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Abstract

The earliest-pseudo-deadline-first(EPDF) Pfair algo-
rithm is more efficient than other known Pfair scheduling
algorithms, but is not optimal on more than two processors.
In earlier work, Srinivasan and Anderson established a suffi-
cient per-task utilization restriction for ensuring a tardiness
of at most one quantum under EPDF. They also conjectured
that a tardiness bound of one quantum applies to systems
that are not restricted in any way. In this paper, we present
counterexamples that show that this conjecture is false. We
also present sufficient utilization restrictions that are more
liberal than theirs.

1 Introduction

Pfair scheduling, originally introduced by Baruahet al.
[4], is the only known way of optimally scheduling re-
current real-time tasks on multiprocessors. Under Pfair
scheduling, each task must execute at an approximately uni-
form rate, while respecting a fixed-size allocation quantum.
A task’s execution rate is defined by itsweight (or utiliza-
tion). Uniform rates are ensured by subdividing each task
T into quantum-lengthsubtasksthat are subject to interme-
diate deadlines. To avoid deadline misses, ties among sub-
tasks with the same deadline must be broken carefully. In
fact, tie-breaking rules are crucial when devising optimal
Pfair scheduling algorithms.

As discussed by Srinivasan and Anderson [8], overheads
associated with tie-breaking rules may be unnecessary or
unacceptable for many soft real-time systems. A soft real-
time task differs from a hard real-time task in that its dead-
lines may sometimes be missed. If a job (i.e., task instance)
or a subtask with a deadline at timed completes executing
at timet, then it is said to have atardinessof max(0, t−d).

Systems with quality-of-service requirements, such as
multimedia applications, are examples where tie-breaking
rules may be unnecessary. Here, fair resource allocation
is necessary to provide service guarantees, but occasional
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deadline misses often result in tolerable performance degra-
dation. Hence, an extreme notion of fairness that precludes
all deadline misses is usually not required.

In dynamic systems that permit tasks to join or leave, the
overhead introduced by tie-breaking rules may be unaccept-
able. In such a system, spare processing capacity may be-
come available. To make use of this capacity, task weights
must be changed on-the-fly. It is possible to reweight each
task so that its next subtask deadline is preserved [8]. If no
tie-breaking information is maintained, such an approach
entails very little overhead. However, weight changes can
cause tie-breaking information to change, so if tie-breaking
rules are used, reweighting may necessitate aΩ(N log N)
cost forN tasks, due to the need to re-sort the scheduler’s
priority queue. This cost may be prohibitive if load changes
are frequent.

The observations above motivated Srinivasan and Ander-
son to consider the viability of scheduling soft real-time ap-
plications using the simplerearliest-pseudo-deadline-first
(EPDF) Pfair algorithm, which uses no tie-breaking rules.
They succeeded in showing that EPDF can guarantee a tar-
diness bound of one quantum for every subtask, provided a
certain condition holds. This condition, which is described
in detail later, can be ensured by limiting each task’s weight
to at most 1/2, and can be generalized to apply to tardiness
bounds other than one. Unfortunately, Srinivasan and An-
derson left open the question of whether such conditions are
necessary to guarantee small constant tardiness.

In this paper, we provide counterexamples that show that,
in general, restrictions on individual task utilizations are
necessaryto guarantee constant tardiness bounds. In addi-
tion, we show that, in general, a more liberal per-task weight
restriction of 2/3 (66.7%) is sufficient to ensure a tardiness
of one quantum, and that for a somewhat special case, which
is described in Sec. 3, this restriction can be relaxed to 11/15
(73.3%). We also present generalizations of these condi-
tions that can be applied to other tardiness bounds.

The rest of the paper is organized as follows. In Sec. 2,
needed definitions are given. In Sec. 3, the results above are
proved. Sec. 4 concludes.
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Figure 1. (a) Windows of the first job of a periodic taskT with weight8/11. This job consists of subtasksT1, . . . , T8, each of
which must be scheduled within its window, or else a lag-bound violation will result. (This pattern repeats for every job.)(b) The
Pfair windows of an IS task. SubtaskT5 becomes eligible one time unit late.(c) The Pfair windows of a GIS task. SubtaskT4 is
absent andT6 is one time unit late.

