
Improved Conditions for Bounded Tardiness under EPDF Fair
Multiprocessor Scheduling ∗

UmaMaheswari C. Devi and James H. Anderson
Department of Computer Science, The University of North Carolina, Chapel Hill, NC

Abstract

The earliest-pseudo-deadline-first (EPDF) Pfair al-
gorithm is more efficient than other known Pfair
scheduling algorithms, but is not optimal on more than
two processors. In earlier work, Srinivasan and Ander-
son established a sufficient per-task utilization restric-
tion for ensuring a tardiness of at most one quantum
under EPDF. They also conjectured that a tardiness
bound of one quantum applies to systems that are not
restricted in any way. In this paper, we present coun-
terexamples that show that this conjecture is false. We
also present sufficient utilization restrictions that are
more liberal than theirs.

Keywords: soft real-time systems, pfairness, real-time
scheduling, multiprocessors, tardiness bounds.

1 Introduction

Pfair scheduling, originally introduced by
Baruah et al. [3], is the only known way of opti-
mally scheduling recurrent real-time tasks on mul-
tiprocessors. Under Pfair scheduling, each task
must execute at a uniform rate, while respecting
a fixed-size allocation quantum. A task’s execu-
tion rate is defined by its weight or utilization.
Uniform rates are ensured by requiring the alloca-
tion error for each task to be always less than one
quantum, where “error” is determined by compar-
ing to an ideal fluid system. Due to this require-
ment, each task T is effectively subdivided into
quantum-length subtasks that are subject to in-
termediate deadlines. To avoid deadline misses,
ties among subtasks with the same deadline must
be broken carefully. In fact, tie-breaking rules are
of crucial importance when devising optimal Pfair
scheduling algorithms.

∗Work supported by NSF grants ITR 0082866 and CCR
0204312.

As discussed by Srinivasan and Anderson [7],
overheads associated with tie-breaking rules may
be problematic in many soft real-time systems.
Web-hosting systems, server farms, and high-
speed routers are examples. In these systems, fair
resource allocation is needed, so that quality-of-
service guarantees can be provided. However, an
extreme notion of fairness that precludes all dead-
line misses is not required. Moreover, in systems
such as routers, the inclusion of tie-breaking infor-
mation in subtask priorities may result in unac-
ceptably high space overhead.

In dynamic systems that permit tasks to join
or leave, tie-breaking rules may cause other prob-
lems. In such a system, spare processing capac-
ity may become available that can be rellocated.
In Pfair terminology, this amounts to reweight-
ing tasks so that all processing capacity is uti-
lized. As explained in [7], it is possible to reweight
each task so that its next subtask deadline is pre-
served. If no tie-breaking information is main-
tained, such an approach entails very little cost.
However, weight changes can cause tie-breaking
information to change, so if tie-breaking rules are
used, reweighting may necessitate a Θ(N log N)
cost for N tasks, due to the need to resort the
scheduler’s priority queue. This cost may be pro-
hibitive if reallocations are frequent.

The observations above motivated Srinivasan
and Anderson to consider, for soft real-time ap-
plications, the viability of the simplified earliest-
pseudo-deadline-first (EPDF) algorithm, which
uses no tie-breaking rules. They succeeded in
showing that EPDF can guarantee a tardiness
(amount by which a subtask misses its deadline)
bound of one quantum for every subtask, provided
a certain condition holds. This condition, which is
described in detail later, can be ensured by limiting
each task’s weight to at most 1/2, and can be gen-

1

eralized to apply to tardiness bounds other than
one. Unfortunately, Srinivasan and Anderson left
open the question of whether such conditions are
necessary to guarantee small constant tardiness.

In this paper, we provide counterexamples that
show that, in general, restrictions on individual
task utilizations are necessary to guarantee con-
stant tardiness bounds. In addition, we show that
for the general case, a more liberal per-task weight
restriction of 2/3 (66.7%) is sufficient to ensure a
tardiness of one quantum, and that for a some-
what special case, which is described in the next
section, this restriction can be relaxed to 11/15
(73.3%). We also present generalizations of these
conditions that can be applied to other tardiness
bounds.

The rest of the paper is organized as follows. In
Sec. 2, needed definitions are given. In Sec. 3, the
results above are proved. We conclude in Sec. 4.

2 Pfair Scheduling

In defining notions relevant to Pfair scheduling,
we limit attention (for now) to periodic tasks.1 A
periodic task T with an integer period T.p and an
integer execution cost T.e has a weight wt(T) =
T.e/T.p, where 0 < wt(T) < 1. A task is light if
its weight is less than 1/2, and heavy otherwise.

Pfair algorithms allocate processor time in de-
screte quanta; the time interval [t, t + 1), where t
is a nonnegative integer, is called slot t. (Hence,
time t refers to the beginning of slot t.) A task
may be allocated time on different processors, but
not in the same slot (i.e., interprocessor migration
is allowed but parallelism is not). The sequence
of allocation decisions over time defines a schedule
S. Formally, S : τ × N 7→ {0, 1}, where τ is a
task set and N is the set of nonnegative integers.
S(T, t) = 1 iff T is scheduled in slot t. On M
processors,

∑
T∈τ S(T, t) ≤ M holds for all t.

Lags and subtasks. The notion of a Pfair
schedule is defined by comparing such a schedule
to an ideal fluid schedule, which allocates wt(T)
processor time to task T in each slot. Deviation
from the fluid schedule is formally captured by the
concept of lag . Formally, the lag of task T at time t
is2 lag(T, t) = wt(T) ·t−

∑t−1
u=0 S(T, u). A schedule

1Unless specified otherwise, we assume that each peri-
odic task begins execution at time 0.

2For conciseness, we leave the schedule implicit and use
lag(T, t) instead of lag(T, t, S).

is defined to be Pfair iff

(∀T, t :: −1 < lag(T, t) < 1). (1)

Informally, the allocation error associated with
each task must always be less than one quantum.

These lag bounds have the effect of breaking
each task T into an infinite sequence of quantum-
length subtasks. We denote the ith subtask of task
T as Ti, where i ≥ 1. As in [3], we associate a
pseudo-release r(Ti) and a pseudo-deadline d(Ti)
with each subtask Ti, as follows. (For brevity, we
often drop the prefix “pseudo-.”)

r(Ti) =
⌊

i− 1
wt(T)

⌋
d(Ti) =

⌈
i

wt(T)

⌉
(2)

To satisfy (1), Ti must be scheduled in the interval
w(Ti) = [r(Ti), d(Ti)), termed its window . Note
that r(Ti+1) is either d(Ti) − 1 or d(Ti). Thus,
consecutive windows either overlap by one slot, or
are disjoint. The “b-bit,” denoted by b(Ti), distin-
guishes between these possibilities. Formally,

b(Ti) =
⌈

i

wt(T)

⌉
−
⌊

i

wt(T)

⌋
. (3)

For example, in Fig. 1(a), b(Ti) = 1 for 1 ≤ i ≤ 7
and b(T8) = 0.

The length of Ti’s window, denoted |w(Ti)|, is
d(Ti)− r(Ti). As an example, consider subtask T1

in Fig. 1(a). Here, we have r(T1) = 0, d(T1) = 2,
and |w(T1)| = 2. Therefore, T1 must be scheduled
at either time 0 or time 1. The following lemma
relates window lengths and weights.

Lemma 1 [1] The length of each window of a task
T is either d 1

wt(T)e or d 1
wt(T)e+ 1.

The above lemma implies that the windows
of heavy tasks are of length two or three (see
Fig. 1(a)). For such tasks, the “group deadline”
is used to mark the end of a sequence of windows
of length two. Consider a sequence Ti, . . ., Tj of
subtasks of a heavy task T such that b(Tk) = 1,
|w(Tk+1)| = 2 for all i ≤ k < j. Then, schedul-
ing Ti in its last slot forces the other subtasks in
this sequence to be scheduled in their last slots.
For example, in Fig. 1(a), scheduling T3 in slot 4
forces T4 and T5 to be scheduled in slots 5 and
6, respectively. A group deadline corresponds to
a time by which any such “cascade” of schedul-
ing decisions must end. Formally, it is a time

2

0 1 2 3 4 5 6 7 8 9 10 11 120 1 2 3 4 5 6 7 8 9 10 11 0 1 2 3 4 5 6 7 8 9 10 11 12

T1

T2

T3

T4

T5

T6

T7

T8

T1

T2

T3

T4

T5

T6

T7

T8

T1

T2

T3

T5

T6

T7

T8

(b)(a) (c)

Figure 1. (a) Windows of the first job of a periodic task T with weight 8/11. This job consists of subtasks
T1, . . . , T8, each of which must be scheduled within its window, or else a lag-bound violation will result.
(This pattern repeats for every job.) (b) The Pfair windows of an IS task. Subtask T5 becomes eligible one
time unit late. (c) The Pfair windows of a GIS task. Subtask T4 is absent and T6 is one time unit late.

t such that either (t = d(Ti) ∧ b(Ti) = 0) or
(t + 1 = d(Ti) ∧ |w(Ti)| = 3) for some subtask
Ti. For example, the task in Fig. 1(a) has group
deadlines at times 4, 8, and 11.

We let D(Ti) denote the group deadline of sub-
task Ti. If T is heavy, then D(Ti) = (minu : u ≥
d(Ti) ∧ u is a group deadline of T). For example,
in Fig. 1(a), D(T1) = 4 and D(T6) = 11. If T is
light, then D(Ti) = 0.

Pfair scheduling algorithms. The earliest-
pseudo-deadline-first (EPDF) Pfair algorithm,
considered in this paper, is optimal on one or two
processors, but not on more than two processors
[1]. As its name suggests, EPDF gives higher pri-
ority to subtasks with earlier deadlines. A tie be-
tween subtasks with equal deadlines is broken arbi-
trarily. As mentioned earlier, careful tie breaking
is crucial for optimality on more than two proces-
sors. At present, three such optimal algorithms
are known: PF[3], PD[4], and PD2[6]. These algo-
rithms prioritize subtasks on an EPDF basis, but
differ in the choice of tie-breaking rules.

Task Models. In this paper, we consider
the intra-sporadic (IS) and the generalized-intra-
sporadic (GIS) task models [2, 6], which provide
a general notion of recurrent execution that sub-
sume that found in the well-studied periodic and
sporadic task models. The sporadic model gener-
alizes the periodic model by allowing jobs to be re-
leased “late”; the IS model generalizes the sporadic
model by allowing subtasks to be released late, as
illustrated in Fig. 1(b). More specifically, the sep-
aration between r(Ti) and r(Ti+1) is allowed to
be more than bi/wt(T)c − b(i− 1)/wt(T)c, which
would be the separation if T were periodic. Thus,
an IS task is obtained by allowing a task’s windows

to be shifted right from where they would appear
if the task were periodic.

Let θ(Ti) denote the offset of subtask Ti, i.e.,
the amount by which w(Ti) has been shifted right.
Then, by (2), we have the following.

r(Ti) = θ(Ti) +
⌊

i− 1
wt(T)

⌋
(4)

d(Ti) = θ(Ti) +
⌈

i

wt(T)

⌉
(5)

The offsets are constrained so that the separation
between any pair of subtask releases is at least the
separation between those releases if the task were
periodic. Formally,

k > i ⇒ θ(Tk) ≥ θ(Ti). (6)

Each subtask Ti has an additional parameter
e(Ti) that specifies the first time slot in which
it is eligible to be scheduled. It is assumed that
e(Ti) ≤ r(Ti) and e(Ti) ≤ e(Ti+1) for all i ≥ 1.
Additionally, no subtask can become eligible be-
fore its predecessor completes execution, i.e.,

h < i ∧ e(Ti) ≤ r(Ti) ∧ S(Th, u) = 1
⇒ e(Ti) ≥ min(u + 1, r(Ti)). (7)

The interval [r(Ti), d(Ti)) is called the PF-window
of Ti and the interval [e(Ti), d(Ti)) is called the
IS-window of Ti. A schedule for an IS system is
valid iff each subtask is scheduled in its IS-window.
(Note that the notion of a job is not mentioned
here. For systems in which subtasks are grouped
into jobs that are released in sequence, the defini-
tion of e would preclude a subtask from becoming
eligible before the beginning of its job.)

3

b-bits for IS tasks are defined in the same way
as for periodic tasks. r(Ti) is defined as follows.

r(Ti) =
{

e(Ti), if i = 1
max(e(Ti), d(Ti−1)− b(Ti−1)), if i ≥ 2

(8)
Thus, if Ti is eligible during Ti−1’s PF-window,
then r(Ti) = d(Ti−1) − b(Ti−1), and hence, the
spacing between r(Ti−1) and r(Ti) is exactly as in
a periodic task system. On the other hand, if Ti

becomes eligible after Ti−1’s PF-window, then Ti’s
PF-window begins when Ti becomes eligible. Note
that (8) implies that consecutive PF-windows of
the same task are either disjoint, or overlap by
one slot, as in a periodic system.

Ti’s deadline d(Ti) is defined to be r(Ti) +
|w(Ti)|. PF-window lengths are defined as before.
Thus, by (2), we have the following.

|w(Ti)| =
⌈

i
wt(T)

⌉
−
⌊

i−1
wt(T)

⌋
(9)

d(Ti) = r(Ti) +
⌈

i
wt(T)

⌉
−
⌊

i−1
wt(T)

⌋
(10)

The IS model is more suitable than the periodic
model for the networking examples mentioned in
Sec. 1. Due to network congestion and other fac-
tors, packets may arrive late or in bursts. The IS
model treats these possibilities as first-class con-
cepts and handles them more seamlessly. In par-
ticular, a late packet arrival corresponds to an IS
delay. On the other hand, if a packet arrives early
(as part of a bursty sequence), then its eligibility
time will be less than its Pfair release time. Note
that its Pfair release time determines its deadline.
Thus, in effect, an early packet arrival is handled
by postponing its deadline to where it would have
been had the packet arrived on time.

