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Abstract

Two important trends are expected to guide the de-
sign of next-generation networks. First, with the
commercialization of the Internet, providers will use
value-added services to differentiate their service of-
ferings from other providers; such services require
the use of sophisticated resource scheduling mech-
anisms in routers. Second, to enable extensibility
and the deployment of new services in a rapid and
cost-effective manner, routers will be instantiated us-
ing programmable network processors. In this re-
search, our goal is to develop sophisticated multipro-
cessor scheduling mechanisms that would enable net-
works that deploy such router platforms to provide
service guarantees to applications. Existing multipro-
cessor scheduling techniques are either not applicable
to router platforms due to their complexity or sim-
plistic assumptions, or are not based on rigorous for-
malism, which is necessary to enable strong assertions
about service guarantees. In this work, we propose
to address these limitations. This paper presents our
current ideas and planned future directions.

1 Introduction

Routers are the basic building blocks of wide-area
networks such as the Internet. Conventionally,
routers have been built using application-specific
integrated circuits (ASICs) that enable high-
speed packet switching. Unfortunately, ASIC de-
signs take months to develop, and routers built
using them are costly to deploy. In order to
enable router extensibility in a rapid and cost-
effective manner, significant effort is now be-

∗Work supported by NSF grants CCR 9972211, CCR
9988327, ITR 0082866, and CCR 0204312.

ing invested in a different approach: implement-
ing routers on programmable network processors
(NPs) [1, 2, 3, 34].

There are two main shared resources in a
software-based programmable router: link capac-
ity , which is shared by traffic destined for the
same outgoing link, and packet-processing capac-
ity ,1 which is shared by all traffic arriving on all
incoming links. Two trends are expected to guide
the manner in which these resources are managed
in next-generation routers:

• Growing demand for sophisticated
resource-allocation mechanisms. The
current Internet mainly supports just a sin-
gle service class, namely, best-effort delivery.
In this model, there is no assurance of when,
or even if, a packet sent by a data source
will reach its destination. While this model
has worked well for traditional applications
such as email and web browsing, it is not ad-
equate for many emerging network applica-
tions that require quality-of-service and time-
liness guarantees. Such applications require
that both link and packet-processing capac-
ities be multiplexed across different applica-
tions in a fair manner, even at short time
scales.

• Increasing disparity between link and
processor speeds. Link capacities are in-
creasing rapidly, almost doubling every year
[18]. On the other hand, processor speeds are

1The term packet processing refers to functions that are
performed for every incoming packet, such as computing
checksums, route lookup, packet classification, etc.
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increasing much more slowly [4]. For these
reasons, routers must be instantiated as mul-
tiprocessor platforms that process multiple
packets simultaneously. In addition, traffic
demands in the Internet are doubling each
year as well [18, 28]. To keep up with large
volumes of traffic, router mechanisms must
incur very low overhead .

In the last decade, a significant amount of re-
search has been conducted on scheduling mech-
anisms for fairly allocating link capacity [14, 15,
19, 20, 22]. However, considerably less work has
been done on designing mechanisms for allocating
packet-processing capacity. The reason for this is
simple: conventional routers, built using ASICs,
perform only simple packet-processing functions
that are likely to execute faster than the time
it takes to transmit packets between ports. As
such, link capacities are assumed to be the only re-
sources in a network for which flows must contend.
However, routers built using programmable NPs
are destined to implement more complex packet-
processing functions in software, making packet-
processing capacity a critical resource to be man-
aged.

Unfortunately, techniques developed in prior
work on link scheduling cannot be directly ap-
plied to the problem of fairly allocating packet-
processing capacity in multiprocessor routers.
There are two reasons for this. First, link-
scheduling algorithms are typically devised to
manage just a single outgoing link, i.e., link
scheduling is fundamentally a single-resource
scheduling problem. Second, some assumptions
usually made in work on link scheduling —
e.g., unbounded buffering capacity and process-
ing bandwidth — are unreasonable to assume on
router platforms connected to high-speed links.

Given the trends noted above, and the limita-
tions of prior work, there is a significant need
for research on the problem of fairly allocat-
ing packet-processing capacity in multiprocessor
routers. Fair scheduling on multiprocessors has
been a topic of recent research in work on real-
time scheduling, and several fair scheduling algo-
rithms have been developed [5, 6, 7, 10, 11, 12,

13, 24, 36]. However, due to various assumptions
made in this work, these algorithms cannot be
applied directly in multiprocessor routers. In this
paper, we explore some of the issues that arise in
applying these algorithms to routers, and describe
some approaches to handle them.

The rest of this paper is organized as follows.
In Sec. 2, we consider the problem of scheduling
packet-processing capacity in routers in more de-
tail and also describe past work on multiproces-
sor scheduling in real-time systems. In Sec. 3, we
consider requirements unique to router platforms
and outline some of the issues in applying existing
multiprocessor scheduling schemes to routers. We
also propose ways of addressing these issues. In
Sec. 4, we present an experimental methodology
to evaluate our approach. Finally, we summarize
in Sec. 5.

2 Related Work and Concepts

In this section, we formulate the problem of mul-
tiprocessor scheduling in routers and describe re-
lated prior work on multiprocessor scheduling.

2.1 The Problem: Limited Packet-

processing Capacity in Routers

Fig. 1(a) depicts the high-level architecture of a
typical wide-area packet-switched network. When
a packet arrives on an input link at a router,2 the
router determines the next hop on the end-to-end
path of that packet, and transmits the packet on
the corresponding output link.