2 Pfair Scheduling

In this section, Pfair scheduling is defined and some prior
results summarized [1, 2, 3, 4, 7, 8]. To begin with, we
limit attention to periodic tasks that begin execution at time
0. Such a taskT has an integerperiod T.p, an integerex-
ecution costT.e, and aweight wt(T ) = T.e/T.p, where
0 < wt(T ) < 1. A task is light if its weight is less than
1/2, andheavyotherwise.

Pfair algorithms allocate processor time in discrete
quanta; the time interval[t, t + 1) is calledslot t. (Hence,
time t refers to the beginning of slott.) A task may be allo-
cated time on different processors, but not in the same slot
(i.e., interprocessor migration is allowed but parallelism is
not). The sequence of allocation decisions over time defines
a scheduleS. Formally,S : τ × N 7→ {0, 1}, whereτ is
a task set.S(T, t) = 1 iff T is scheduled in slott. On M
processors,

∑
T∈τ S(T, t) ≤ M holds for allt.

Lags and subtasks. The notion of a Pfair schedule is de-
fined by comparing such a schedule to an ideal fluid sched-
ule, which allocateswt(T ) processor time to taskT in each
slot. Deviation from the fluid schedule is formally captured
by the concept oflag. Formally, thelag of task T at time t
is defined by1 lag(T, t) = wt(T ) · t −

∑t−1
u=0 S(T, u). A

schedule is defined to bePfair iff

(∀T, t :: −1 < lag(T, t) < 1). (1)

Informally, the allocation error associated with each task
must always be less than one quantum.

These lag bounds have the effect of breaking each task
T into an infinite sequence of quantum-lengthsubtasks,
T1, T2, . . . . Each subtask has apseudo-releaser(Ti) and
apseudo-deadlined(Ti), where

r(Ti) =
⌊

i− 1
wt(T )

⌋
∧ d(Ti) =

⌈
i

wt(T )

⌉
. (2)

(For brevity, we often omit the prefix “pseudo-.”) To sat-
isfy (1), Ti must be scheduled in the intervalw(Ti) =

1For conciseness, we leave the schedule implicit and uselag(T, t) in-
stead oflag(T, t, S).

[r(Ti), d(Ti)), termed itswindow. The lengthof Ti’s win-
dow, denoted|w(Ti)|, is d(Ti) − r(Ti). As an example,
consider subtaskT1 in Fig. 1(a). Here, we haver(T1) = 0,
d(T1) = 2, and|w(T1)| = 2. Hence,T1 must be scheduled
at either time0 or time1.

Note thatr(Ti+1) is eitherd(Ti) − 1 or d(Ti). Thus,
consecutive windows either overlap by one slot, or are dis-
joint. The “b-bit,” denoted byb(Ti), distinguishes between

these possibilities. Formally,b(Ti) =
⌈

i
wt(T )

⌉
−

⌊
i

wt(T )

⌋
.

For example, in Fig. 1(a),b(Ti) = 1 for 1 ≤ i ≤ 7 and
b(T8) = 0.

It can be shown that all windows of a heavy task are of
length two or three. For such tasks, the “group deadline” is
used to mark the end of a sequence of windows of length
two. Consider a sequenceTi, . . ., Tj of subtasks of a heavy
taskT such thatb(Tk) = 1, |w(Tk+1)| = 2 for all i ≤
k < j. Then, schedulingTi in its last slot forces the other
subtasks in this sequence to be scheduled in their last slots.
For example, in Fig. 1(a), schedulingT3 in slot 4 forcesT4

and T5 to be scheduled in slots 5 and 6, respectively. A
group deadline corresponds to a time by which any such
“cascade” of scheduling decisions must end. Formally, it
is a timet such that either(t = d(Ti) ∧ b(Ti) = 0) or
(t + 1 = d(Ti) ∧ |w(Ti)| = 3) for some subtaskTi. For
example, the task in Fig. 1(a) has group deadlines at times
4, 8, and 11.

We let D(Ti) denote the group deadline of subtaskTi.
If T is heavy, thenD(Ti) = (minu : u ≥ d(Ti) ∧ u is a
group deadline ofT ). For example, in Fig. 1(a),D(T1) = 4
andD(T6) = 11. If T is light, thenD(Ti) = 0.