Generalized intra-sporadic task systems.
In our proof, we consider generalized intra-
sporadic (GIS) task systems. Such a task system is
obtained by removing subtasks from a correspond-
ing IS task system. Specifically, in a GIS task sys-
tem, a task T , after releasing subtask Ti, may re-
lease subtask Tk, where k > i + 1, instead of Ti+1,
with the following restriction: r(Tk) − r(Ti) is at
least

⌊
k−1

wt(T)

⌋
−
⌊

i−1
wt(T)

⌋
. In other words, r(Tk) is

not smaller than what it would have been if Ti+1,
Ti+2, . . . ,Tk−1 were present and released as early
as possible. For the special case where Tk is the
first subtask released by T , r(Tk) must be at least⌊

k−1
wt(T)

⌋
. Fig. 1(c) shows an example. If Ti is the

most recently released subtask of T , then T may
release Tk, where k > i, as its next subtask at time
t, if r(Ti)+

⌊
k−1

wt(T)

⌋
−
⌊

i−1
wt(T)

⌋
≤ t. If a task T , after

executing subtask Ti, releases subtask Tk, then Tk

is called the successor of Ti and Ti is called the
predecessor of Tk.

As shown in [2], an IS or GIS task system τ is
feasible on M processors iff∑

T∈τ

wt(T) ≤ M. (11)

Shares and lags in IS and GIS task systems.
The lag of T at time t is defined in the same way
as for periodic tasks. Let ideal(T, t) denote the
processor share that T receives in an ideal fluid
(processor-sharing) schedule in [0, t). Then,

lag(T, t) = ideal(T, t)−
t−1∑
u=0

S(T, u). (12)

Before defining ideal(T, t), we define share(T, u),
which is the share assigned to task T in slot u.
share(T, u) is defined in terms of a function f
that indicates the share assigned to each subtask
in each slot.

f(Ti, r(Ti)) =
(⌊

i− 1
wt(T)

⌋
+ 1
)
· wt(T)− (i− 1)

f(Ti, d(Ti)− 1) = i−
(⌈

i

wt(T)

⌉
− 1
)
· wt(T) (13)

f(Ti, u) =
{

wt(T), if r(Ti) < u < d(Ti)− 1
0, if u /∈ [r(Ti), d(Ti)− 1]

Fig. 2 shows the values of f for different sub-
tasks of a task of weight 5/16.

share(T, u) is then simply defined in terms of f
as

share(T, u) =
∑

i

f(Ti, u). (14)

Lemma 2 [5] Let f be as defined by (13). Then,
the following hold.

(a) In any time slot u ≥ 0, at most two consecu-
tive subtasks of a task may have positive values
for f .

(b) If b(Ti−1) = 1 for subtask Ti−1 of task T ,
and subtask Ti exists, then f(Ti−1, d(Ti−1)) +
f(Ti, r(Ti)) = wt(T).

(c) (∀T, t :: share(T, t) ≤ wt(T)).

(d) (∀Ti, t :: f(Ti, t) ≤ wt(T)).

4

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

16

5

16

5

16

5 16

5

16

5

16

4

16

1

16

5

16

5

16

3

16

3

16

2

16

5

16

2

16

5

16

4

16

5

16

5

16

5

16

1

16

5

16

5

16

5

16

1

16

2

16

5

16

5

16

4

16

5

16

5

16

4

16

2

16

5

16

3

16

3

16

5

16

5

16

5

16

5

16

1

(a) (b)

Figure 2. Fluid schedule for the first five subtasks (T1, . . . , T5) of a task T of weight 5/16. The share of
each subtask in each slot of its PF-window is shown. In (a), no subtask is released late; in (b), T2 and T5

are released late. Note that share(T, 3) is either 5/16 or 1/16 depending on when subtask T2 is released.

(e) (∀Ti ::
∑d(Ti−1)

u=r(Ti)
f(Ti, u) = 1).

(f) (∀Ti, t :: f(Ti, t) ≥ 1
T.p). 2

We can now define ideal(T, t) as∑t−1
u=0 share(T, u). Hence, from (12),

lag(T, t + 1) =
t∑

u=0

(share(T, u)− S(T, u))

= lag(T, t) + share(T, t)− S(T, t). (15)

Similarly, the total lag for a schedule S and task
system τ at time t + 1, denoted LAG(τ, t + 1), is
as follows. (LAG(τ, 0) is defined to be 0.)

LAG(τ, t+1) = LAG(τ, t)+
∑
T∈τ

(share(T, t)−S(T, t)).

(16)

3 Tardiness Bounds for EPDF

In this section, we present results concerning
tardiness bounds that can be guaranteed under
EPDF. The term tardiness denotes the lateness of
a task’s subtasks. Formally, if subtask Ti com-
pletes execution at time t, then its tardiness is
given by max(0, t−d(Ti)). The tardiness of a task
system is defined as the maximum tardiness among
all of its subtasks in any schedule.

It is easy to show that subtask deadlines can
be missed under EPDF. In [7], it was conjectured
that EPDF always ensures a tardiness of at most
one. We now show that this conjecture is false.

Theorem 1 Tardiness under EPDF can exceed
three quanta. In particular, if EPDF is used to
schedule task system τi (1 ≤ i ≤ 3) in Table 1,
then a tardiness of i + 1 quanta is possible.

Table 1. Counterexamples to show that tardiness
under EPDF can exceed three.

Task Set Util. Tardiness
(M) (in quanta)

of weight
tasks

τ1 4 1/2 10 2 at 50
3 3/4
6 23/24

τ2 4 1/2 19 3 at 963
3 3/4
5 23/24
10 239/240

τ3 4 1/2 80 4 at 43,204
3 3/4
3 23/24
1 31/32
4 119/120
4 239/240
6 479/480
8 959/960
15 1199/1200
15 2399/2400
20 4799/4800

Proof: Fig. 3 shows a schedule for τ1, in which
a subtask has a tardiness of two at time 50. The
schedules for τ2 and τ3 are too lengthy to be de-
picted; we verified them using two independently-
coded EPDF simulators. 2

The sufficient condition for a tardiness of one
quantum as given by Srinivasan and Anderson
requires that the sum of the weights of the M − 1
heaviest tasks be less than M+1

2 . This can be

5

0 8 16 24 32 40 48

weight 23/24

3 tasks of
weight 3/4

weight 1/2

6 tasks of

33

6
6

6
6

4 2
4 2

4
4 2
2

2 4
2 4

2 4
2 4

6
6

6
6

6
6

6
6

6

4 2
4 2

2 4
2 4

2 4
2 4

6
6

6
6

6
6

6
6

6
6

6
6

6
6

6
6

5 1

3
3

3

3
3

3

3
3

3

3
3

3

3
3

1 2

2 1
2 1

3

3
3

3

3
3

3

3
3

1 2

2 1
2 1

3 3

3
3

3

4 4
1 3

4
1 3

4
1 3

4
1 3

2 2
1 3

1 3
1 3

4
1 3

4
1 3

2 2
1 3

1 3
1 1

4
1 1 24 tasks of

21

2

3

33

4

Figure 3. Counterexample to prove that tardiness under EPDF can exceed one quantum. 13 periodic tasks
with total utilization 10 are scheduled on 10 processors. In the schedule, tasks of the same weight are shown
together as a group. Each column corresponds to a time slot. The Pfair window of each subtask is shown as
a sequence of dashes that are aligned. An integer value n in slot t means that n tasks in the corresponding
group have a subtask scheduled at t. Subtasks that miss deadlines are shown scheduled after their windows.
Ties are broken in favor of tasks with lower weights. In this schedule, 11 subtasks miss their deadlines at
time 48. Hence, tardiness is 2 quanta for at least one subtask.

ensured if the weight of each task is restricted to
be at most 1/2. We next show that, in general,
a weight restriction of 2/3 (66.7%) per task is
sufficient to guarantee a tardiness of one, and
that for the special case where a subtask does
not become eligible before its release time, the
restriction can be improved to 11/15 (73.3%).
These restrictions are stated below.

(C) The weight of each task is at most 2/3.
(D) The weight of each task is at most 11/15,
and for every subtask Ti, e(Ti) = r(Ti).

In this paper, we prove the following theorem,
which states that (C) or (D) is sufficient for EPDF
to guarantee a tardiness of at most one.

Theorem 2 EPDF ensures a tardiness of at most
one quantum for feasible GIS task systems that sat-
isfy (C) or (D).

Before proving Theorem 2, we reproduce some
helpful definitions and lemmas from [6] and [7].

In a schedule S, if k processors are idle at time
slot t, then we say that there are k holes in S at
slot t. The following lemma relates an increase in
total lag to the presence of holes.

Lemma 3 [6] If LAG(τ, t) < LAG(τ, t + 1), then
there is a hole in slot t in S.

We prove Theorem 2 in a manner similar to that
used in [7]. If (C) or (D) is not sufficient, then td
and τ defined as follows both exist.

Definition 1: td is the earliest deadline of a sub-
task with a tardiness of two under EPDF in any
task system satisfying (C) or (D), i.e., there exists
some task system with a subtask with a deadline
at td and a tardiness of two, and there does not
exist any other task system with a subtask with a
deadline prior to td and a tardiness of two.

Definition 2: τ is a feasible task system satisfy-
ing (C) or (D) with the following properties.

(T1) td is the earliest deadline of a subtask in τ
with a tardiness of two under EPDF.

(T2) No feasible task system satisfying ((C) or
(D)) and (T1) releases fewer subtasks in [0, td)
than τ .

(T3) No feasible task system satisfying ((C) or
(D)), (T1), and (T2) has a larger rank than τ at
td, where rank is defined as follows.

The rank of a system τ at t is the sum
of the eligibility times of all subtasks with
deadlines at most t. Formally, rank(τ, t) =

6

∑
T∈τ

∑
{Ti|d(Ti)≤t} e(Ti). By (T1) and (T2), ex-

actly one subtask in τ has a tardiness of two: if
several such subtasks exist, then all but one can
be removed and the remaining subtask will still
have a tardiness of two, contradicting (T2). Ad-
ditionally, the following assertions follow from the
above properties and definitions.

(A1) (∃Ti ∈ τ : d(Ti) = td ∧ tardiness(Ti) = 2)
(A2) (∀Ti ∈ τ : d(Ti) < td ⇒ tardiness(Ti) ≤ 1)

In the rest of this paper, we use S to denote an
EPDF schedule for τ on M processors, in which
subtask Ti with a deadline at td has a tardiness of
two. We next prove some properties about τ and
S.

Lemma 4 The following properties hold for τ and
S, the EPDF schedule for τ , where Ti is any sub-
task in τ .

(a) If Ti is scheduled at t, then, e(Ti) ≥
min(r(Ti), t).

(b) For all Ti, d(Ti) ≤ td.

(c) At least M + 1 subtasks of τ miss their dead-
lines at td.

(d) LAG(τ, td) ≥ M + 1.

(e) There are no holes in slot td − 1.

(f) LAG(τ, td − 1) ≥ M + 1.

(g) There exists a time u ∈ [0, td − 2] such that
LAG(τ, u) < M +1 and LAG(τ, u+1) ≥ M +
1.

Part (a) is proved in [6], and parts (c) and (d) are
proved in [7]. The others are proved below.

Proof of (b): If d(Uj) > td, then Uj can be re-
moved without affecting the scheduling of subtasks
with higher priorities, and hence the tardiness of
any remaining subtasks is unchanged. This con-
tradicts (T2).

Proof of (e): If there is a hole in slot td−1, then
at most M−1 subtasks are scheduled there. Thus,
at least two of the M + 1 subtasks missing their
deadlines at td are schedulable at td − 1 (because
their predecessors are not scheduled there), and
thus are scheduled there by EPDF.

Proof of (f): By (e), there are no holes in slot
td − 1. Hence by Lemma 3, LAG(τ, td − 1) ≥

LAG(τ, td). Hence, by (d), LAG(τ, td−1) ≥ M+1.

Proof of (g): This follows from the fact that
LAG(τ, 0) = 0 and LAG(τ, td − 1) ≥ M + 1. 2

By Lemma 4(g), there exists a time slot u < td−1
across which LAG increases to at least M + 1. By
Lemma 3, there is at least one hole in u. Thus,
there exists a time slot th with h ≥ 1 holes satis-
fying the following.

(A3) 0 ≤ th < td − 1 ∧ LAG(τ, th + 1) ≥
M + 1 ∧ (∀u : u ∈ [0, th] :: LAG(τ, u) < M + 1).
In other words, th is the earliest time slot across
which LAG increases to M + 1. In what follows,
we derive an upper bound on the lags of all tasks
in τ at th + 1 and prove that if (C) or (D) is sat-
isfied, then their sum is strictly less than M + 1,
contradicting the existence of th.

3.1 Categorization of Subtasks

As can be seen from (12) and (13), the lag of
a task T at t depends on the flows that subtasks
of T receive in each time slot until t in the ideal
system. Hence, a tight estimate of these flows is
essential to bounding the lag of T reasonably accu-
rately. If a subtask’s index is not known, then (13),
which can otherwise be used to compute the flow
received by any subtask in any slot exactly , is not
of much help. Hence, in this subsection, we define
terms that will help in categorizing subtasks, and
then derive upper bounds for the flows that these
categories of subtasks receive in the ideal system.

k-dependent subtasks. Subtasks of heavy
tasks can be divided into “groups” based on
their group deadlines in a straightforward man-
ner: place all subtasks with identical group dead-
lines in the same group and identify the group
using the smallest index of any subtask in that
group. For example, in Fig. 1, G1 = {T1, T2},
G3 = {T3, T4, T5}, and G6 = {T6, T7, T8}. If there
are no IS or GIS separations among the subtasks of
a group, then a deadline miss by one for a subtask
Ti will necessarily result in a deadline miss by at
least one for the remaining subtasks in Ti’s group.
Hence, a subtask Tj is dependent on all prior sub-
tasks in its group for not missing its deadline. We
say that Tj is k-dependent, where k ≥ 0, if T is
heavy and Tj is the (k + 1)st subtask in its group
(assuming all subtasks are present). If a task T is
light, then we simply define all of its subtasks to
be 0-dependent.