To understand the need for scheduling mecha-
nisms in routers, consider Fig. 1(b), which depicts
the architecture of a typical router platform built
using programmable NPs. Each incoming packet
is stored in memory, is processed at one or more of
theM processors, and is transmitted on an outgo-
ing link. The processing required for each packet
includes such functions as checksum computation,
packet classification, route-table lookup, queue
maintenance, etc.

2In this paper, we use the terms “router,” “switch,”
“node,” and “hop” interchangeably.
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Figure 1: Typical architectures of (a) a network, and (b) a router.

As mentioned earlier, there are two main re-
sources3 for which the packets of different flows
contend: (i) processing capacity within the mul-
tiprocessor bank, and (ii) the transmission capac-
ity of outgoing links. In order to provide delay
and throughput guarantees for the packets of a
given flow, the router must employ sophisticated
scheduling mechanisms to arbitrate access to both
of these resources.

Research on designing scheduling mechanisms
for routers over the past decade has focused
mainly on the second resource identified above,
i.e., outgoing link capacity4 [14, 15, 19, 20, 21,
22, 33, 38, 39]. Indeed, in most work on link-
scheduling algorithms, buffer space and process-
ing capacity within routers are assumed to be un-
limited. These assumptions have been justified
by the fact that conventional routers, built using
ASICs, have very fast interconnects between in-
put and output ports, and perform simple packet-
processing functions implemented using fast hard-
ware. Consequently, it is reasonable to assume
that packets require queueing only while access-
ing outgoing links. However, because of the two
trends mentioned earlier — the growing dispar-
ity between link and processor speeds, and an
increasing need for more sophisticated resource-
allocation mechanisms — it is not reasonable to
assume that queueing occurs only at outgoing

3Fig. 1(b) reveals a third resource in addition to these:
buffer space in the high-speed memory banks. In this pa-
per, we focus only on the problem of allocating processing
and transmission capacity, and not space.

4Some scheduling mechanisms have also been proposed
that assume that queuing occurs at input links.

links in software-based router platforms built us-
ing NPs. In this work, we focus on the problem of
fairly allocating processing capacity within multi-
processor routers.

2.2 Real-time Scheduling on Multipro-

cessors

Fair scheduling on multiprocessors has recently
received much attention in the real-time schedul-
ing literature [5, 6, 7, 10, 11, 12, 13, 24, 36]. Task
models such as the periodic and sporadic models,
which permit recurrent execution, are central to
the theory of real-time scheduling. In the periodic
model, each task is invoked repeatedly, with con-
secutive invocations, or jobs, spaced apart by a
fixed amount, called the task’s period . In the spo-
radic task model, job deadlines are defined sim-
ilarly, but a task’s period defines a lower bound
between successive jobs. In the variant of these
models considered here, each task’s relative job
deadline is equal to its period: each job of a task
must complete execution before the current pe-
riod of that task has elapsed. In both models, the
weight or utilization of a task T , denoted wt(T ),
is defined as the ratio of its per-job execution re-
quirement and its period.

Multiprocessor scheduling techniques in real-
time systems fall into two general categories: par-
titioning and global scheduling . Under partition-
ing, each processor schedules tasks independently
from a local ready queue. Each task is assigned
to a particular processor and is only scheduled on
that processor. In contrast, all ready tasks are
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stored in a single queue under global scheduling.
A single system-wide priority space is assumed;
the highest-priority task is selected to execute
whenever the scheduler is invoked, regardless of
which processor is being scheduled.

Partitioning has two main advantages: migra-
tion overhead is zero (since each task runs on only
one processor) and simpler and widely-studied
uniprocessor scheduling algorithms can be used
on each processor. Unfortunately, finding an op-
timal assignment of tasks to processors is an NP-
hard bin-packing problem. In addition, partition-
ing is inherently sub-optimal: task sets with uti-
lization at most M exist that cannot be parti-
tioned on M processors. Furthermore, partition-
ing is quite problematic if tasks (or flows) can
be created and terminated dynamically. In par-
ticular, every new task that joins can potentially
cause a re-partitioning of the entire system.

Because of the limitations of partitioning, there
has been much recent interest in global multi-
processor scheduling algorithms that ensure fair-
ness [6, 7, 8, 12, 16, 17, 24, 26, 25, 32, 35]. In the
following section, we present an overview of this
work.

2.3 Pfair Scheduling

Fairness is defined with respect to a basic fluid-
flow model . Given a resource that is shared
among several data streams (or tasks) in speci-
fied proportions, the goal of a fair scheduling al-
gorithm is to allocate the resource so that each
stream’s allocation is always “close” to its des-
ignated proportion. Ideally, one would like to
treat the data streams as fluid flows and contin-
ually assign an appropriate fraction of the avail-
able bandwidth to each stream. This idealized
scheme is referred to as generalized processor shar-
ing (GPS) [33]. In practice, supporting ideal
fluid flows is not possible, and hence scheduling
schemes that closely approximate GPS must be
used. Fairness in such schemes is usually mea-
sured by determining lag bounds that reflect the
extent to which actual behavior deviates from the
idealized GPS behavior.

Proportionate fairness (Pfairness) is a con-
straint introduced by Baruah et al. [11, 12] as a
way to optimally schedule periodic tasks on mul-
tiprocessors. Some of the key concepts arising in
this work are described below.

Basic task model. Most prior work on Pfair-
ness has focused on periodic tasks with hard
real-time execution requirements, where proces-
sor time is allocated in uniform time units called
time slots or quanta. Let T.p denote the period of
task T , and let T.e denote its execution require-
ment within each of its periods. Then, T.e/T.p
is the processing-rate requirement of T . In satis-
fying this rate requirement, T may be allocated
time on different processors, but not at the same
time (i.e., migration is allowed but parallelism is
not).