Task models. In this paper, we consider theintra-
sporadic(IS) and thegeneralized-intra-sporadic(GIS) task
models [2, 7], which provide a general notion of recurrent
execution that subsume that found in the well-studied peri-
odic and sporadic task models. Thesporadicmodel gener-
alizes the periodic model by allowing jobs to be released
“late”; the IS model allows subtasks to be released late,
as illustrated in Fig. 1(b). More specifically, the separa-
tion betweenr(Ti) andr(Ti+1) is allowed to be more than
bi/wt(T )c − b(i − 1)/wt(T )c, which would be the sepa-
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Figure 2. Fluid schedule for the first five subtasks (T1, . . . , T5) of a taskT of weight5/16. The share of each subtask in each slot
of its PF-window is shown. In(a), no subtask is released late; in(b), T2 andT5 are released late. Note thatshare(T, 3) is either
5/16 or 1/16 depending on when subtaskT2 is released.

ration if T were periodic. Thus, an IS task is obtained by
allowing a task’s windows to be shifted right from where
they would appear if the task were periodic.

Let θ(Ti) denote the offset of subtaskTi, i.e., the amount
by which w(Ti) has been shifted right. Then, by (2), we
have the following.

r(Ti) = θ(Ti) +

⌊
i− 1

wt(T )

⌋
∧ d(Ti) = θ(Ti) +

⌈
i

wt(T )

⌉
(3)

The offsets are constrained so that the separation between
any pair of subtask releases is at least the separation be-
tween those releases if the task were periodic. Formally,
k > i ⇒ θ(Tk) ≥ θ(Ti).

Each subtaskTi has an additional parametere(Ti) that
specifies the first time slot in which it is eligible to be sched-
uled. We requiree(Ti) ≤ r(Ti) ande(Ti) ≤ e(Ti+1) for
all i ≥ 1. Additionally, no subtask can become eligible
before its predecessor completes execution. The interval
[r(Ti), d(Ti)) is called thePF-windowof Ti and the inter-
val [e(Ti), d(Ti)) is called theIS-windowof Ti. A schedule
for an IS system isvalid iff each subtask is scheduled in its
IS-window.

b-bits for IS tasks are defined in the same way as for pe-
riodic tasks.r(Ti) is defined as follows.

r(Ti) =

{
e(Ti), if i = 1
max(e(Ti), d(Ti−1)− b(Ti−1)), if i ≥ 2

(4)

Ti’s deadlined(Ti) is defined to ber(Ti) + |w(Ti)|. PF-
window lengths are defined as before. Thus, by (2), we have

d(Ti) = r(Ti) +
⌈

i
wt(T )

⌉
−

⌊
i−1

wt(T )

⌋
.

Generalized intra-sporadic (GIS) task systems. A GIS
task system is obtained by removing subtasks from a corre-
sponding IS task system, and thus, is a more general model
than the IS model. Specifically, in a GIS task system, a task
T , after releasing subtaskTi, may release subtaskTk, where
k > i + 1, instead ofTi+1, with the following restriction:

r(Tk)−r(Ti) is at least
⌊

k−1
wt(T )

⌋
−

⌊
i−1

wt(T )

⌋
. For the special

case whereTk is the first subtask released byT , r(Tk) must

be at least
⌊

k−1
wt(T )

⌋
. Fig. 1(c) shows an example. If a task

T , after executing subtaskTi, releases subtaskTk, thenTk

is called thesuccessorof Ti andTi is called thepredecessor
of Tk.

As shown in [2], an IS or GIS task systemτ is feasible
onM processors iff∑

T∈τ

wt(T ) ≤ M. (5)

Algorithm EPDF. The earliest-pseudo-deadline-first
(EPDF) Pfair scheduling algorithm, considered in this
paper, is optimal on one or two processors, but not on more
than two processors [3]. At each timet, EPDF schedules
at mostM eligible subtasks with the highest priority. As
its name suggests, higher priority is given to subtasks
with earlier deadlines; a tie between subtasks with equal
deadlines is broken arbitrarily.