7

9 18

T

T

T

T

T

T

T
8

9

10

11

12

13

14

X

X

X

X

XX

X

MI

MI

9

T
8

X MI

X

T

T

T

9

10

11

X

X

MI

T

T

13

14
XX

X

MI

MI

weight 7/9
IS task T of

20 (a) (b)

X
SMI

SMI

SMI

SMI
Periodic task T of
weight 7/9

Figure 4. Possible schedules for the second job of (a) a periodic and (b) an IS task of weight 7/9 under
EPDF. Subtasks are scheduled in the slots marked by an X. Solid (dotted) lines indicate slots that lie within
(outside) the window of a subtask. A subtask scheduled in a dotted slot misses its deadline. In (a), T8 and
T12 are MIs, T9 and T13 are SMIs, and the remaining subtasks fall within neither category. T10 and T14

have a tardiness of 1, and T11 has a tardiness of 0. In (b), T8, T9, T11, and T13 are MIs, and T10 and T14

are SMIs. Note that T8 and T9 (T11 and T13) belong to the same group G8 (G11). Thus, if there are IS
separations, there may be more than one MI in a group.

Miss initiators. We call a subtask missing its
deadline at t by one a miss initiator (MI) for its
group if no subtask of the same task is scheduled
at t − 1. Thus, a subtask is an MI if it misses its
deadline and is either the first subtask in its group
to do so or is separated from its predecessor by an
IS or GIS separation. Such a subtask is termed
a miss initiator because in the absence of future
separations, it causes all subsequent subtasks in
its group to miss their deadlines as well. Tk ∈ Gi

is an MI if tardiness(Tk) = 1 ∧ S(Tk, t) = 1, and
S(Tj , t− 1) = 0, for all j < k. Several examples of
MI’s are shown in Fig. 4

Successors of miss initiators. The immedi-
ate successor Ti+1 of a miss-initiator subtask Ti

is called a successor of a miss initiator (SMI)
if tardiness(Ti+1) = tardiness(Ti) = 1 and
S(Ti+1, t) = 1 ⇒ S(Ti, t − 1) = 1. Fig. 4 shows
several examples. Note that for Ti+1 to be an SMI,
its predecessor in S must be Ti, rather than some
lower-indexed subtask of T .

The next two lemmas follow from the definition
of k-dependency.

Lemma 5 If Ti is a k-dependent subtask of a pe-
riodic task T , where i ≥ 2 and k ≥ 1, then,
d(Ti) = d(Ti−1) + 1 and r(Ti) = d(Ti−1)− 1.

Lemma 6 If Ti is a k-dependent subtask of T ,
where k ≥ 1 and wt(T) < 1, then |w(Ti)| = 2
and b(Ti−1) = 1.

The next lemma relates the weight of a task to
the k-dependency of its subtasks.

Lemma 7 If subtask Ti of task T is k-dependent,
where k ≥ 0, then wt(T) > k

k+1 .

Proof: If Ti is k-dependent, then w(Ti) is part of
a sequence of at least k + 1 windows, at least k of
which are of length two. Using this fact it is easy
to show that wt(T) > k

k+1 . 2

The two lemmas that follow bound the flow re-
ceived by a k-dependent subtask.

Lemma 8 The flow f(Ti, r(Ti)) received by a k-
dependent subtask Ti of a periodic task T in the
first slot of its window in an ideal system, is at
most k · T.e

T.p − (k − 1)− 1
T.p , for all k ≥ 0.

Proof: The proof is by induction on k.
Induction Base: Let k = 0. From Lemma 2(d),

f(Ti, r(Ti)) ≤ wt(T) =
T.e

T.p
.

Because wt(T) < 1, and T.e and T.p are integral,
T.e ≤ T.p − 1. Thus, f(Ti, r(Ti)) ≤ wt(T) ≤
1− 1/T.p, and the lemma holds for the base case.
Induction Step: Assuming that the lemma holds
for (k − 1)-dependent subtasks, we show that it
holds for k-dependent subtasks, where k ≥ 1. Be-
cause k ≥ 1, T is heavy, by the definition of k-
dependency. Hence, by Lemma 1, |w(Ti−1)| is ei-
ther two or three. We consider two cases.
Case 1: |w(Ti−1)| = 2. If k ≥ 1, then Ti−1 is

8

T
i

<lag(T) <

T
i

T
i

<

(k−dependent)

(a)

(k−dependent)

(b)
i i

1

+(e/p)+
 (k+2)e/p−(k+1)−1/p (k+1)e/p−k−1/plag(T)

(c)

lag(T)=e/p
Note: For all the cases, lag(T) is at i

(d)
i

lag(T)=0

T
i

f > k−ke/p+1/p
f ke/p−(k−1)−1/p

d(T)+1 d(T)+1 id(T)+1 d(T)+1

d(T)+1

Figure 5. Lemma 10. (a) Case 1, (b) Case 2, (c) Case 3, and (d) Case 4.

(k − 1)-dependent. Therefore, by the induction
hypothesis,

f(Ti−1, r(Ti−1)) ≤
(k − 1) · (T.e/T.p)− (k − 2)− (1/T.p). (17)

Because |w(Ti−1)| = 2, by Lemma 2(e)
f(Ti−1, d(Ti−1)) = 1 − f(Ti−1, r(Ti−1)). Hence,
from (17), f(Ti−1, d(Ti−1)) ≥ (k − 1) + (1/T.p) −
(k − 1) · (T.e/T.p). Because Ti is k-dependent,
where k ≥ 1, from Lemma 6, b(Ti−1) = 1,
and by Lemma 2(b) f(Ti, r(Ti)) = (T.e/T.p) −
f(Ti−1, d(Ti−1)) ≤ k ·(T.e/T.p)−(k−1)−(1/T.p).
Case 2: |w(Ti−1)| = 3. By Lemma 6, Ti−1 is 0-
dependent; hence, Ti is 1-dependent, i.e., k = 1.
From Lemmas 6 and Lemma 2(b),

f(Ti, r(Ti))

=
T.e

T.p
− f(Ti, d(Ti−1))

≤ T.e

T.p
− 1

T.p
(from Lemma 2(f)). 2

Lemma 9 The flow f(Ti, r(Ti)) received by a k-
dependent subtask Ti of a GIS task T in the first
slot of its window in an ideal system is at most
k · T.e

T.p − (k − 1)− 1
T.p , for all k ≥ 0.

Proof: Follows from Lemma 8 and the definition
of GIS tasks. (The flow that Ti receives in each
slot of its window is identical to the flow that it
would receive were T periodic.) 2

Having determined a bound on the flow received
by a subtask in the first slot of its window in the
ideal system, we next bound the lag of a task
at time t, based on the k-dependency of its last-
scheduled subtask.

Lemma 10 Let Ti be a k-dependent subtask of a
GIS task T for k ≥ 0, and let d(Ti) < td. Then
lag(T, d(Ti) + 1) < (k + 2) · wt(T)− k.

Proof: Because d(Ti) < td, from (A2), we have
tardiness(Ti) ≤ 1. Therefore, Ti and all prior
subtasks of T are scheduled in [0, d(Ti)]. Hence,
lag(T, d(Ti) + 1) depends on the number of sub-
tasks of T after Ti released prior to d(Ti) + 1, the
flows they receive in the ideal system, and whether
they have been scheduled in S. It can be ver-
ified from (4) and (6) that at most two succes-
sors of Ti — Ti+1 and Ti+2 — are released before
d(Ti)+1. Hence, the lag of T in S is maximized if
Ti+1 and Ti+2 are present and are released without
any IS separations and S has not scheduled either
of them. We consider four cases.
Case 1: r(Ti+1) = d(Ti)− 1 and r(Ti+2) = d(Ti).
In this case, d(Ti+1) = d(Ti) + 1 and Ti+1 receives
its full share of one quantum by d(Ti) + 1 in the
ideal system. Further, Ti+2 receives a share of
f(Ti+2, r(Ti+2)). This is illustrated in Fig. 5(a).
Since Ti is k-dependent, Ti+2 is (k+2)-dependent.
Therefore, by Lemma 9, f(Ti+2, r(Ti+2)) ≤ (k+2)·
(T.e/T.p)−(k+1)−(1/T.p). Hence, lag(T, d(Ti)+
1) ≤ 1 + f(Ti+2, r(Ti+2)) = (k + 2) · (T.e/T.p) −
k − (1/T.p) < (k + 2) · wt(T)− k.
Case 2: r(Ti+1) = d(Ti) − 1 and r(Ti+2) ≥
d(Ti)+1. In this case, d(Ti+1) ≥ d(Ti)+1 and the
lag of T at d(Ti)+1 is given by the flow received by
Ti+1 in the first two slots of its window, as shown in
Fig. 5(b). Reasoning as in Case 1, it can be shown
that this flow is less than (k + 2) · wt(T)− k. We
leave the details of this case to the reader.
Case 3: r(Ti+1) = d(Ti). In this case, as shown
in Fig. 5(c), the lag of T depends only on the flow
received by Ti+1 in the first slot of its window,
i.e., lag(T, d(Ti) + 1) = f(Ti+1, d(Ti)) = wt(T).
By Lemma 7, wt(T) > k

k+1 , which implies that
wt(T) < (k + 2) · wt(T)− k.
Case 4: r(Ti+1) > d(Ti). In this case, no suc-
cessor of Ti is eligible before d(Ti) + 1 in the ideal

9

system. Hence, lag(T, d(Ti)+1) = 0. This is illus-
trated in Fig. 5(d). 2

Displacements. To prove Theorem 2, we con-
sider task systems obtained by removing subtasks.
Removing a subtask from a GIS system results in
another GIS system, and may cause other sub-
tasks to shift earlier in the schedule. Such a shift
is called a displacement and is denoted by a 4-
tuple 〈X(1), t1, X

(2), t2〉. This is equivalent to say-
ing that X(2) originally scheduled at t2 in S dis-
places X(1) scheduled at t1 in S. A displacement
〈X(1), t1, X

(2), t2〉 is valid iff e(X(2)) ≤ t1. Because
there can be a cascade of shifts, we may have a
chain of displacements. This chain is represented
by a sequence of 4-tuples.

The next two lemmas concern displacements
and are proved in [6]. Lemma 11 states that a sub-
task removal can only cause left shifts. Lemma 12
indicates when a left shift into a slot with a hole
can occur.

Lemma 11 [6] Let X(1) be a subtask that is re-
moved from τ , and let the resulting chain of dis-
placements in S be C = ∆1,∆2, . . . ,∆k, where
∆i = 〈X(i), ti, X

(i+1), ti+1〉. Then ti + 1 > ti for
all i ∈ [1, k].

Lemma 12 [6] Let ∆ = 〈X(1), t1, X
(2), t2〉 be a

valid displacement in any EPDF schedule. If t1 <
t2 and there is a hole in slot t1 in that schedule,
then X(2) is the successor of X(1).

The share that a GIS task receives in the
ideal system may be zero during certain time
slots, if subtasks are absent or are released late.
We distinguish between tasks with and without
subtasks at time t using the following definition
of an active task.
Definition 3: A task U is active at time t if it
has a subtask Uj such that e(Uj) ≤ t < d(Uj).

As already mentioned, we prove Theorem 2 by
showing that the total lag at th + 1 is strictly less
than M +1, thus contradicting (A3). To facilitate
this lag calculation, following [6] and [7], we define
A, B, and I, as follows.

A: Set of all tasks that are active and scheduled
at th.

B: Set of all tasks that are active, but not sched-
uled at th.

I: Set of all tasks that are inactive at th.

A, B, and I form a partition of τ , i.e.,

A ∪B ∪ I = τ and A ∩B = B ∩ I = I ∩A = φ. (18)

We further classify tasks in A, based on the tar-
diness of their subtasks scheduled at th, as follows.

A0: Includes T in A iff its subtask scheduled at th
has zero tardiness.

A1: Includes T in A iff its subtask scheduled at th
has a tardiness of one.

A1 is further partitioned into A0
1, A1

1, and A2
1.

A0
1: Includes T in A1 iff its subtask scheduled at

th is an MI.

A1
1: Includes T in A1 iff its subtask scheduled at

th is an SMI.

A2
1: Includes T in A1 iff its subtask scheduled at

th is neither an MI nor an SMI.

From the above, we have

A0 ∪ A1 = A and A1
0 ∪ A1

1 ∪A2
1 = A1. (19)

This classification of tasks is illustrated in Fig. 6.
The next lemma gives a necessary condition for

LAG to increase.

Lemma 13 [6] If LAG(τ, t) < LAG(τ, t+1), then
there exists a task that is active at t but not sched-
uled at t.

The next definition identifies the last-released
subtask at t of any task U .

Definition 4: [6] Subtask Uj is the critical
subtask of U at t iff e(Uj) ≤ t < d(Uj) and no
other subtask Uk of U , where k > j, satisfies
e(Uk) ≤ t < d(Uk).

The lemma that follows concerns the scheduling
of critical subtasks of tasks in B.

Lemma 14 [5] The critical subtask at th of every
task in B is scheduled before th.

Lemma 13 implies that |B| ≥ 1. The next
definition identifies the latest time at which a
critical subtask at th of any task in B is scheduled.
Definition 5: tb denotes the latest time before
th, at which a subtask of a task in B that is
critical at th is scheduled.