Pfair schedules. Pfairness is defined by focus-
ing on the lag between the amount of time allo-
cated to each task and the amount of time that
would be allocated to that task in an ideal fluid
system (i.e., GPS). Formally, the lag of task T at
time t, denoted lag(T, t), is defined as follows:

lag(T, t) = (T.e/T.p)t− allocated(T, t),

where allocated(T, t) is the total processor time
allocated to T in [0, t). A schedule is Pfair 5 iff

(∀T, t :: −1 < lag(T, t) < 1). (1)

Informally, the allocation error associated with
each task must always be strictly less than one
quantum. It is easy to show that (1) ensures that
each job completes before the next job of the same
task is released.

Baruah et al. [11] proved that a periodic task
system τ has a Pfair schedule on M processors iff

∑

T∈τ
T.e
T.p
≤M.

This expression is in fact a feasibility condition for
all the task models considered in this subsection.

5It turns out that a lower bound of 0 for lag (as in most
uniprocessor fair scheduling schemes) is not sufficient to
guarantee all deadlines on multiprocessors.
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Figure 2: (a) Windows of the first two jobs of a periodic task T with weight 8/11. These two jobs consist of
the subtasks T1, . . . , T8 and T9, . . . , T16, respectively. Each subtask must be scheduled during its window, or a
lag-bound violation will result. (b) The Pfair windows of an IS task. Subtask T5 becomes eligible one unit late.

Pfair scheduling algorithms. Baruah et al.
presented two optimal Pfair scheduling algo-
rithms, called PF [11] and PD [12]. These algo-
rithms assume that a task T can be divided into
a sequence T1, T2, . . . of unit-time subtasks to be
executed sequentially. In both algorithms, sub-
tasks are prioritized by their deadlines, where the
deadline of a subtask Ti (i ≥ 1), denoted d(Ti), is
computed as follows.

d(Ti) =
⌈

i
wt(T )

⌉

(2)

Observe that these deadline assignments respect
the lag bounds given in (1). The lag bounds in (1)
also imply a release time for a subtask, i.e., the
earliest time at which the subtask can be sched-
uled. Thus, we obtain a time interval for each
subtask during which that subtask must be sched-
uled. This interval is referred to as the subtask’s
window (see Fig. 2(a)).

PF and PD differ in the way in which ties are
broken when two subtasks have the same dead-
line. (Selecting appropriate tie-breaks turns out
to be the most important concern in designing
correct Pfair algorithms.) In PF, ties are broken
by comparing a vector of future subtask deadlines,
which is somewhat expensive. In PD, ties are bro-
ken in constant time by inspecting four tie-break
parameters. In recent work, Anderson and Srini-
vasan presented an optimized variant of PD called
PD2 [6, 8, 9]. PD2 was obtained by eliminating
two of PD’s tie-breaks. PD2 is the most efficient
Pfair scheduling algorithm currently known.

Allowing early releases and late arrivals.
Pfair scheduling algorithms are necessarily non-
work conserving when used to schedule periodic

tasks. To see why, suppose some subtask Ti exe-
cutes “early” within its window. Then Ti+1, the
next subtask of T , will be ineligible for execution
until the beginning of its window, even if some
processors are idle. To enable more efficient use of
processing capacity, a work-conserving variant of
Pfair scheduling called “early-release” fair (ER-
fair) scheduling was recently proposed by Ander-
son and Srinivasan [6, 8]. Under ERfair schedul-
ing, if two subtasks are part of the same job, then
the second subtask becomes eligible for execution
as soon as the first completes. For example, if T3

in Fig. 2(a) were scheduled in slot 2, then T4 could
be scheduled as early as slot 3.

In other recent work, Anderson and Srinivasan
extended the early-release task model to also al-
low subtasks to be released “late,” i.e., there may
be separation between consecutive subtasks of the
same task [7]. The resulting model, called the
intra-sporadic (IS) model, generalizes the well-
known sporadic model, which allows separation
between consecutive jobs of the same task. An
example of an IS task is shown in Fig. 2(b), where
T5 is released one slot late. Note that an IS task is
obtained by allowing a task’s windows to be right-
shifted from where they would appear if the task
were periodic. Thus, we can define an IS task by
associating with each subtask an offset that gives
the amount by which its window has been right-
shifted. Let θ(Ti) denote the offset of subtask Ti.
Then, from (2), we have the following.

d(Ti) = θ(Ti) +
⌈

i
wt(T )

⌉

(3)

These offsets are constrained so that the separa-
tion between any pair of subtask deadlines is no
less than the separation between those deadlines
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if the task were periodic. Formally, the offsets
satisfy the following: k ≥ i⇒ θ(Tk) ≥ θ(Ti).

Anderson and Srinivasan have shown that IS
(and hence early-release) tasks can be correctly
scheduled by PD2 on M processors if total uti-
lization is at most M [36].

Mapping tasks to packet processing. In
Pfair terms, the arrival of a packet would map
to the notion of a task, that would cause one
or more subtasks to be released that encompass
the packet-processing functions to be performed.6

While the notion of a Pfair weight was defined
above based on the per-job execution cost and
period of a task, these weights can be viewed
more abstractly as denoting maximum processor
shares. In packet scheduling, instead, each back-
logged flow must be guaranteed aminimum share.

