=T c)e(B +N(R + C) +MS)).6 2

3.3 Performance Comparison

In this subsection, we describe the results of preliminary experiments that compare the

performance of Herlihy's lock-free construction for large objects to our two constructions

on a 32-processor KSR-1 multiprocessor.

The results of one set of experiments are shown in Figure 8. In these experiments,

LL and SC primitives were implemented using native KSR locks. Each of 16 proces-

sors performed 1000 enqueues and 1000 dequeues on a shared queue. For testing our

constructions, we chose B (the number of blocks) and S (the size of each block) to be

approximately the square root of the total object size. Also, we chose T = 2 because each

queue operation accesses only two words. For the wait-free construction, we choseM = 4.

This is su�cient to guarantee that each process can help at least one other operation. In

fact, because two consecutive enqueue (or dequeue) operations usually access the same

block, choosing M = 4 is su�cient to ensure that a process often helps all other processes

each time it performs an operation. These choices for M and T result in very low space

overhead compared to that required by Herlihy's construction.

As expected, both our lock-free and wait-free constructions signi�cantly outperform

Herlihy's construction as the queue size grows. This is because an operation in Herlihy's

construction copies the entire object, while ours copy only small parts of the object.

It is interesting to note that our wait-free construction outperforms our lock-free one.

6It can be shown that each successful operation is guaranteed to advance the help pointer by

min(N; bM=T c). Thus, if process p's SC fails dN=min(N; bM=T c)e times, then p's operation is helped.

When considering these bounds, note that for many objects, R is a small constant. Also, for queues, C

and T are constant, and for balanced trees, C and T are logarithmic in the size of the object.

0

50

100

150

200

250

300

20 40 60 80 100 120 140 160 180 200

T
im

e
(s

)
fo

r
10

00
 e

nq
ue

ue
s

an
d

10
00

 d
eq

ue
ue

s

Queue Size

Comparison of Large Object Constructions for a Shared Queue

"Lock_Free"
"Wait_Free"

"Herlihy_Lock_Free"
"Herlihy_Lock_Free_Backoff"

Figure 8: Performance experiments on KSR. N = 16, T = 2, M = 4.

We believe that this is because the cost of recopying blocks in the event that a SC fails

dominates the cost of helping. It is also interesting to note that exponential backo� does

not signi�cantly improve the performance of Herlihy's lock-free construction. This stands

in contrast to Herlihy's experiments on small objects, where exponential backo� played an

important role in improving performance. We believe that this is because the performance

of Herlihy's large object construction is dominated by copying and not by contention.

We should point out that we have deliberately chosen the queue to show the ad-

vantages of our constructions over Herlihy's. In the full paper, we will also present an

implementation of a skew heap | the object considered by Herlihy. We expect that our

constructions will still outperform Herlihy's, albeit less dramatically, because ours will

copy a logarithmic number of blocks only when the sequential operation does; Herlihy's

will do so whenever a block near the bottom of the tree is modi�ed.

4 Concluding Remarks

Our constructions improve the space and time e�ciency of lock-free and wait-free im-

plementations of large objects. Also, in contrast to similar previous constructions, ours

do not require programmers to determine how an object should be fragmented, or how

the object should be copied. However, they do require the programmer to use special

Read and Write functions, instead of the assignment statements used in conventional

programming. Nonetheless, as demonstrated by Figure 9, the resulting code is very close

to that of an ordinary sequential implementation. Our construction could be made com-

pletely seamless by providing a compiler or preprocessor that automatically translates

assignments to and from MEM into calls to the Read and Write functions.

The applicability of our construction could be further improved by the addition of

a dynamic memory allocation mechanism. This would provide a more convenient inter-

face for objects such as balanced trees, which are naturally represented as nodes that are

dynamically allocated and released. There are well-known techniques for implementing

dynamic memory management in an array. These techniques could be applied directly by

the sequential object programmer, or could be provided as a subroutine library. Several

issues arise from the design of such a library. First, the dynamic memory allocation pro-

int dequeue()

{

int item;

if (Read(head) == Read(tail))

return EMPTY;

item = Read(Read(head));

Write(head,(Read(head)+1)%n);

return item;

}

int enqueue(item)

int item;

{

int newtail; /* int newtail; */

Write(Read(tail),item); /* MEM[tail] = item; */

newtail = (Read(tail)+1)%n; /* newtail = (tail+1) % n; */

if (newtail == Read(head)) /* if (newtail == head) */

return FULL; /* return FULL; */

Write(tail,newtail); /* tail = newtail; */

return SUCCESS; /* return SUCCESS; */

}

Figure 9: C code used for the queue operations. Comments show \usual" enqueue code.

cedures must modify only a small number of array blocks, so that the advantages of our

constructions can be preserved. Second, fragmentation complicates the implementation

of allocate and release procedures. These complications can make the procedures quite

ine�cient, and can even cause the allocate procedure to incorrectly report that insu�cient

memory is available. Both of these problems are signi�cantly reduced if the size of alloca-

tion requests is �xed in advance. For many objects, this restriction is of no consequence.

For example, the nodes in a tree are typically all of the same size.

Finally, our constructions do not allow parallel execution of operations, even if the

operations access disjoint sets of blocks. We would like to extend our constructions to allow

such parallel execution where possible. For example, in our shared queue implementations,

an enqueue operation might unnecessarily interfere with a dequeue operation. In [1], we

addressed similar concerns when implementing wait-free operations on multiple objects.

Acknowledgement: We would like to thank Lars Nyland for his help with the performance

studies in Section 3.3.

References

[1] J. Anderson and M. Moir, \Universal Constructions for Multi-Object Operations",

to appear in the Proceedings of the 14th Annual ACM Symposium on Principles of

Distributed Computing , 1995.

[2] G. Barnes, \A Method for Implementing Lock-Free Shared Data Structures", Proceed-

ings of the Fifth Annual ACM Symposium on Parallel Algorithms and Architectures,

1993, pp. 261-270.

[3] M. Herlihy, \Wait-Free Synchronization", ACM Transactions on Programming Lan-

guages and Systems, Vol. 13, No. 1, 1991, pp. 124-149.

[4] M. Herlihy, \A Methodology for Implementing Highly Concurrent Data Objects",

ACM Transactions on Programming Languages and Systems, Vol. 15, No. 5, 1993,

pp. 745-770.

[5] A. Israeli and L. Rappoport, \Disjoint-Access-Parallel Implementations of Strong

Shared Memory Primitives", Proceedings of the 13th Annual ACM Symposium on

Principles of Distributed Computing , ACM, New York, August 1994, pp. 151-160.

[6] N. Shavit and D. Touitou, \Software Transactional Memory", to appear in the Pro-

ceedings of the 14th Annual ACM Symposium on Principles of Distributed Comput-

ing , 1995.