10

X

X

X

t t +1
h h

Tasks in I

Tasks in B

Tasks in A

Tasks in A

Tasks in A
0

Tasks in A
1
0

1
1

2
1

X
no
X

X

X

X
no
X

X or
no X

X

Figure 6. Task classification for Lemmas 18 – 23.
The PF-windows of a sample task in each set are
shown. An arrow over release (deadline) indicates
that the release (deadline) could be anywhere in
the direction of the arrow. An (no) X in a slot
indicates that a subtask is (not) scheduled in that
slot.

Definition 6: U henceforth denotes a task in B
with a subtask Uj scheduled at tb that is critical
at th.

Lemmas 15 and 16 are concerned with the dead-
lines of a subtask scheduled at th or before.

Lemma 15 For every subtask Vk scheduled at th,
d(Vk) ≤ th + 1.

Proof: Assume not. Then, by (4) and (6), r(Vl) ≥
th+1, where l > k and Vl is Vk’s successor. Because
Vl is not scheduled at or before th, by Lemma 4(a),
e(Vl) ≥ th + 1. Hence, even if Vk is removed, Vl

cannot be scheduled at th. By Lemma 12, because
there is a hole in th, no other subtask other than
Vl can shift left into th. Thus, Vk can be removed
without causing any left shifts, which implies that
τ ′ = τ − {Vk}, with one fewer subtask than τ ,
also has a subtask with a tardiness of two and a
deadline at td, contradicting (T2). 2

Lemma 16 Let Vk be the critical subtask at th of
a task V in B. Then, d(Vk) = th + 1.

Proof: The proof is by contradiction. Assume to
the contrary that d(Vk) 6= th + 1. Then, by Def. 4,

d(Vk) > th + 1. (20)

We show that if (20) is true, then Vk can be re-
moved without any impact on the tardiness of sub-
tasks scheduled at or after th.

Let τ ′ be the system obtained by remov-
ing Vk, and let S′ be the EPDF schedule for
τ ′. Let ∆1,∆2, . . . ,∆n be the chain of dis-
placements caused by removing Vk, where ∆i =
〈X(i), ti, X

(i+1), ti+1〉, X(1) = Vk, and t1 < th.
Then, by (20) and the priority definition of EPDF,
d(X(i)) > th + 1, for all i ∈ [2, n]. By Lemma 15,
the deadline of every subtask scheduled at th is
th + 1. Therefore, no subtask scheduled at th
gets displaced. To see that no subtask scheduled
later than th gets shifted left, assume that there
exists a displacement 〈X(k), tk, X

(k+1), tk+1〉 with
tk+1 > th. Then, because t1 < th and no sub-
task scheduled at th gets displaced, tk < th. If
〈X(k), tk, X

(k+1), tk+1〉 is valid, then e(X(k+1)) ≤
tk < th. But the hole in th implies that X(k+1)

should be scheduled at th in S and not later.
Hence, no subtask scheduled later than th can shift
left in S′.

Thus, the tardiness of subtasks scheduled at or
after th in S′ is the same as their tardiness in
S, which is a contradiction of (T2). Therefore,
d(Vk) = th + 1. 2

The following indicates that |A0| ≥ 1.

Lemma 17 There exists a subtask Wl scheduled
at th with e(Wl) ≤ tb, d(Wl) = th + 1, and
S(W, t) = 0, for all t ∈ [tb, th − 1]. Also, there
are no holes in [tb, th − 1].

Proof: We prove this lemma by showing that if a
subtask with the stated properties does not exist,
then Uj (Def. 6) can be removed without impacting
the tardiness of any subtask.

Let τ ′ be the task system obtained by removing
Uj from τ , and let S′ be the EPDF schedule for τ ′.
Let ∆1 = 〈X(1), t1, X

(2), t2〉 be the first displace-
ment, if any, that results due to the removal of Uj .
Then, X(1) = Uj , t1 = tb, and by Lemma 11,

t2 > tb. (21)

11

Let X(2) = Wl. We first show that t2 ≥ th.
Assume to the contrary that t2 < th. Then, by

(21) and Def. 5, W is not in B. Therefore, W is
in I or in A. In either case,

d(Wl) ≤ th. (22)

To see this, note that if W ∈ I, then because W
is not active at th, by Def. 3, d(Wl) ≤ th. On the
other hand, if W ∈ A, then consider W ’s subtask,
say Wi, scheduled at th. By Lemma 15, d(Wi) ≤
th + 1. Because Wl is scheduled at t2 < th, Wl is
an earlier subtask of W , and hence, by (5) and (6),
d(Wl) ≤ th. Now, by Lemma 16,

d(Uj) = th + 1. (23)

Thus, by (22) and (23), d(Uj) > d(Wl). However,
since EPDF selects Uj over Wl at time tb, this is a
contradiction. Thus, our assumption that t2 < th
is false.

Having shown that t2 ≥ th, we next show
t2 = th. Assume, to the contrary, that t2 > th.
If 〈Uj , tb,Wl, t2〉 were valid, then e(Wl) ≤ tb. This
implies that Wl is eligible at th, and because there
is a hole in th, it should have been scheduled there
in S, and not later at t2. We conclude that t2 = th.

Because 〈Uj , tb,Wl, th〉 is valid, no subtask of
W prior to Wl is scheduled in [tb, th − 1]. Also,
there are no holes in [tb, th − 1] (otherwise, EPDF
would have scheduled Wl there). Finally, because
Uj is scheduled at tb in preference to Wl, d(Wl) ≥
d(Uj) = th + 1, which by Lemma 15 implies that
d(Wl) = th + 1.

Thus, if the lemma is false, then removing Uj

does not result in any displacements. Hence, the
tardiness of every subtask in τ ′ is the same as it is
in τ , which contradicts (T2). 2

The next six lemmas give bounds on the lags of
tasks in A, B, and I at th + 1.

Lemma 18 [7] For T ∈ I, lag(I, th + 1) = 0.

Lemma 19 [7] For T ∈ B, lag(B, th + 1) ≤ 0.

Lemma 20 For T ∈ A0, lag(T, th + 1) < wt(T).

Proof: Let Ti be the subtask of T scheduled at
th. As shown in Fig. 6, the ideal system can be
ahead of the actual system in executing T only by
the amount of flow in Ti+1’s first slot. By parts (b)
and (f) of Lemma 2, this flow is less than wt(T).

2

Lemma 21 For T ∈ A0
1, lag(T, th+1) < 2·wt(T).

Proof: If T ∈ A0
1, then the subtask Ti of T sched-

uled at th is an MI , and d(Ti) = th. If Ti is
k-dependent, then by Lemma 10, lag(T, th + 1) is
less than ((k + 2) · wt(T) − k), which is at most
2 · wt(T), for all k ≥ 0. 2

The following two lemmas follow similarly.

Lemma 22 For T ∈ A1
1, lag(T, th + 1) < 3 ·

wt(T)− 1.

Lemma 23 For T ∈ A2
1, lag(T, th + 1) < 4 ·

wt(T)− 2.

Having classified the tasks at th and determined
their lags at th, we are left with showing that if
(C) or (D) hold, then (A3) is false. We do this by
showing that LAG(τ, th + 1) < M + 1 in each of
the following cases.

Case A: A1 = φ.

Case B: A0
1 6= φ.

Case C: A0
1 = φ and A1

1 6= φ.

Case D: A0
1 = A1

1 = φ.

Cases A, B, and D do not impose the restriction
that subtasks not become eligible before their re-
lease times, and allow weights up to 3/4, which is
slightly higher than 11/15.

The following notation is used to denote subset
cardinality.

a0 = |A0|; a0
1 = |A0

1|; a1
1 = |A1

1|; a2
1 = |A2

1|.

In each of the cases above, LAG(τ, th + 1) can be
expressed as follows.

LAG(τ, th + 1) =
∑
T∈τ

lag(T, th + 1)

≤
∑

T∈A0

lag(T, th + 1) +
∑

T∈A0
1

lag(T, th + 1) +

∑
T∈A1

1

lag(T, th + 1) +
∑

T∈A2
1

lag(T, th + 1)

(from (18), (19), and Lemmas 18 and 19)

<
∑

T∈A0

wt(T) +
∑

T∈A0
1

2 · wt(T) +

∑
T∈A1

1

3 · wt(T)− 1 +
∑

T∈A2
1

4 · wt(T)− 2

(from Lemmas 20 – 23)

12

Letting wt denote the weight of the heaviest task,
LAG(τ, th + 1) can therefore be bounded as

LAG(τ, th + 1)
< a0 · wt + a0

1 · 2 · wt +
a1
1 · (3 · wt− 1) + a2

1 · (4 · wt− 2). (24)

The total number of processors, M , expressed in
terms of the number of subtasks in each subset of
A scheduled at th, and the number of holes in th,
is as follows.

M = a0 + a0
1 + a1

1 + a2
1 + h (25)

3.2 Case A:A1 = φ

Case A is dealt with as follows.

Lemma 24 If A1 = φ, then LAG(τ, th +1) < M .

Proof: If A1 = φ, then

LAG(τ, th + 1)
≤ a0 · wt (by (24) and a0

1 = a1
1 = a2

1 = 0)
< M − h (since wt < 1 and a0 = M − h)
< M. 2

3.3 Case B:A0
1 6= φ

By Lemma 21, lag(T, th + 1) could be as high
as 2 ·wt(T), if the subtask Ti of T scheduled at th
is an MI , i.e., is in A0

1. Therefore, if a0
1 is large,

then LAG could exceed M + 1. However, as we
show below, if a0

1 ≥ 2h− 2, then LAG(τ, th + 1) ≤
LAG(τ, th), contradicting (A3).

We begin by giving a lemma concerning the sum
of the weights of tasks in I.

Lemma 25 If LAG(τ, th +1) > LAG(τ, th), then∑
V ∈I wt(V) < h.

Proof: From (16),

LAG(τ, th + 1)

= LAG(τ, th) +
∑
T∈τ

(share(T, th)− S(T, th))

= LAG(τ, th) +
∑

T∈A∪B

(share(T, th))− (M − h)

(from (18) and share(T, th) = 0 for T in I, and (25))

≤ LAG(τ, th) +
∑

T∈A∪B

wt(T)− (M − h)

(by Lemma 2(c)).

If LAG(τ, th + 1) > LAG(τ, th), then∑
T∈A∪B

wt(T) > M − h. (26)

By (11) and (18),
∑

T∈I wt(T) ≤ M −∑
T∈A∪B wt(T), which by (26) implies that∑
T∈I wt(T) < h. 2

We next determine the largest number of MIs
and SMIs that may be scheduled at th, for∑

T∈I wt(T) < h to hold. We begin with a lemma
that gives the latest time that a subtask of a task
in B may be scheduled, if a0

1 > 0.

Lemma 26 Subtask Uj defined by Def. 6 is sched-
uled no later than th − 3, i.e., tb ≤ th − 3.

Proof: By Def. 5, tb < th. Let Ti be an MI
scheduled at th. Then, d(Ti) = th, and S(T, th −
1) = 0, from the definition of an MI. Hence, Ti is
eligible at th − 1. Because Ti is not scheduled at
th − 1, we can conclude that there are no holes in
th − 1 and that the priority of every subtask Vk

scheduled at th − 1 is at least that of Ti, i.e.,

(∀Vk : S(Vk, th − 1) = 1 :: d(Vk) ≤ th). (27)

By Def. 4, the successor of Uj is not eligible before
th + 1. Hence, the latest time before th that a
subtask of U may be scheduled is given by the
latest time that Uj may be scheduled. Also, from
Lemma 16, d(Uj) = th + 1. Hence, by (27), Uj

is not scheduled at th − 1, i.e., tb < th − 1. To
complete the proof, we show that tb 6= th − 2.

Assume to the contrary that tb = th − 2. By
(27), (4), and (5),

(∀Vk : S(Vk, th − 1) = 1 :: r(Vk) ≤ th − 2). (28)

Because U is scheduled at th − 2 but not th − 1
and there are no holes in th − 1, there is at least
one subtask Wl scheduled at th − 1 whose prede-
cessor is not scheduled at th − 2. By (28), this
implies that Wl is eligible at th − 2. By (27) and
Lemma 16, d(Wl) < d(Uj). Hence, EPDF should
have scheduled Wl at th − 2 in preference to Uj ,
which is a contradiction. Hence, tb < th − 2. 2

From the above lemma, we have the following
assertion.
(A4) a0

1 > 0 ⇒ tb ≤ th − 3.
The lemma that follows will be used to identify
tasks that are inactive at th.

13

Lemma 27 Let T be a task that is not scheduled
at th. If T is scheduled in any of the slots in
[tb + 1, th − 1] then T is in I.

Proof: T clearly is not in A. Because T is sched-
uled in [tb + 1, th − 1] T is also not in B, by the
definition of tb. 2

In the rest of this subsection, we let s = th −
tb − 1, the number of slots in [tb + 1, th − 1].

We now determine a lower bound on the number
of subtasks of tasks in I that may be scheduled
in [tb + 1, th − 1] as a function of a0

1, a1
1, h, and

s. For this purpose, we assign subtasks scheduled
in [tb, th − 1] to processors in a systematic way.
This assignment is only for accounting purposes;
subtasks are not bound to processors in the actual
schedule.

Processor groups. The assignment is based on
the tasks scheduled at th. We first divide the M
processors into four groups, P1, P2, P3, and P4,
based on the tasks scheduled at th, as follows.

P1 By Lemma 17, there is at least one subtask Wl

such that e(Wl) ≤ tb and S(W, t) = 0, for t
in [tb + 1, th − 1]. We assign one such subtask
to the lone processor in this group. Hence,
|P1| = 1. We let Th1 denote the single task
assigned to P1 at th.

P2 The h processors that are idle at th comprise
this group. Thus, |P2| = h.