If the workload to be scheduled never changes,
then the share of each flow remains fixed and there
is no real distinction between the notion of a max-
imum and a minimum share. However, in a dy-
namic system, in which flows may join and leave
or become inactive, it is desirable to increase a
task’s share if there is available spare capacity. In
fact, this very issue was one of the key problems
addressed in prior work on fair link scheduling.
One of the major goals of our current work is to
devise efficient schemes that can be applied on
multiprocessors to reallocate spare capacity.

Of the task models considered above, the intra-
sporadic (IS) model is the most suitable for
scheduling dynamic flows within a router. Due
to network congestion and other factors, packets
may arrive late or in bursts. The IS model treats
these possibilities as first-class concepts. In par-
ticular, a late packet arrival corresponds to an IS
delay. On the other hand, if a packet arrives early
(as part of a bursty sequence), then its eligibility
time will be less than its Pfair release time. Note
that its Pfair release time determines its deadline.
Thus, in effect, an early packet arrival is handled
by postponing its deadline to where it would have
been had the packet arrived on time. This is very
similar to the approach taken in the (uniproces-

6In the rest of this paper, we use the terms “task,”
“flow,” and “connection” interchangeably.

sor) virtual-clock scheduling scheme [40].

Heuristic approaches. In recent work, Chan-
dra et al. considered fair multiprocessor schedul-
ing algorithms that use variable-sized quanta, use
mechanisms that discourage task migrations, and
allow tasks to join and leave dynamically [16, 17].
Their work is entirely experimental in nature.
In particular, they provide no formal correctness
proofs for the algorithms they consider. Nonethe-
less, their results demonstrate convincingly the
utility of using fair scheduling algorithms on mul-
tiprocessors.

In other recent work, Jones and Regehr pro-
posed and evaluated a reservation-based mul-
tiprocessor scheduler implemented within a re-
search version of Windows NT called Rialto/NT
[27]. While their results show that reservations
and real-time execution can be effectively imple-
mented on multiprocessors, Jones and Regehr,
like Chandra et al., present no formal analysis of
their scheduling algorithm.

The observations made in this section suggest
that Pfair scheduling schemes that allow IS task
execution are capable of providing provable ser-
vice guarantees, while being an efficient and flexi-
ble choice for multiprocessor router platforms. In
the rest of this paper, we examine this choice in
detail.

3 Applying Pfair Scheduling to

Routers: Issues and Ideas

In this section, we discuss some of the challenges
involved in using Pfair scheduling algorithms for
multiprocessor router platforms. We also describe
our current ideas and proposed approaches for
meeting these challenges.

Many of the ideas presented in this section ex-
ploit a key difference between the timeliness re-
quirements of traditional real-time applications
and emerging network applications. Network ap-
plications have to be designed to tolerate the least
possible network delay, which is given by the sum
of link-propagation and transmission latencies on
end-to-end paths. Such end-to-end latencies are
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of the order of a few milliseconds. Unlike hard
real-time applications that have no tolerance for
deadline misses, these applications are capable of
operating well even if deadlines are not strictly ad-
hered to, as long as deadline misses are bounded
by a quantity less than, say, a fraction of a mil-
lisecond.

3.1 Performance Issues

As mentioned earlier, link capacities are increas-
ing at almost double the rate at which processing
speeds are increasing. To keep up with high link
speeds, packet-processing functions must be im-
plemented in a highly-efficient manner. Deadline-
based scheduling algorithms, on the other hand,
impose non-negligible computational complexity.
In particular, these algorithms require routers to
maintain a sorted queue of tasks, the complex-
ity of which is a function of the number of pack-
ets (or flows). The use of nontrivial tie-breaking
mechanisms increases this complexity. The over-
head due to tie-breaks is much greater if flows
are allowed to utilize idle capacity, as this may
introduce the need to re-order sorted task lists
(discussed later in Sec. 3.3). Therefore, to en-
able routers to operate efficiently in high-speed
networks, tie-breaking rules should be eliminated,
while ensuring that meaningful deadline guaran-
tees can still be provided .

The earliest-pseudo-deadline-first (EPDF)
Pfair algorithm is similar to PF, PD, and PD2,
but uses no tie-breaks. Unfortunately, it is well
known that deadline misses can occur under
EPDF. However, based upon preliminary evi-
dence, which is presented below, we believe that
the impact of such misses in routers will be ex-
tremely limited. Before presenting this evidence,
we first examine the PD2 tie-breaks in detail.

PD2 tie-breaks. The first PD2 tie-break is a
bit, denoted b(Ti). As seen in Fig. 2(a), consec-
utive windows of a Pfair task are either disjoint
or overlap by one slot. b(Ti) is defined to be 1
if Ti’s window overlaps Ti+1’s, and 0 otherwise.
For example, for task T in Fig. 2(a), b(Ti) = 1 for
1 ≤ i ≤ 7 and b(T8) = 0. PD

2 favors a subtask

with a b-bit of 1 over one with a b-bit of 0. In-
formally, it is better to execute Ti “early” if its
window overlaps that of Ti+1, because this poten-
tially leaves more slots available to Ti+1.