P3 This group consists of the a0
1 + a1

1 processors
on which the a0

1 MIs and a1
1 SMIs are sched-

uled. We let Th3 denote the subset of all tasks
scheduled on processors in P3 at th.

P4 Processors not assigned to P1, P2, or P3 belong
to this group. Th4 denotes the subset of all
tasks scheduled on P4 at th.

Subtask assignment in [tb, th − 1]. We assign
subtasks scheduled in [tb, th − 1] to processors by
the following rules. Tasks in Th3 and Th4 are as-
signed to the same processor that they are assigned
to in th, in every slot in which they are scheduled
in [tb, th − 1]. Subtasks of tasks not in Th3 or Th4

may be assigned to any processor.
The next three lemmas will be used to bound

the number of subtasks of tasks in I sched-
uled in [tb + 1, th − 1]. These lemmas assume

that the assignment of subtasks to processors in
[tb + 1, th − 1] follows the rules described above.

Lemma 28 The tasks of all s subtasks scheduled
in [tb + 1, th − 1] on each processor in P1 or P2 are
inactive at th.

Proof: By our assignment of subtasks to pro-
cessors, tasks assigned to processors in P1 or P2

in [tb + 1, th − 1] are not scheduled at th. By
Lemma 17, there are no holes in [tb + 1, th − 1].
Hence, by Lemma 27, all s subtasks assigned to a
processor in P1 or P2 in the s slots in [tb + 1, th − 1]
are subtasks of tasks in I. 2

Lemma 29 At least one of the subtasks assigned
to each processor in P3 in [tb + 1, th − 1] is a sub-
task of a task in I.

Proof: Let P3i be any processor in P3, and let
Ti be the subtask scheduled on P3i at th. Then,
Ti is either an MI or an SMI. In the former case,
S(T, th−1) = 0, and in the latter, S(T, th−2) = 0.
By (A4), tb ≤ th − 3. Thus, there is at least in
one slot in [tb + 1, th − 1] in which a subtask of
a task V other than T is assigned to P3. By our
subtask assignment, V is not scheduled at th; thus,
by Lemma 27, V ∈ I. 2

Lemma 30 The number of subtasks of tasks in
I that are scheduled in [tb + 1, th − 1] is at least
s · (h + 1) + (a0

1 + a1
1).

Proof: Follows from Lemmas 28 and 29. 2

Lemma 31 The sum of the weights of the tasks
in I is at least (h + 1) · s

s+2 + a0
1+a1

1
s+2 .

Proof: Let Vk be a subtask of a task V in I that
is scheduled in [tb + 1, th − 1]. Then, by Def. 3,
d(Vk) ≤ th. By Lemma 16 and Def. 6, d(Uj) > th
and Uj is scheduled at tb. Because Vk with an
earlier deadline than Uj is scheduled later than tb,
either r(Vk) ≥ tb + 1 or Vk’s predecessor Vj , where
j < k, is scheduled at tb. In the latter case, by
(A2), tardiness(Vj) ≤ 1, and hence, d(Vj) ≥ tb,
which by (4) and (5) implies r(Vk) ≥ tb− 1. Thus,
we have the following.

(∀Vk : V ∈ I ::
(∃u :: u ∈ [tb + 1, th − 1] ∧ S(Vk, u) = 1
⇒ (r(Vk) ≥ tb − 1 ∧ d(Vk) ≤ th)) (29)

14

We next show that if V.n is the number of subtasks
of V scheduled in [tb + 1, th − 1], then wt(V) ≥
V.n
s+2 . Let Vk and Vl denote the first and last
subtasks of V scheduled in [tb + 1, th − 1]. Then
r(Vk) ≥ tb − 1 and d(Vl) ≤ th, by (29). Hence,

d(Vl)− r(Vk) ≤ th − tb + 1 = s + 2. (30)

Also, r(Vk) =
⌊

k−1
wt(V)

⌋
+ θ(Vk) and d(Vl) =⌈

l
wt(V)

⌉
+ θ(Vl), by (4) and (5). Therefore,

d(Vl)− r(Vk)

=
⌈

l

wt(V)

⌉
−
⌊

k − 1
wt(V)

⌋
+ θ(Vl)− θ(Vk)

≥
⌈

l

wt(V)

⌉
−
⌊

k − 1
wt(V)

⌋
(31)

(from l > k and (6)).

From (30) and (31), we have
⌈

l
wt(V)

⌉
−
⌊

k−1
wt(V)

⌋
≤

s + 2, which implies l
wt(V) −

k−1
wt(V) ≤ s + 2, or

wt(V) ≥ l − k + 1
s + 2

. (32)

Note that V.n = l−k+1 if V is periodic, and V.n ≤
l − k + 1, if V is GIS. Therefore, wt(V) ≥ V.n

s+2 ,
from which we have

∑
W∈I wt(W) ≥

∑
W∈I

W.n
s+2 ≥

(h + 1) · s
s+2 + a0

1+a1
1

s+2 , by Lemma 30. 2

Lemma 32 If LAG(τ, th + 1) > LAG(τ, th) and
a0

1 ≥ 1, then a0
1 + a1

1 ≤ min(2h− 3,M − h− 1).

Proof: By Lemma 25, if LAG(τ, th + 1) >
LAG(τ, th), then

∑
V ∈I wt(V) < h. By Lemma 31,

(h + 1) · s
s+2 + a0

1+a1
1

s+2 ≤
∑

V ∈I wt(V). Therefore,

(h + 1) · s
s+2 + a0

1+a1
1

s+2 < h, which implies that
a0

1 + a1
1 < 2h− s. Because s ≥ 2, 2h− s ≤ 2h− 2.

Therefore,
a0
1 + a1

1 < 2h− 2. (33)

Also, there are h holes in th, and by Lemma 17,
a0 ≥ 1. Therefore,

a0
1 + a1

1 ≤ M − h− 1. (34)

(33) and (34) imply that a0
1+a1

1 ≤ min(2h−3,M−
h− 1). 2

We now conclude Case B by establishing the
following.

Lemma 33 If a0
1 > 0, then LAG(τ, th+1) < M +

1.

Proof: From (24),

LAG(τ, th + 1)
< a0 · wt + a0

1 · 2wt +
a1

1 · (3wt− 1) + a2
1 · (4wt− 2)

≤ a0 · wt + 2wt · (a0
1 + a1

1) +
a2

1 · (4wt− 2) (because wt < 1).(35)

By Lemma 32, if LAG(τ, th + 1) > LAG(τ, th),
then a0

1 + a1
1 ≤ min(2h − 3,M − h − 1). Because

the lag bounds for tasks in A0
1 ∪ A1

1 are higher
than those for the other tasks, LAG(τ, th + 1) is
maximized when a0

1 +a1
1 = min(2h−3,M−h−1).

We assume this is the case. Note that

min(2h− 3,M − h− 1) =
{

2h− 3, h ≤ M+1
3

M − h− 1, otherwise.
(36)

Based on (36), we consider two cases.
Case 1: h > M+1

3 .
For this case, a0

1 + a1
1 = M − h − 1, and hence,

a0 + a2
1 = M − h − (a0

1 + a1
1) = 1, which, by (25)

implies that M ≥ 3. Because, by Lemma 17, a0 >
0, we have a0 = 1, and hence, a2

1 = 0. Therefore,
by (35), LAG(τ, th +1) < a0 ·wt+2wt ·(a0

1 +a1
1) =

wt + 2wt · (M − h− 1) ≤ wt + 2wt ·
(

2M
3 − 2

)
. If

M+1 ≤ LAG(τ, th+1), then wt+2wt·
(

2M
3 − 2

)
≥

M + 1, which implies that wt ≥ 3M+3
4M−9 , which is

greater than 3
4 , for all M ≥ 3. This violates (C)

and (D).
Case 2: h ≤ M+1

3 .
For this case, letting a0

1 + a1
1 = 2h − 3, we have

a2
1 = M − h − (a0 + a0

1 + a1
1) = M − 3h − a0 − 3.

Therefore, by (35), LAG(τ, th + 1) < a0 · wt +
2wt · (a0

1 + a1
1) + (4wt − 2) · a2

1 = a0 · wt + 2wt ·
(2h− 3) + (4wt− 2)(M − 3h− a0 + 3). If M + 1 ≤
LAG(τ, th +1), then a0 ·wt+(2h−3) ·2 ·wt+(M−
3h−a0+3)·(4·wt−2) ≥ M +1, which implies that
wt ≥ 3M−6h−2a0+7

4M−8h−3a0+6 . If LAG(τ, th + 1) > M + 1,
then wt > f = 3M−6h−2a0+7

4M−8h−3a0+6 . Because a0
1 > 0, we

have a0
1+a1

1 = 2h−3 > 0. This implies that h > 3
2 ;

hence, because h is integral, h ≥ 2. Therefore, M ,
h, and a0 in f are constrained by M > h+a0 ≥ 2,
2 ≤ h ≤ M+1

3 , and a0 > 0. The first constraint is
from (25) and because a0

1 + a1
1 > 1, and the last

constraint is by Lemma 17. It can be shown that f
is minimized when h = 2 and a0 = 1. In this case,
f = 3M−7

4M−13 > 3
4 , for all M > 2. Hence, wt > 3

4 ,
which is a violation of (C) and (D). 2

15

3.4 Case C (A0
1 = φ; A1

1 6= φ)

In this case, no miss initiators are scheduled at
th, but at least one successor of miss initiator is.
An upper bound on LAG(τ, th + 1) for this case is
given below. From (24),

LAG(τ, th + 1)
< a0 · wt + a0

1 · 2wt +
a1
1 · (3wt− 1) + a2

1 · (4wt− 2)
= a0 · wt + a1

1 · (3wt− 1) + a2
1 · (4wt− 2)

(because a0
1 = 0)

= a0 · wt + a1
1 · (3wt− 1) +

(M − h− a0 − a1
1) · (4wt− 2) (by (25)). (37)

The following lemma establishes the sufficiency
of (C) for this case.

Lemma 34 If A0
1 = φ, then LAG(τ, th + 1) <

M + 1.

From (37) and A0
1 = φ,

LAG(τ, th + 1)
= a0 · wt + a1

1 · (3wt− 1) +
(M − h− a0 − a1

1) · (4wt− 2)
= a0 · wt + (M − h− a0) · (3wt− 1)

(because wt < 1 ⇒ (4wt− 2 < 3wt− 1)).

LAG(τ, th +1) ≥ M +1 implies that a0 ·wt+(M−
h − a0) · (3wt − 1) > M + 1, which implies that
wt > f = 2M−h−a0+1

3M−3h−2a0
. It can be shown that f is

minimized when h = a0 = 1. Because a1
1 > 0, this

implies that M ≥ 3, by (25). For h = a0 = 1,
f = 2M−1

3M−5 > 2
3 , for all M ≥ 2. Thus, (C) is

violated. 2

In the rest of this section, we establish the suffi-
ciency of (D) for this case, and hence, assume that
for any subtask Ti, e(Ti) ≥ r(Ti), which by (8),
implies the following.

(∀Ti :: e(Ti) = r(Ti)) (38)

We prove a series of lemmas that contradict the
existence of th, if (D) holds. The first lemma gives
a lower bound on a0, for LAG(τ, th + 1) to be less
than M + 1.

Lemma 35 If a0 ≥ a1
1 −

(
14h
3 + 5

)
, then

LAG(τ, th + 1) < M + 1.

Proof: From (37), LAG(τ, th + 1) < a0 · wt +
a1

1 · (3wt − 1) + (M − h − a0 − a1
1) · (4wt − 2). If

M + 1 ≤ LAG(τ, th + 1), then a0 ·wt + a1
1 · (3wt−

1) + (M − h− a0 − a1
1) · (4wt− 2) > M + 1, which

implies that wt > f = 3M−2h−a1
1−2a0+1

4M−4h−a1
1−3a0

. Because

(D) holds, wt ≤ 11
15 , which implies that f < 11

15 , or

a0 < a1
1 − (M

3 − a1
1
3 + 14h

3 + 5) < a1
1 − (14h

3 + 5)
(because M > a1

1). Taking the contrapositive, we
have the condition stated in the lemma. 2

The previous lemma gave a lower bound on a0

as a function of h, while the next lemma gives a
bound as a function of M and h.

Lemma 36 If LAG(τ, th +1) ≥ M +1, then a0 <
3M−18h−15

7 .

Proof: From (37),

LAG(τ, th + 1)
< a0 · wt + a1

1 · (3wt− 1)
+(M − h− a0 − a1

1) · (4wt− 2)
< a0 · wt + a1

1 · (3wt− 1)
+(M − h− a0 − a1

1) · (3wt− 1)
(because wt < 1)

= a0 · wt + (M − h− a0) · (3wt− 1).

If LAG(τ, th + 1) ≥ M + 1, then a0 · wt + (M −
h − a0) · (3wt − 1) > M + 1, which implies that
wt > 2M+1−h−a0

3M−3h−2a0
. Because (D) holds, wt ≤ 11

15 ,
which implies that 2M+1−h−a0

3M−3h−2a0
< 11

15 , from which
we have a0 < 3M−18h−15

7 . 2

tb, the latest time that a subtask of a task in B
is scheduled, can be as late as th − 1 for this case,
i.e., tb ≤ th−1. If tb < th−1, then using reasoning
similar to that of Lemma 26, it can be shown that
tb ≤ th−4. Case C can then be reasoned in exactly
the same way as Case B was reasoned. Hence,
assume tb = th − 1 for the rest of this section.

In the next two lemmas, we derive a lower bound
on the number of tasks that are inactive at th − 1
and th.

Lemma 37 Let Vk be a subtask scheduled at th−2.
Then, d(Vk) ≤ th − 1, and there are no holes in
th − 2.