The second PD2 tie-break, the group deadline,
is needed in systems containing tasks with win-
dows of length two. A task T has such windows
iff 1/2 ≤ wt(T ) < 1. Consider a sequence Ti, . . . ,
Tj of subtasks of such a task T such that b(Tk) =
1 ∧ |w(Tk+1)| = 2 for all i ≤ k < j. Schedul-
ing Ti in its last slot forces the other subtasks in
this sequence to be scheduled in their last slots.
For example, in Fig. 2(a), scheduling T3 in slot 4
forces T4 and T5 to be scheduled in slots 5 and
6, respectively. The group deadline of a subtask
Ti is the earliest time by which such a “cascade”
must end. Formally, it is the earliest time t, where
t ≥ d(Ti), such that either (t = d(Tk) ∧ b(Tk) = 0)
or (t + 1 = d(Tk) ∧ |w(Tk)| = 3) for some sub-
task Tk. For example, subtask T3 in Fig. 2(a) has
a group deadline at time 8 and subtask T7 has a
group deadline at time 11. PD2 favors subtasks
with later group deadlines because not scheduling
them can lead to longer cascades.

Anderson and Srinivasan have shown that if ei-
ther PD2 tie-break is eliminated, then tasks can
miss their deadlines [9]. To see that the b-bit
is necessary, consider Fig. 3. In this schedule,
the tasks of weight 1/3 are favored over those of
weight 4/9 at times 0 and 1 even though the for-
mer have a b-bit of 0. Note that 8

3 +
4
3 = 4. Thus,

all four processors are fully utilized, which implies
that no processor should ever be idle. However, in
[2, 3), only three tasks can be scheduled, implying
that a deadline is missed in the future.

EPDF. The tardiness of a scheduling algorithm
is a measure of quality that indicates the ex-
tent to which a deadline can be missed. To
determine how frequently deadlines are missed
under EPDF, and by what tardiness threshold,
we recently conducted a series of experiments
in which EPDF schedules were constructed for
randomly-generated task sets [35]. Out of approx-
imately 200,000 generated task sets, no subtask
ever missed its deadline by more than one quan-
tum. Moreover, (single-quantum) deadline misses
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Figure 3: Eight tasks of weight 1/3 and four tasks
of weight 4/9 scheduled on four processors (tasks of a
given weight are shown together). The Pfair window of
each subtask is shown on a separate line. An integer
value n in slot t means that n of the corresponding
subtasks are scheduled in slot t.

were very rare; e.g., on systems of five or more
processors, the miss rate was about 0.1%. This
evidence indicates that EPDF (and variants con-
sidered in Sec. 3.4) may be ideal for use within
multiprocessor routers.

Currently, we are trying to establish formally
that EPDF guarantees a tardiness of one. To
date, this has been proved for systems that satisfy
the following constraint [35].

(M1) The sum of the weights of theM −1 heav-
iest tasks is at most (M + 1)/(2M − 3).

Note that this restriction only applies if there are
tasks with weight greater than 1/2 and imposes no
restrictions on systems of four or fewer processors.
It may seem that eliminating such a liberal condi-
tion is not important. After all, a flow with weight
exceeding 1/2 may seem quite unlikely. However,
one of the scheduling schemes considered later in
Sec. 3.4 is a hierarchical scheme in which several
tasks are bundled together into a single “super-
task.” Such a supertask can easily have a weight
exceeding 1/2. Furthermore, many of the schedul-
ing problems considered later in Sec. 3.4 also in-
volve establishing tardiness thresholds. We re-
gard the problem considered here as an important
“bellwether” problem in this class. Hence, solving
it is one of our key goals.

3.2 Scalability Issues

To compute packet deadlines, routers need to
maintain per-flow state (for instance, θ(Ti) in
Equation (3)) and perform flow classification for
all incoming packets. However, the complexity
of these two operations limits the scalability of
routers as the number of flows increases. This is
especially true for routers in the core of a network,
which aggregate and carry a large number of flows
originating from different edges of the network,
and which are required to operate on high-speed
links. Thus, it is essential to eliminate the com-
plexity associated with these per-flow operations
in the core routers of a network .

Core-stateless networks. A number of end-
to-end link-scheduling frameworks have recently
been proposed that enable networks to provide
end-to-end per-flow guarantees with respect to
shared-link access, without requiring per-flow
state in core routers [29, 37, 41]. Over the
past year, we have implemented routers from
core-stateful and core-stateless networks on In-
tel’s IXP1200-based router platform and com-
pared their performance with that of conventional
IP routers [23]. We have found that core routers
in stateful networks may be able to process pack-
ets at less than 50% of the processing rates of
current IP routers, whereas those in core-stateless
networks can operate within 75% of these routers.
Thus, core-stateless link-scheduling frameworks
significantly improve the link speeds at which core
routers can operate. This concept has not yet
been applied to the problem of processor schedul-
ing in routers.

The need for per-flow state in Pfair-based mul-
tiprocessor scheduling algorithms arises because
the deadline for processing a packet (or a sub-
task, in Pfair terminology) depends on its eligibil-
ity time, which in turn is a function of the dead-
line of the previous packet of the same flow. Thus,
the latest deadline used within each flow must be
stored (per-flow state).

As shown by Kaur and Vin [30], upper bounds
on these latest deadlines can be computed based
on the state of the same packet (or subtask) at
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the first node on the end-to-end path of the flow.
Since the first node is an edge router of the net-
work, it maintains per-flow state, and can com-
pute deadlines. The edge router can communi-
cate these deadlines to core routers by encoding
them in packet headers. Kaur and Vin showed
that when core routers use such upper bounds,
instead of actual deadlines, guarantees on end-to-
end delays remain unchanged. They also showed
that core-stateless networks can be designed to
provide end-to-end throughput and fairness guar-
antees as well [29, 31]. We believe that the need
for per-flow state in processor scheduling can also
be eliminated by using similar state-encoding and
deadline-computation techniques. We are cur-
rently trying to obtain various end-to-end guaran-
tees that are applicable to packet processing and
analyze the guarantees that can be provided in a
core-stateless network.

3.3 Flexibility Issues

Unlike many real-time applications built for
stand-alone embedded systems, packet arrivals
for a given flow at a router are not likely to be
periodic. Packets may arrive at a rate less than
or greater than the rate reserved by the flow, and
may end up creating or utilizing spare processing
capacity.

In contrast, even in the most flexible task
model used for Pfair scheduling, namely the IS
model, packet deadlines are computed according
to a strictly periodic schedule of packet arrivals.
Scheduling algorithms designed specifically for pe-
riodic flows may penalize flows that use spare ca-
pacity to transmit at more than their reserved
rates, by denying them allocation at their reserved
rate during a subsequent time interval. To see
this, consider again Fig. 2(a). Suppose that early
releases are allowed, and there is spare capac-
ity prior to time 11, but not afterwards. Then,
T could potentially execute in each of slots 0
through 10. These eleven subtasks “use up” the
first eleven subtask deadlines of T . Thus, if T has
another eligible subtask at time 11, then it uses
the subtask deadline associated with T12, which is
at time 17. Thus, while each subtask of T should

have a deadline two or three time units after its
release, this particular subtask has a deadline 6
time units after its release. In general, the ex-
tent to which deadlines can be postponed in this
manner is unbounded.

This property of penalizing flows for using spare
capacity is undesirable in networks for two rea-
sons. First, for many network applications that
have timeliness requirements, it may not be feasi-
ble to predict accurately the exact rate to reserve.
(Consider, for instance, the problem of transmit-
ting a variable bit-rate encoded video stream over
the network.) The performance of such an appli-
cation may be significantly enhanced by allowing
it to utilize spare capacity. Second, allowing ap-
plications to transmit packets in bursts enables
networks to provide low average delays and to in-
crease network utilization due to statistical multi-
plexing gains. Thus it is important to devise fair
allocation schemes for multiprocessors that do not
penalize flows for using spare processing capacity
in the past .

In order to reallocate spare capacity in a dy-
namic Pfair-scheduled system, tasks need to be
reweighted . In particular, when spare capacity
increases (for instance, when a flow becomes in-
active or departs the network), the weights of
all the active flows should be scaled up so that
all processing capacity in the system is utilized;
when spare capacity reduces due to the arrival of
packets in a new or previously inactive flow, the
weights of active flows should be scaled down in
order to accommodate the new flow (though no
flow should be scaled below its minimum guar-
anteed share). When using PD2 or one of the
other optimal algorithms described in Sec. 2.2,
weight changes can cause tie-breaking information
to change, as shown in Fig. 4. In the worst case,
this may require completely resorting the sched-
uler’s priority queue at a Θ(N logN) cost, where
N is the number of flows. This cost might be
incurred every time a flow becomes active. Be-
low, we discuss two approaches for avoiding this
complexity.

Fast-reweighting approach. Under EPDF
scheduling, a fast reweighting procedure can be
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0      1      2       3      4      5      6       7      8       9     10

1 task of weight 1

10 tasks of weight 2/5

Reweighted to 1/2

X

Leaves

Figure 4: A reweighting example on five processors.
At time 0, there are ten tasks of weight 2/5 and one
task of weight 1. At time 1, the latter task leaves.
The excess capacity of 1 is redistributed among the
remaining ten tasks, giving each a new weight of 1/2.
The dotted lines indicate the original windows of those
tasks. The new windows can be aligned so that the
new and old deadlines match. The b-bit of the first
subtask of a task of weight 2/5 is 1, whereas a task of
weight 1/2 has no subtask with a b-bit of 1. Thus, the
PD2 priorities of these subtasks differ.

used in which each task’s next deadline is pre-
served. In particular, suppose that task T needs
to be reweighted at time t. Let Ti be the sub-
task of T that is eligible at t. A task T can be
reweighted by simply replacing it by a new task U
with the new weight and by aligning U1’s window
so that d(U1) = d(Ti) and e(U1) ≤ t. (In prac-
tice, T ’s weight can simply be redefined, instead
of creating a new task.) This ability to perform
fast reweighting is another key virtue of EPDF.

Virtual-time approach. The concept of vir-
tual time is central to many previously-proposed
fair link- and uniprocessor-scheduling schemes.
Such schemes typically associate a virtual time
function with the shared resource (proces-
sor/link): at each “real” time instant t, the
virtual-time value V (t) reflects the amount of load
upon the resource thus far. For instance, if the
current load is half the resource’s capacity, then
V (t) increases at twice the rate of “real” time:
d
d t

V (t) = 2. Using virtual time, these uniproces-
sor scheduling schemes are able to achieve exactly
the effect of the fast reweighting procedure dis-
cussed above by merely varying the rate of change
of V (t). Hence, when a connection/task enters or
leaves the system, reweighting is mimicked in con-
stant time rather than the Θ(N) time that would
be required for explicit reweighting.

For various reasons (some of which are dis-
cussed in [5]), the concept of virtual time does
not generalize directly to multiprocessor systems.
The main problem here is that different task
weights may need to be scaled by different fac-
tors,7 due to the fact that no task’s weight may
exceed unity. A heuristic for dealing with this
problem that requires Θ(M) time is given in [16].
We are currently trying to develop a notion of vir-
tual time that can be used to mimic the effect of
reweighting in only constant time.