Proof: Because a1
1 SMIs are scheduled at th, at

least a1
1 subtasks that are scheduled at th − 1 are

MIs (by the definition of an SMI). Let Xk be one

16

such MI scheduled at th−1. Then, d(Xk) = th−1,
and X is not scheduled at th− 2 (by the definition
of an MI). Therefore, every subtask scheduled at
th−2 has its deadline at or before th−1, and there
are no holes in th − 2 (otherwise, EPDF would
schedule Xk in th − 2). 2

Lemma 38 If LAG(τ, th + 1) ≥ M + 1, then at
least 14h

3 + 5 tasks scheduled at th − 2 are inactive
in slots th − 1 and th.

Proof: If a1
1 ≤ a0, then by Lemma 35,

LAG(τ, th + 1) < M + 1. Therefore, assume
a1

1 > a0. We first show that at least a1
1 − a0 tasks

scheduled at th − 2 are inactive at th − 1 and th,
as follows.

By the assumption for this case (a0
1 = 0) and by

the definition of set A, a task scheduled at th is in
A0, A1

1, or A2
1, i.e.

S(T, th) = 1 ⇒ T ∈ A0 ∪A1
1 ∪A2

1. (39)

The following holds for a task in A1
1 by the defini-

tion of an SMI.

(∀T ∈ A1
1 :: S(T, th) =

S(T, th − 1) = 1 ∧ S(T, th − 2) = 0). (40)

By Lemma 37, there are no holes in th − 2, which
along with (40) implies that there are at least a1

1
tasks scheduled at th − 2, that are not scheduled
in th−1. Let τs be the set of all such tasks. Then,
by the previous argument, the following hold.

τs = {T ∈ τ : S(T, th−2) = 1 ∧ S(T, th−1) = 0}, (41)

and
|τs| ≥ a1

1. (42)

By Lemma 37, the deadline of every subtask sched-
uled at th − 2 is at or before th − 1. Let X be any
task in τs whose subtask Xk is scheduled at th−2.
Therefore,

S(Xk, th − 2) = 1 ∧ d(Xk) ≤ th − 1. (43)

By Def. 3, if X is active at th−1, then there exists
an Xl, where l > k, such that e(Xl) ≤ th − 1 ∧
d(Xl) ≥ th. By (43), Xl is not scheduled before
th − 1, and by (41), Xl is not scheduled at th − 1.
The hole in th implies that Xl, if present, should
be scheduled at th. Hence, if X is not scheduled
at th, then we can conclude that subtask Xl of X
does not exist, and that X is inactive at th − 1.
By a similar argument it can be shown that X is
inactive at th also. Thus, we have the following.

X ∈ τs ∧ S(X, th) = 0 ⇒ X is inactive at th−1 and th.
(44)

Having shown that X is inactive if not scheduled
at th, we next show that if X is scheduled at th,
then X is in A0.

Because X is in τs, by (41) and (40), X is not
in A1

1. By the definition of A2
1,

(∀T ∈ A2
1 :: S(T, th) = S(T, th − 1)

= S(T, th − 2) = 1), (45)

which along with (41) implies that X is not in A2
1.

Therefore, by (39), X is in A0. Thus, at most
a0 tasks in τs can be scheduled at th, which by
(42) and (44) implies that at least a1

1 − a0 tasks
scheduled at th − 2 are inactive at th − 1 and th.

If LAG(τ, th + 1) ≥ M + 1, then by Lemma 35,
a0 < a1

1− (14h
3 +5). Hence, a1

1−a0, the number of
tasks that are inactive at th − 1 and th, is at least
14h
3 + 5. 2

Definition 7: I ′ denotes the set of tasks scheduled
at th − 2 that are inactive at th − 1 and th.

In the next three lemmas, we bound the sum
of the weights of the tasks in I ′ from above, and
use it to determine the latest time that the critical
subtask at th of a task in B may be scheduled, if
it is not scheduled at th − 1.

Lemma 39 If LAG(τ, th + 1) > LAG(τ, th − 1),
then

∑
T∈I′ wt(T) < h/2.

Proof: From (16), LAG(τ, th + 1) can be ex-
pressed in terms of LAG(τ, th − 1) as follows.

LAG(τ, th + 1)

= LAG(τ, th − 1)−
∑
T∈τ

(S(T, th − 1) + S(T, th))

+
∑
T∈τ

(share(T, th − 1) + share(T, th))

= LAG(τ, th − 1)−
∑
T∈τ

(S(T, th − 1) + S(T, th))

+
∑

T∈τ−I′

(share(T, th − 1) + share(T, th))

(tasks in I ′ are inactive at th − 1 and th)
= LAG(τ, th − 1)− (2M − h)

+
∑

T∈τ−I′

(share(T, th − 1) + share(T, th))

(there are h holes in th, and by Lemma 17,
there are no holes in th − 1)

≤ LAG(τ, th − 1) + 2
∑

T∈τ−I′

wt(T)− (2M − h)

≤ LAG(τ, th − 1) + 2(M −
∑
T∈I′

wt(T))− (2M − h)

17

(from (11))

= LAG(τ, th − 1)− 2
∑
T∈I′

wt(T) + h.

If LAG(τ, th + 1) > LAG(τ, th − 1), then
h − 2

∑
T∈I′ wt(T) > 0, which implies that∑

T∈I′ wt(T) < h/2. 2

Lemma 40 If LAG(τ, th + 1) < LAG(τ, th − 1),
then there is at least one task V in I ′, with
wt(V) < 1/9.

Proof: By Lemma 38, |I ′| ≥ 14h
3 + 5, and by

Lemma 39,
∑

T∈I′ wt(T) < h/2, which together
imply that the average weight of a task in I ′ is
less than 3/28, which is less than 1/9. Hence, the
weight of at least one task in I ′ is less than 1/9.

2

Lemma 41 If the critical subtask at th, Vk, of a
task V in B is not scheduled at th − 1, then Vk is
scheduled at or before th − 10.

Proof: We prove this lemma by contradiction.
Assume that Vk is scheduled at t, where th − 10 <
t < th − 1. We first show that t 6= th − 2.

By Lemma 16,

d(Vk) = th + 1, (46)

and by Lemma 37, we have

(∀Ti :: S(Ti, th − 2) = 1 ⇒ d(Ti) ≤ th − 1). (47)

Therefore,
S(Vk, th − 2) = 0. (48)

We next show that t /∈ [th − 9, th − 3]. By
Lemma 40 and Def. 7, we have(

∃Ti : S(Ti, th − 2) = 1 ∧ wt(T) <
1
9

)
. (49)

Let Xi be a subtask of a task X in I ′ scheduled
at th − 2 with wt(X) < 1

9 . Then, by Lemma 1,

|w(Xi)| >
⌈

1
1
9

⌉
= 9, i.e.,

|w(Xi)| ≥ 10. (50)

(47), (50), and (10) imply that

r(Xi) ≤ th − 11. (51)

If Xh is the predecessor of Xi, then by (4), (5),
and (51),

d(Xh) ≤ th − 10. (52)

By (A2), tardiness(Xh) ≤ 1, which by (52) im-
plies that Xh is scheduled no later than th − 10.
Thus, Xi can be scheduled in every slot in [th −
9, th − 3]. If t is in [th − 9, th − 3], then by (46)
and (47), it implies that Vk with a lower priority
than Xi is scheduled at t, which is a contradiction.
Therefore, Vk is scheduled at or before th − 10. 2

Definition 8: In the rest of this section, the
following additional notation shall be used.

B′ : Includes T ∈ B, iff the critical subtask at th
of T is scheduled before th − 1.
t′b : Latest time at which a critical subtask at th
of any task in B′ is scheduled.
B′′ : Includes T ∈ B, iff T is not scheduled at
t′b and the critical subtask at th, Tk, of T is
scheduled at th − 1, and is eligible at t′b.
b′′ : Number of tasks in B′′ = |B′′|.
A′′

0 : Includes T ∈ A0, iff T is not scheduled at t′b
and T ’s subtask scheduled at th is eligible at t′b.
a′′0 : Number of tasks in A′′

0 = |A′′
0|.

I ′′ : Includes T ∈ I, iff T is active at th − 1 and
its critical subtask at th − 1 is scheduled before
th − 1.
i′′ : Number of tasks in I ′′ = |I ′′|.

The above definitions imply that

B′ ∪ B′′ ∪ (B −B′ −B′′) = B (53)

B′ ∩ B′′ = B′′ ∩ (B −B′ −B′′)
= (B −B′ −B′′) ∩ B′ = φ (54)

From Lemma 41, we have the following.

t′b ≤ th − 10. (55)

Lemma 42 There are no holes in [t′b + 1, th − 1].

Proof: The proof is by contradiction. Assume
that there is a hole at t, where t′b + 1 ≤ t ≤ th − 1.
Let Vk be a subtask that is critical at th of a task V
in B′ that is scheduled at t′b. We show that if there
is a hole anywhere in the interval specified, then
Vk can be removed without affecting the tardiness
of subtasks scheduled after the hole. Let τ ′ be
the system obtained by removing Vk from τ , and
let S′ be the schedule for τ ′. Let ∆1,∆2, . . . ,∆n

18

be the chain of displacements caused by removing
Vk, where ∆i = 〈X(i), ti, X

(i+1), ti+1〉, X(1) = Vk

and t1 = t′b. By Lemma 11, ti+1 > ti, for 1 ≤
i < n. Hence, the priority of X(i) is greater than
or equal to the priority of X(i+1), for 1 ≤ i < n,
which in turn implies that d(X(i)) ≤ d(X(i+1). By
Lemma 16, d(Vk) = th + 1, and hence,

(∀i : 1 ≤ i ≤ n :: d(X(i)) ≥ th + 1). (56)

We now show that the chain of displacements
does not extend beyond t. Assume to the contrary
that it extends beyond t, and let ∆k be the first
displacement in the chain such that

tk+1 > t. (57)

Then, tk ≤ t. Since ∆k is valid,

e(X(k+1)) ≤ tk ≤ t. (58)

Because there is a hole in t, X(k+1) should be
scheduled at t in S rather than at tk+1 > t.
Therefore, tk = t. Because there is a hole at t,
by Lemma 12, X(k+1) is the successor of X(k).
Therefore, by (56), (4), and (5), r(X(k+1)) ≥ th,
which by Lemma 4(a) implies that e(X(k+1)) ≥
min(th, tk+1). This is in contradiction to (58),
which implies that our assumption in (57) is false.
In other words, no subtask scheduled to the right
of t in S gets shifted left in S′. Therefore, the
tardiness of subtasks scheduled after t remain the
same in S′, which contradicts (T2). Thus, there
are no holes in [t′b + 1, th − 1]. 2

In the rest of this section, we first determine a
lower bound on the weights of the tasks in B′, and
then use it to determine a lower bound on the sum
of the lags of the tasks scheduled at t′b. Finally,
we show that if LAG(τ, th + 1) ≥ M + 1, then the
latter bound implies a violation of (D). We begin
by deriving an upper bound on the weights of the
tasks in B′′ and A′′

0.

Lemma 43 The weight of a task V in B′′ or A′′
0

is at most 1/9.

Proof: We give the proof for V in B′′. The proof
for when V is in A′′

0 is similar.
Let Vk be the critical subtask at th of V . Then,

because V is in B′′, by Def. 8, e(Vk) ≤ t′b. Because
Vk is scheduled at th − 1, by Lemma 4(a),

r(Vk) ≤ t′b
≤ th − 10, (from 55) (59)

and

d(Vk) = th + 1 (by Lemma 16). (60)

The above two inequalities imply that |w(Vk)| =
d(Vk)− r(Vk) ≥ 11. Hence, by Lemma 1,⌈

1
wt(T)

⌉
≥ 10

⇒ 1
wt(V)

+ 1 ≥ 10

⇒ 1
wt(V)

≥ 9

⇒ wt(V) ≤ 1
9
. 2

The next lemma is concerned with the deadline
of the predecessor of a critical subtask at th of a
task in B, and is used in later lemmas.

Lemma 44 Let Vk be the critical subtask at th of
a task V in B, and let Vh, where h < k, be Vk’s
predecessor in τ . Then, d(Vh) ≤ th − 1.

Proof: By Lemma 16,

d(Vk) = th + 1, (61)

which by (5) implies that d(Vh) ≤ th. Hence, it is
sufficient to show that d(Vh) 6= th. Assume to the
contrary that

d(Vh) = th. (62)

Then, (61), (62), (4), and (5) imply that r(Vk) =
th − 1. Hence,

|w(Vk)| = d(Vk)− r(Vk) = 2. (63)

By Lemma 14, Vk is scheduled at or before th − 1.
Therefore, Vh is not scheduled at th − 1. We next
show that Vh is not scheduled at th − 2 or th − 3
either.

By Lemma 37, the deadline of every subtask
scheduled at th−2 is at most th−1. This, by (62)
implies that Vh is not scheduled at th − 2. Let Xi

be a subtask of a task X in I ′ that is scheduled at
th−2, with wt(X) < 1

9 . By Lemma 40, such a task
X exists, which by (4) and (5) implies that r(Xi) ≤
th−11. It is easy to show that Xi’s predecessor, if
it exists, cannot be scheduled any later than th −
10, and hence, that no subtask with lower priority
than Xi can be scheduled in any slot in [th−9, th−
3]. In particular, Vh is scheduled prior to th − 9,

19

which by (38) implies that r(Vh) ≤ th − 10, which
by (62) implies that

|w(Vh)| ≥ 10. (64)

By (9), the difference between the lengths of the
windows of any two subtasks of a task is at most
one, which is in contradiction to (63) and (64).
Therefore, our assumption is false, and d(Vh) ≤
th − 1. 2

Lemma 45 The number of tasks that are sched-
uled at th − 1, and are not scheduled at th is at
most h + a0.

Proof: By the assumption of this case, tasks
scheduled at th are in A0∪A1

1∪A2
1. Because there

are h holes in th, M = h + a0 + a1
1 + a2

1. Every
task in A1

1 or A2
1 is also scheduled at th−1 (by the

definition of these sets). Therefore, the number of
tasks scheduled at th, and not at th − 1 is at most
M − a1

1 − a2
1 = h + a0. 2

In the next lemma, we determine a lower bound
on the excess allocation that τ receives in S in
time slots th − 1 and th in comparison to the ideal
system. This will be used in turn to determine a
lower bound on the sum of the weights of the tasks
in B′ ∪ I ′′.

Lemma 46 Let C denote the set of all tasks that
are scheduled at th − 1, or th, or both. Then, the
difference between the total service 2M−h provided
by S in slots th − 1 and th, and the share in the
ideal system of the tasks in C in the same two slots,

is at least 8M−8h
15 − a0 + 7b′′

9 + 168a′′0
135 . Further, if

LAG(τ, th + 1) ≥ M + 1, then 8M−8h
15 − a0 > 0.

Proof: We first derive an upper bound on the
total share in the ideal system, of all the tasks
in C in slots th and th − 1. The set of all tasks
that are scheduled at th is given by A and tasks in
C−A are scheduled at th−1, but not at th. Thus,
C = (C−A)∪A, where (C−A) ⊆ B ∪ I, by (18).
Hence,

C −A = (C −A) ∩ (B ∪ I)
= ((C −A) ∩B) ∪ ((C −A) ∩ I). (65)

No task in B′ is scheduled at th− 1 i.e., is in (C−
A). Hence,

((C −A) ∩B) = (C −A) ∩ (B −B′)
= (C −A) ∩ ((B −B′ −B′′) ∪B′′)
= ((C −A) ∩ (B −B′ −B′′)) ∪

((C −A) ∩B′′). (66)

Thus, from (65) and (66), we have

C −A = ((C −A) ∩ (B −B′ −B′′)) ∪
((C −A) ∩B′′) ∪ ((C −A) ∩ I). (67)

For every V that is in (C −A)∩ I, share(V, th) =
0. Hence, share(V, th − 1) + share(V, th) =
share(V, th− 1). From Lemma 2(c), share(V, th−
1) ≤ wt(V) < 1, i.e.,

(∀V ∈ (C−A)∩I :: share(V, th−1)+share(V, th) < 1.)
(68)

For every V in B, the share of V in th − 1 and
th is determined as follows. Let Vk be the critical
subtask at th of V , and let Vh be Vk’s predecessor
in τ . Then, by Lemma 44, d(Vh) ≤ th − 1. Hence,
no other subtask of V , except Vk, has a positive
share in th−1 or th in the ideal system. Thus, the
share of V in th − 1 and th is given by the share
of Vk in the same two slots. That is, share(V, th−
1) + share(V, th) = f(Vk, th − 1) + f(Vk, th). If V
is in B′′, then wt(V) ≤ 1/9 by Lemma 43, and
hence, share(V, th− 1)+ share(V, th) = f(Vk, th−
1) + f(Vk, th) ≤ 2/9, from Lemma 2(d), i.e.

(∀V ∈ (C −A) ∩B′′ ::
share(V, th − 1) + share(V, th) ≤ 2/9.) (69)

On the other hand, if V is in B−B′−B′′, then by
Lemma 2(c) and Lemma 2(e), share(V, th − 1) +
share(V, th) = f(Vk, th − 1) + f(Vk, th) ≤ 1, i.e.,

(∀V ∈ (C −A) ∩ (B −B′ −B′′) ::
share(V, th − 1) + share(V, th) ≤ 1.) (70)

Similarly, A = (A − A′′
0) ∪ A′′

0. By Lemma 43,
weight of a task in A′′

0 is at most 1/9, and hence
by Lemma 2(c), the following holds.

(∀V ∈ A′′
0 ::

share(V, th − 1) + share(V, th) ≤ 2/9.) (71)

Therefore, the total share of all the tasks in C
is bounded from above as follows.∑
T∈C

(share(T, th − 1) + share(T, th))

=
∑
T∈A

(share(T, th − 1) + share(T, th)) +∑
T∈C−A

(share(T, th − 1) + share(T, th) +

=
∑

T∈A−A′′
0

(share(T, th − 1) + share(T, th)) +

∑
T∈A′′

0

(share(T, th − 1) + share(T, th)) +

∑
T∈(C−A)∩((B−B′−B′′)∪I)

share(T, th − 1) +

20

∑
T∈(C−A)∩((B−B′−B′′)∪I)

share(T, th) +

∑
T∈(C−A)∩B′′

(share(T, th − 1) + share(T, th))

(from (67))

≤ 2
∑

T∈A−A′′
0

wt(T) +
2a′′0
9

+

|(C −A) ∩ ((B −B′ −B′′) ∪ I)|+ 2b′′

9
(from Lemma 2(c), (71), (70), (68), and (69))

≤ 2
∑

T∈A−A′′
0

wt(T) +
2a′′0
9

+ (a0 + h− b′′) +
2b′′

9

(by Lemma 45 and |B′′| = b′′)

≤ 2(M − h− a′′0) · wt + a0 +
2a′′0
9

+ h− 7b′′

9
(there are M − h tasks scheduled at th with weight

at most wt; a′′0 of those are in A′′
0)

≤ 2(M − h− a′′0) · 11
15

+ a0 +
2a′′0
9

+ h− 7b′′

9
(by (D))

= 2(M − h) · 11
15

+ a0 + h− 7b′′

9
− 168a′′0

135
.

The difference between the actual alloca-
tion and the total ideal share of tasks
in C is therefore given by 2M − h −∑

T∈C (share(T, th − 1) + share(T, th)) ≥

2M − h −
(

22(M−h)
15 + a0 + h− 7b′′

9 − 168a′′0
135

)
=

8M
15 − 8h

15 − a0 + 7b′′
9 + 168a′′0

135 . By Lemma 36, if
LAG(τ, th + 1) ≥ M + 1, then a0 < 3M−18h

7 − 15
7 .

Because 3M
7 − 18h

7 − 15
7 < 8M

15 −
8h
15 , 8M−8h

15 −a0 > 0.
2

Lemma 47 If LAG(τ, th + 1) ≥ M + 1 >
LAG(τ, th − 1), then the sum of the weights of the
tasks in B′∪I ′′ is greater than 4M−4h

15 − a0
2 + 7b′′

18 +
84a′′0
135 > 0.

Proof: Expressing LAG(τ, th + 1) in terms of
LAG(τ, th − 1) using (16), we have

LAG(τ, th + 1)

= LAG(τ, th − 1)−
∑
T∈τ

(S(T, th − 1) + S(T, th))

+
∑
T∈τ

(share(T, th − 1) + share(T, th))

= LAG(τ, th − 1)−
∑
T∈τ

(S(T, th − 1) + S(T, th))

+
∑
T∈C

(share(T, th − 1) + share(T, th))

+
∑

T∈τ−C

(share(T, th − 1) + share(T, th))

(C = {T ∈ τ ∧ (S(T, th − 1) = 1 ∨ S(T, th) = 1)})
≤ LAG(τ, th − 1)−(

8M − 8h

15
+

7b′′

9
+

168a′′0
135

− a0

)
+

∑
T∈τ−C

(share(T, th − 1) + share(T, th))

(from Lemma 46)

= LAG(τ, th − 1)−
(

8M − 8h

15
+

7b′′

9
+

168a′′0
135

− a0

)
+

∑
T∈B′∪I′′

share(T, th − 1) + share(T, th).

(if a task has nonzero share in th − 1 or th,
and is not scheduled in either slot,

then it is in B′ or I ′′, by Def. 8)
≤ LAG(τ, th − 1)−(

8M − 8h

15
+

7b′′

9
+

168a′′0
135

− a0

)
+

∑
T∈B′∪I′′

2wt(T), (from Lemma 2(b)).

If LAG(τ, th + 1) > LAG(τ, th − 1), then∑
T∈B′∪I′′ 2wt(T) −

(
8M−8h

15 + 7b′′
9 + 168a′′0

135 − a0

)
>

0, which implies that
∑

T∈B′∪I′′ wt(T) > 4M−4h
15 −

a0
2 + 7b′′

18 + 84a′′0
135 . By Lemma 46, 8M−8h

15 − a0 >

0, which implies that 4M−4h
15 − a0

2 , and hence,
4M−4h

15 − a0
2 + 7b′′

18 + 84a′′0
135 > 0. 2

Lemma 48 If LAG(τ, th + 1) > LAG(τ, th − 1),
then

∑
T∈B′∪I′′ lag(T, t′b + 1) ≤ −40M

15 + 40h
15 +5a0−

70b′′
18 − 840a′′0

135 .

Proof: Let T be any task in B′; then, its critical
subtask at th, Tk, has its deadline at or after th+1.
Because Tk is scheduled at or before t′b in S (by
Def. 8), Tk receives its entire share of one quantum,
by t′b + 1 < th + 1 in S. Because no later subtask
of T is eligible, and hence by (8), is not released
before th + 1, i.e.,

(∀l : l > k :: r(Tl) ≥ th + 1), (72)

we have
lag(T, th + 1) ≤ 0. (73)

Also, because Tk is scheduled at or before t′b, e(Tk),
and hence, by (38), r(Tk) ≤ t′b. Therefore, by (4)

21

and (5),

(∀h : h < k :: d(Th) ≤ t′b + 1). (74)

From (15), we have

lag(T, t′b + 1)

= lag(T, th + 1)−
th∑

u=t′
b
+1

share(T, u) +

th∑
u=t′

b
+1

S(T, u)

≤
th∑

u=t′
b
+1

S(T, u)−
th∑

u=t′
b
+1

share(T, u) (from (73))

= −
th∑

u=t′
b
+1

share(T, u)

(by Def. 8, S(T, u) = 0, for u in [t′b + 1, th])

= −
th∑

u=t′
b
+1

wt(T)

(By (72) and (74), only subtask Tk of T contributes
to the share of T in [t′b + 1, th − 1]. Because r(Tk) ≤ tb

and d(Tk) > th, by (13), share of
T in the interval equals wt(T).)

= −(th − t′b) · wt(T)
≤ −10 · wt(T) (from (55)).

It can be shown in a similar manner that for a task
T in I ′′, lag(T, t′b + 1) ≤ −10 · wt(T). Hence, the
sum of the lags of all the tasks in B′ ∪ I ′′ at t′b + 1
is given by∑
T∈B′∪I′′

lag(T, t′b + 1)

≤
∑

T∈B′∪I′′
−10 · wt(T)

≤ −10 ·
(

4M − 4h

15
− a0

2
+

7b′′

18
+

84a′′0
135

)
(from Lemma 47)

=
−40M + 40h

15
+ 5a0 −

70b′′

18
− 840a′′0

135
. 2

Finally, we determine a lower bound on the sum
of the lags of the tasks scheduled at t′b. We then
prove Theorem 2 by showing that if the bound
holds, then (D) is violated.

Lemma 49 Let D denote the set of all the tasks
scheduled at t′b. Then, lag(T, t′b +1) ≤ 0, for every
T not in D∪B′′∪A′′

0, or every T in (τ −D)∩ (τ −
B′′ −A′′

0).

Proof: Let U be a task that is not in D. Then,
U is in one of the following sets: A′′

0, B′′, B′, B −
B′ − B′′, A − A′′

0 or I (by the definitions of the
sets, they are pairwise disjoint and their union is
τ). Thus, τ − D = ((τ − D) ∩ A′′

0) ∪ ((τ − D) ∩
B′′) ∪ ((τ − D) ∩ B′) ∪ ((τ − D) ∩ (B − B′ −
B′′)) ∪ ((τ −D) ∩ (A− A′′

0)) ∪ ((τ −D) ∩ I). In
what follows, we reason about the lags of the tasks
in the last four sets in the right-hand side of the
above expression. (Because the first two sets are
subsets of A′′

0 and B′′, respectively, for which the
lag bound need not be proved, by the statement
of the lemma.) In the cases that follow, let W be
a task in B′ whose critical subtask at th, Wl, is
scheduled at t′b. Therefore, by Defs. 8 and 4, and
Lemma 16,

d(Wl) = th + 1. (75)

Lags of tasks in (τ − D) ∩ B′: Let V be a task
in this set and let Vk be its critical subtask at th.
Then, by Def. 8, if Vk is not scheduled at t′b, it is
scheduled before. By Def. 4, e(Vl) and hence, by
(8), r(Vl) is at or after th + 1 for any l > k. Thus,
all subtasks released prior to t′b + 1 receive their
entire share by t′b + 1 in S, while they may or may
not in the ideal system. Hence, lag(V, t′b + 1) ≤ 0.

Lags of tasks in (τ − D) ∩ (B − B′ − B′′): Let
V be a task in this set and let Vk be its critical
subtask at th. Then, by Def. 8, e(Vk) > t′b, and
hence, by (8),

r(Vk) > t′b. (76)

By Lemma 16 , d(Vk) = th + 1. Therefore, by (5),
d(Vj) ≤ th, for j < k, and in particular, if Vi is the
critical subtask at t′b of V , then,

d(Vi) ≤ th. (77)

Because V is not scheduled at t′b, (75) and (77)
imply that Vi is sheduled before t′b. Thus, all sub-
tasks prior to Vk complete execution before t′b in
S, while they may or may not complete before t′b
in the ideal system. By (76), Vk is not released
before t′b + 1, and hence, its share in the ideal sys-
tem is zero. Thus, the actual allocation that V
receives in S until t′b +1 is greater than or equal to
its share until the same time in the ideal system.
Hence, lag(V, t′b + 1) ≤ 0, for every V in this set.