3.4 Applicability Issues

In all prior work on Pfair algorithms, quanta have
been assumed to be uniform, and to always align
on all processors. However, the execution costs
of packet-processing functions in routers can vary
significantly. In particular, packets (even from
the same flow) may vary in size, and the com-
plexity of some processing functions (e.g., vali-
dating the checksum of a packet) is a function
of packet size. Furthermore, if packet processing
is organized such that each thread is responsible
for only a specific subset of processing functions,
the execution cost per thread may vary substan-
tially. Hence, if a fixed-length quantum is used,
then some quanta will almost surely be partially
wasted. Specifically, waste will occur whenever
the processing of a packet completes before the
next quantum boundary. Note that it is possible
to reduce this loss by scheduling a new thread for

7If quanta of variable length are allowed (as discussed
later in Sec. 3.4), then additional problems arise. Allowing
variable-length quanta is equivalent to allowing subtasks
with different execution costs. Because task weights may
be scaled by different factors, the order in which such sub-
tasks complete execution in the ideal GPS schedule may
change. For example, consider a two-processor system that
has three tasks T, U, and V of weights 1/4, 3/4, and 1, re-
spectively. If T and U have subtasks of length 1 and 2
respectively, then the initial finishing times in the GPS
schedule will be 4 and 8/3 respectively. However, if V
leaves, then the weights of both T and U are increased to
1 in order to fully utilize the two processors. The finishing
times of the subtasks of T and U now become 1 and 2 re-
spectively, thus resulting in a change in the order of finish-
ing times. Since tardiness bounds for the actual schedule
are determined based on these GPS finishing times, it is
not clear whether reasonable bounds can be obtained.
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the rest of the quantum. However, the loss that
we are talking about here is the loss due to inflat-
ing execution costs to a multiple of the quantum
size. For instance, if T.e = 1.5 and T.p = 3, then
wt(T ) (which determines the utilization reserved
for task T ) would be defined as 2/3 instead of 1/2.

In addition, with aligned quanta, there may
be excessive memory contention at the begin-
ning of each quantum. To enable efficient use
of resources, therefore, multiprocessor schedul-
ing schemes used on routers should allow non-
uniform and non-aligned quanta.

A second key assumption in prior work on
Pfair scheduling is that task migrations are un-
constrained. However, on a router, such migra-
tions may need to be constrained to reduce the
number of (off-chip) memory references made per
packet. Migrations may also be constrained by
the processing architecture. For instance, if dif-
ferent processing functions are pipelined, then the
processing functions being performed on behalf
of a particular packet may necessarily migrate in
a constrained (not arbitrary) pattern. Current
multiprocessor scheduling theory needs to be ex-
tended to operate under such constrained models
of migration.

3.4.1 Avoiding Partially-wasted Quanta
and Interconnect Contention

Assuming fixed-length quanta, an obvious way to
combat the problem of partially-wasted quanta
is by selecting a smaller quantum size and thus
scheduling at a finer granularity. However,
such an approach increases context-switching and
scheduling overheads, and hence reduces the pro-
cessor time available for tasks. Thus, there is a
trade-off here that must be carefully analyzed to
determine an optimal quantum size.

While using fixed-length quanta, interconnect
contention could possibly be avoided by stag-
gering quantum allocations on each processor as
shown in Fig. 5. The exact extent to which
such staggering might impact the algorithms and
techniques considered above remains to be deter-
mined.

C CBB C

ADC DD

Processor 2

Processor 3

d

A BAA B
Processor 1

Figure 5: A partial schedule on three processors with
staggered quantum allocations. This schedule is shown
differently from those in other figures: each line shows
quantum allocations on one processor. Four tasks, de-
noted A through D, of weight 3/4 each are scheduled.
The tth quantum (t ≥ 0) begins at time t+ d(i− 1) on
processor i. (Note that it may not be always possible
to migrate a task that is scheduled in two consecutive
slots. Thus, we have an additional restriction.)

The most liberal quantum-allocation model
that could be reasonably envisioned is one in
which quanta may vary in length (up to some
threshold) and do not have to align. While allow-
ing variable-length quanta would probably be dis-
astrous if task deadlines were hard, we are some-
what optimistic that the impact may be accept-
able if deadlines can be missed. We are currently
trying to show that EPDF — along with the fast
reweighting technique — can be adapted for use
in this model and that corresponding tight tardi-
ness thresholds can be derived.

3.4.2 Limiting Task Migrations

For systems with non-migratory tasks, the hierar-
chical supertask approach proposed by Moir and
Ramamurthy [32] can be used. In this approach,
the non-migratory tasks bound to a specific pro-
cessor are combined into a single “supertask,”
which is then scheduled as an ordinary Pfair task;
when a supertask is scheduled, one of its compo-
nent non-migratory tasks is selected for execution.
Unfortunately, while supertasking is a promising
approach, the following example illustrates that
non-migratory tasks can actually miss their dead-
lines when supertasking is used in conjunction
with PF, PD, or PD2.
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1/3

1/5T

V

W

X

Y

WITHIN S

2/9

S 2/9

TIME

U 1/45

DEADLINE MISS

0 5 10

Figure 6: PD2/EPDF schedule with a supertask S
on two processors.

Example To see why supertasking can fail, con-
sider the two-processor Pfair schedule shown in
Fig. 6. In this schedule, there are four normal
tasks V , W , X, and Y with weights 1/2, 1/3,
1/3, and 2/9, respectively, and one supertask, S,
which represents two component tasks T and U ,
with weights 1/5 and 1/45, respectively. S com-
petes with a weight of 1/5+1/45 = 2/9. The win-
dows of each task are shown on alternating lines
(e.g., S’s first window spans [0, 5)), and a shaded
box denotes the quantum allocated to each subtask.
In the upper region of the figure, the PD2 sched-
ule for the task set is shown. In the lower region,
allocations within S are shown. These allocations
are based on EPDF priorities.