Lags of tasks in (τ −D)∩ I: Let V be a task in

22

this set, and let Vk be the critical subtask of V at
t′b. By Def. 4, and because V is not active at th,

t′b + 1 ≤ d(Vk) ≤ th. (78)

Because V is not scheduled at t′b but Wl is, (75)
and (78) imply that Vk is scheduled earlier than
t′b. Thus, Vk completes execution before t′b in S,
while it may or not complete before t′b in the ideal
system. Since the successor of Vk is not released
until t′b + 1 (by Def. 4), the service provided by S
to V is at least the service provided by the ideal
system. Hence, lag(V, t′b + 1) ≤ 0, for all V in this
set.

Lags of tasks in (τ − D) ∩ (A − A′′
0): Let V be

a task in this set, Vk its critical subtask at t′b, and
Vl its subtask scheduled at th. Because V is not in
A′′

0, by Def. 8, Vl is not eligible at t′b. Hence, k 6= l,
which implies that k < l. By Def. 4, d(Vk) ≥ t′b +1
and r(Vl) ≥ t′b + 1. Therefore, using the same
reasoning of the previous case, we can conclude
that the lag of every task in this set at t′b is at
most zero.

The set of all tasks not in (D∪B′′∪A′′
0) is given

by

τ − (D ∪B′′ ∪A′′
0)

= (τ −D) ∩ (τ − (B′′ ∪A′′
0))

= (τ −D) ∩ (τ −B′′ −A′′
0).

Thus, a task not in D ∪ B′′ ∪ A′′
0 is in (τ − D) ∩ (τ −

B′′ −A′′
0). 2

Lemma 50 The lag at t′b +1 of any task in A′′
0 or

B′′ is at most one.

Proof: We prove the lemma for tasks in A′′
0. The

proof for tasks in B′′ is similar. Let T be a task
in A′′

0, Tk its subtask scheduled at th, and Tl, the
successor of Tk in τ . By Def. 8, e(Tk) ≤ t′b, which
by (38), and because Tk is scheduled at th implies
that

r(Tk) ≤ t′b. (79)

By Lemma 15, d(Tk) = th + 1, and hence, by (5),

r(Tl) ≥ th, (80)

which because Tl is not scheduled before th, by
Lemma 4(a), implies that e(Tl) ≥ th. Therefore,
by Def. 4, Tk is the critical subtask at t′b of T . (79),

(4), and (5) imply that the following holds for Th,
which is Tk’s predecessor in τ .

d(Th) ≤ t′b + 1. (81)

Let Wl be the critical subtask at th of W in B′

which is scheduled at t′b. Then, by Def. 8 and
Lemma 16,

d(Wl) = th + 1. (82)

(81) and (82), along with the fact that Wl is sched-
uled at t′b imply that Th is scheduled before t′b in S.
Therefore, Th and all prior subtasks of T receive
their entire share by t′b+1 in both S and in the ideal
system. (80) implies that Tk is the only subtask
released after subtask Th that can have a positive
share in the ideal system prior to t′b +1. This pos-
itive share is at most one by Lemma 2(e). There-
fore, the maximum lag of T at t′b +1 is one (which
is possible if Tk completes execution by t′b + 1 in
the ideal system). 2

Lemma 51 If LAG(τ, th + 1) ≥ M + 1, then
LAG(τ, t′b + 1) ≥ M + 1− h.

Proof: From (16),

LAG(τ, th + 1)
= LAG(τ, tb + 1) +

u=th∑
u=tb+1

∑
T∈τ

(share(T, u)− S(T, u))

≤ LAG(τ, tb + 1) +
u=th∑

u=tb+1

∑
T∈τ

wt(T)−

u=th∑
u=tb+1

∑
T∈τ

S(T, u) (from Lemma 2(c))

≤ LAG(τ, tb + 1) + (th − tb) ·M −
u=th∑

u=tb+1

∑
T∈τ

S(T, u) (from 11)

≤ LAG(τ, tb + 1) + (th − tb) ·M −
((th − tb) ·M − h)

(by Lemma 42, there are no holes in [t′b + 1, th − 1])
= LAG(τ, tb + 1) + h.

The last inequality above implies that LAG(τ, tb +
1) ≥ LAG(τ, th+1)−h. Hence, if LAG(τ, th+1) ≥
M + 1, then LAG(τ, tb + 1) ≥ M + 1− h. 2

Lemma 52 Let D be the set of tasks scheduled at
t′b. If LAG(τ, th + 1) ≥ M + 1, then the sum of

23

the lags of the tasks in D − (B′ ∪ I ′′) at t′b + 1 is

at least 160M
105 + 965h

105 + 82
7 + 52b′′

18 + 605a′′0
135 .

Proof: The set D− (B′ ∪ I ′′) can be expressed as
τ−(τ−(D−(B′∪I ′′))), where (τ−(D−(B′∪I ′′))) =
(τ −D)∪B′ ∪ I ′′ (all tasks in τ that are not in D
but may be in B′ ∪ I ′′). Hence,

D − (B′ ∪ I ′′)
= τ − (τ − (D − (B′ ∪ I ′′)))
= τ − ((τ −D) ∪B′ ∪ I ′′)
= τ − (B′ ∪ I ′′ ∪ ((τ −D) ∩ (A′′

0 ∪B′ ∪
B′′ ∪ I ′′ ∪ (τ −A′′

0 −B′′ −B′ − I ′′))))
(A′′

0 ∪B′ ∪B′′ ∪ I ′′ ∪ (τ −A′′
0 −B′ −B′′ − I ′′) = τ)

= τ − (B′ ∪ I ′′ ∪ ((τ −D) ∩A′′
0) ∪ ((τ −D) ∩B′)

∪((τ −D) ∩ I ′′) ∪ ((τ −D) ∩B′′)
∪((τ −D) ∩ (τ −A′′

0 −B′ −B′′ − I ′′)))
= τ − ((B′ ∪ ((τ −D) ∩B′)) ∪ (I ′′ ∪ ((τ −D) ∩ I ′′))

∪((τ −D) ∩B′′) ∪ ((τ −D) ∩A′′
0)

∪((τ −D) ∩ (τ −A′′
0 −B′ −B′′ − I ′′)))

(set union is associative and commutative)
= τ − (B′ ∪ I ′′ ∪ ((τ −D) ∩B′′) ∪ ((τ −D) ∩A′′

0)
∪((τ −D) ∩ (τ −A′′

0 −B′ −B′′ − I ′′))
(union of B′ and tasks not in D but in B′ is B′)
(union of I ′′ and tasks not in D but in I ′′ is I ′′)

The sets A′′
0, B′, B′′,I ′′, and (τ − A′′

0 − B′ −
B′′ − I ′′) are pairwise disjoint, and hence, so are
their intersections with (τ −D). Therefore,∑
T∈D−(B′∪I′′)

lag(T, t′b + 1)

= LAG(τ, t′b + 1)−

(∑
T∈B′∪I′′

lag(T, t′b + 1)+∑
T∈(τ−D)∩B′′

lag(T, t′b + 1) +

∑
T∈(τ−D)∩A′′

0

lag(T, t′b + 1) +

∑
T∈((τ−D)∩(τ−B′−B′′−A′′

0−I′′))

lag(T, t′b + 1)

= LAG(τ, t′b + 1)−

∑
T∈B′∪I′′

lag(T, t′b + 1)

−
∑

T∈(τ−D)∩B′′

lag(T, t′b + 1)

−
∑

T∈(τ−D)∩A′′
0

lag(T, t′b + 1)

−
∑

T∈((τ−D)∩(τ−B′−B′′−A′′
0−I′′))

lag(T, t′b + 1)

= LAG(τ, t′b + 1)−
∑

T∈B′∪I′′

lag(T, t′b + 1)

−
∑

T∈(τ−D)∩B′′

lag(T, t′b + 1)

−
∑

T∈(τ−D)∩A′′
0

lag(T, t′b + 1)− 0

(By Lemma 49, lags of tasks in
(τ −D) ∩ (τ −B′′ −A′′

0) are at most 0,
and (τ −D) ∩ (τ −B′′ −A′′

0 −B′ − I ′′)
is a subset of (τ −D) ∩ (τ −B′′ −A′′

0).)

≥ M + 1− h−
∑

T∈B′∪I′′

lag(T, t′b + 1)

−
∑

T∈(τ−D)∩B′′

lag(T, t′b + 1)

−
∑

T∈(τ−D)∩A′′
0

lag(T, t′b + 1)

(from Lemma 51)
≥ M + 1− h−(

−40M

15
+

40h

15
+ 5a0 −

70b′′

18
− 840a′′0

135

)
−

∑
T∈(τ−D)∩B′′

lag(T, t′b + 1)

−
∑

T∈(τ−D)∩A′′
0

lag(T, t′b + 1)

(from Lemma 48)
≥ M + 1− h

−
(
−40M

15
+

40h

15
+ 5a0 −

70b′′

18
− 840a′′0

135

)
−b′′ − a′′0

(By Lemma 50, tasks in B′′ and A′′
0 have

lags at most 1.)

=
55M

15
− 55h

15
+ 1 +

52b′′

18
+

605a′′0
135

− 5a0

≥ 55M

15
− 55h

15
+ 1 +

52b′′

18
+

605a′′0
135

−5 ·
(

3M − 18h− 15
7

)
(a0 ≤ 3M−18h−15

7 by Lemma 36)

=
160M

105
+

965h

105
+

82
7

+
52b′′

18
+

605a′′0
135

. 2

Lemma 53 If LAG(τ, th + 1) > LAG(τ, t′b + 1),
then, LAG(τ, th + 1) < M + 1.

Proof: Assume to the contrary that LAG(τ, th +
1) ≤ M+1). Let D be the set of tasks scheduled at
t′b. Then |D−B′−I ′′| ≤ M−1, from the definition
of B′ and t′b. Therefore,

∑
T∈(D−B′−I′′) lag(T, t′b +

1) <
∑

T∈(D−B′−I′′) 2wt(T) = 2 · wt(M −

24

1), from Lemma 10. From Lemma 52,∑
T∈(D−B′−I′′) lag(T, t′b + 1) ≥ 160M

105 + 965h
105 + 82

7 +
52b′′
18 + 605a′′0

105 . Therefore, 2 · wt · (M − 1) >

160M
105 + 965h

105 + 82
7 + 52b′′

18 + 605a′′0
105 > 160M+965h

105 , or
wt > 160M+965h

210M−210 > 160
210 > 11

15 , for all M . Thus, (D)
is violated. Therefore, LAG(τ, th + 1) < M + 1.

2

3.4.1 Case D (A0
1 = A1

1 = φ)

Lemma 54 If A0
1 = A1

1 = φ, then LAG(τ, th +
1) < M + 1.

From (24) and A0
1 = A1

1 = φ, LAG(τ, th + 1) <
a0 · wt + (4wt− 2) · a2

1, which, by (35), equals a0 ·
wt+(M−h−a0)·(4wt−2). LAG(τ, th+1) ≥ M+1
implies that a0 · wt + (M − h − a0) · (4wt − 2) >
M +1, which implies that wt > f = 3M−2h−2a0+1

4M−4h−3a0
.

M , h, and a0 are constrained by M ≥ h + a0,
and M,h, a0 > 0. It can be shown that the value
of f is minimized when h = a0 = 1, for which
f = 3M−3

4M−7 > 3
4 , for all M > 1. This violates (C)

and (D). 2

By Lemmas 24, 33, 34, 53, and 54, if (C) or (D)
is satisfied, then LAG(τ, th + 1) < M + 1, which
is a contradiction to (A3). Thus, Theorem 2 is
proved.

3.5 Other Results

The above approach can be extended to obtain
a general per-task weight restriction of 1+q

2+q , and
a restriction of 7+4q

11+4q , if no subtask is allowed to
become eligible before its release time, for ensuring
a tardiness of q. The proof is the same, except for
generalizations to allow subtasks with tardiness up
to q to be scheduled in any slot.

It can be shown that a tardiness of two less than
the largest difference between successive group
deadlines of any task can be ensured, in the ab-
sence of any restrictions. A formal proof is omit-
ted due to space constraints. However, note that
the key to the proof we have presented is dealing
with the impact of cascades of deadline misses in
heavy tasks. Such cascades must end by the next
group deadline, regardless of any restrictions.

4 Conclusion

We have presented counterexamples that show
that tardiness under the EPDF Pfair algorithm

can exceed a small constant number of quanta for
task systems that are not restricted, thereby prov-
ing false the conjecture that EPDF ensures a tar-
diness of one quantum. We have also presented
sufficient utilization restrictions that are more lib-
eral than those previously known.

References

[1] J. Anderson and A. Srinivasan. Mixed Pfair/ERfair
scheduling of asynchronous periodic tasks. Journal
of Computer and System Sciences. To appear.

[2] J. Anderson and A. Srinivasan. Pfair scheduling:
Beyond periodic task systems. In Proceedings of the
7th International Conference on Real-Time Com-
puting Systems and Applications, pages 297–306,
Dec. 2000.

[3] S. Baruah, N. Cohen, C.G. Plaxton, and D. Varvel.
Proportionate progress: A notion of fairness in re-
source allocation. Algorithmica, 15:600–625, 1996.

[4] S. Baruah, J. Gehrke, and C. G. Plaxton. Fast
scheduling of periodic tasks on multiple resources.
In Proc. of the 9th International Parallel Processing
Symposium, pages 280–288, Apr. 1995.

[5] A. Srinivasan. Efficient and Flexible Fair Schedul-
ing of Real-time Tasks on Multiprocessors. PhD
thesis, University of North Carolina at Chapel Hill,
December 2003.

[6] A. Srinivasan and J. Anderson. Optimal rate-based
scheduling on multiprocessors. In Proceedings of
the 34th ACM Symposium on Theory of Computing,
pages 189–198, May 2002.

[7] A. Srinivasan and J. Anderson. Efficient scheduling
of soft real-time applications on multiprocessors. In
Proceedings of the 15th Euromicro Conference on
Real-time Systems, pages 51–59, July 2003.

25