As the schedule shows, T misses a deadline at
time 10. This is because no quantum is allocated
to S in the interval [5, 10). In general, component
tasks may be mis-allocated if there exists an inter-
val that properly contains more component-task
windows than supertask windows. Observe that
[5, 10) is such an interval since it contains one
component-task window and no supertask win-
dows.

Holman and Anderson subsequently showed
that such deadline misses can be avoided by inflat-
ing supertask weights [24]. While such a scheme
is necessarily sub-optimal, experiments presented
by Holman and Anderson suggest that inflation
factors should be small in practice.

In work on real-time systems, the fact that

Figure 7: Block diagram of the IXP1200 platform.

deadlines can be missed has been seen as a short-
coming of supertasking. However, as we have
stressed repeatedly, deadline misses in routers are
not a serious problem, provided reasonable tar-
diness thresholds can be established. Thus, su-
pertasking may be a very viable approach in this
setting. To determine if this is so, we are cur-
rently trying to derive tight tardiness thresholds
for EPDF-scheduled systems in which supertasks
are used.

4 Experimental Evaluation

The techniques presented in Sec. 3 represent our
efforts towards proving strong assertions about
service guarantees. To assess the performance and
scalability of these techniques, implementation on
a real router platform is required. Below, we de-
scribe our choice of an implementation platform
and planned approach in this direction.

4.1 Implementation Platform

For our implementation, we plan to use In-
tel’s IXP1200-based multiprocessor router plat-
form [1]. This platform contains a StrongARM
core processor, six RISC CPUs (known as micro-
engines), a proprietary bus controller (the 64-bit
66 MHz IX bus), a PCI controller, control units
for accessing off-chip SRAM and DRAM memory,
and a small amount (4KB) of on-chip scratchpad
memory (see Fig. 7). The StrongARM core is
used for such control-path processing functions as
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handling slow-path exception packets, managing
routing tables, and managing other network-state
information. Microengines, on the other hand,
are used for data-path processing; they process
multiple packets in parallel. Each microengine is
associated with a 4KB instruction store. Both the
StrongARM and the microengines are clocked at
200 MHz.

To enable a network processor to process pack-
ets at line speeds, it is essential to hide the latency
incurred while accessing memory during packet
processing. To achieve this, each microengine
supports four hardware threads; a microengine
can switch context from one hardware thread to
another in a single cycle.

Although not explicitly required, the most nat-
ural use of DRAM is to buffer packets. This is a
function of memory size (256 MB for our evalua-
tion system) and the speed of memory access (33–
44 cycles). SRAM is the natural place to store
frequently accessed control information, such as
routing tables, per-flow state, etc. SRAM is rela-
tively small in size (8 MB in our case) and has a
much smaller access time (16–20 cycles). The on-
chip scratchpad is used to read and write short
control messages and data that are shared be-
tween microengines and the StrongARM.

4.2 Implementation Challenges

Over the past year, we have used the IXP1200-
based router platform to conduct a preliminary
investigation of the implementation of router
building blocks — specifically, IP routing, flow
classification, and priority queue maintenance —
in popular network architectures. While we ex-
pect to leverage from this prior router imple-
mentation for instantiating new multiprocessor
scheduling mechanisms, we need to address new
implementation challenges. The most relevant is
the lack of explicit software support for thread
scheduling within a microengine. In the software
reference design provided with the IXP1200 plat-
form, new threads can run on a microengine only
when the current thread voluntarily gives up con-
trol of that microengine. To address this chal-
lenge, we plan to explore two different scheduling

approaches: (i) using explicit instructions in the
code of each thread that force it to give up con-
trol after a certain number of instructions, and to
select the next thread to run; (ii) devoting one
of the threads within each microengine to per-
form all scheduling functions on that microengine.
While the former approach will result in less fine-
grained control over quantum durations, the lat-
ter will result in greater complexity and overheads
due to the need for inter-thread communication.

4.3 Planned Evaluation Methodology

We plan to use the router testbed to measure the
following: (i) the processing speeds supported
by the various scheduling mechanisms we de-
velop and those of the past (e.g., EPDF without
reweighting, and the heuristic schemes of [16, 17]);
(ii) the efficacy of these mechanisms in isolating
flows from each other and providing service guar-
antees; (iii) utilization gains achieved by allow-
ing flows to use idle processing capacity. These
measurements depend on several factors, such as
traffic load, network topology, and the process-
ing architectures of routers. We plan to repeat
our measurements by controlling systematically
the settings for these parameters.

5 Summary

Two important trends are expected to guide the
design of next-generation networks. First, with
the commercialization of the Internet, providers
will use value-added services to differentiate their
service offerings from other providers; such ser-
vices require the use of sophisticated resource
scheduling mechanisms in routers. Second, to en-
able extensibility and the deployment of new ser-
vices in a rapid and cost-effective manner, routers
will be instantiated using programmable network
processors. In this paper, we have focused on the
problem of scheduling processing capacity on pro-
grammable multiprocessor router platforms. Our
contributions are twofold. First, we have iden-
tified several issues that arise if existing multi-
processor scheduling schemes are used on routers.
Existing fair multiprocessor scheduling techniques
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have considerable promise in this setting, but
need to be refined to address performance, scala-
bility, flexibility, and applicability concerns. Sec-
ond, we have presented new ideas and planned
research directions to address these concerns.
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