Shares and lags in IS and GIS task systems.lag(T, t)
is defined for IS and GIS tasks as before [7]. Letideal(T, t)
denote the processor share thatT receives in an ideal fluid
(processor-sharing) schedule in[0, t). Then,

lag(T, t) = ideal(T, t)−
t−1∑
u=0

S(T, u). (6)

Towards defining ideal(T, t), we define share(T, u),
which is the share assigned to taskT in slotu. share(T, u)
is defined in terms of a functionf(Ti, t) that indicates the
share assigned to subtaskTi in slot t. f(Ti, t) is defined as
follows.

(
⌊

i−1
wt(T )

⌋
+ 1)× wt(T )− (i− 1), if t = r(Ti)

i− (
⌈

i
wt(T )

⌉
− 1)× wt(T ), if t = d(Ti)− 1

wt(T ), if t ∈ (r(Ti), d(Ti)−1)
0, otherwise

(7)
Fig. 2 shows the values off for different subtasks of a
task of weight 5/16. Givenf , share(T, u) can be de-
fined asshare(T, u) =

∑
i f(Ti, u). As shown in Fig. 2,

share(T, u) usually equalswt(T ), but in certain slots, it



may be less thanwt(T ). We can now defineideal(T, t) as∑t−1
u=0 share(T, u). Hence, from (6),

lag(T, t + 1) =

t∑
u=0

(share(T, u)− S(T, u))

= lag(T, t) + share(T, t)− S(T, t). (8)

Similarly, the total lag for a scheduleS and task sys-
temτ at timet + 1, denotedLAG(τ, t + 1), is as follows.
(LAG(τ, 0) is defined to be0.)

LAG(τ, t+1) = LAG(τ, t)+
∑
T∈τ

(share(T, t)−S(T, t)). (9)

The following lemma gives two properties concerning
thef values of subtasks as defined by (7).

Lemma 1 [6] Let f be as defined by(7). Then, the follow-
ing hold.

(a) If b(Ti−1) = 1 and subtask Ti exists, then
f(Ti−1, d(Ti−1)) + f(Ti, r(Ti)) = wt(T ).

(b) (∀Ti, t :: f(Ti, t) ≥ 1
T.p ).

3 Tardiness Bounds for EPDF

In this section, we present results concerning tardiness
bounds that can be guaranteed under EPDF. As mentioned
earlier, if subtaskTi completes execution at timet, then its
tardiness is given bymax(0, t − d(Ti)). Thetardiness of a
task systemis defined as the maximum tardiness among all
of its subtasks in any schedule.

It is easy to show that subtask deadlines can be missed
under EPDF. In [8], it was conjectured that EPDF always
ensures a tardiness of at most one. We now show that this
conjecture is false.

Theorem 1 Tardiness under EPDF can exceed three
quanta. In particular, if EPDF is used to schedule task sys-
temτi (1 ≤ i ≤ 3) in Table 1, then a tardiness ofi + 1
quanta is possible.

Proof: Fig. 3 shows a schedule forτ1, in which a subtask
has a tardiness of two at time 50. The schedules forτ2 and
τ3 are too lengthy to be depicted; we verified them using
two EPDF simulators. 2

The sufficient condition for a tardiness of one as given
by Srinivasan and Anderson requires that the sum of the
weights of theM − 1 heaviest tasks be less thanM+1

2 .
This can be ensured if the weight of each task is restricted
to be at most1/2. We next show that, in general, a weight
restriction of2/3 (66.7%) per task is sufficient to guarantee
a tardiness of one, and that for the special case where a
subtask does not become eligible before its release time,
this restriction can be improved to11/15 (73.3%). These
restrictions are stated below.

Table 1. Counterexamples to show that tardiness under
EPDF can exceed three.

Task Set Util. Tardiness
(M) (in quanta)

# of weight
tasks

τ1 4 1/2 10 2 at 50
3 3/4
6 23/24

τ2 4 1/2 19 3 at 963
3 3/4
5 23/24
10 239/240

τ3 4 1/2 80 4 at 43,204
3 3/4
3 23/24
1 31/32
4 119/120
4 239/240
6 479/480
8 959/960
15 1199/1200
15 2399/2400
20 4799/4800

(C) The weight of each task is at most2/3.
(D) The weight of each task is at most11/15, and for every
subtaskTi, e(Ti) = r(Ti).

In this paper, we prove the following theorem, which
states that (C) is sufficient for EPDF to guarantee a tardi-
ness of at most one.

Theorem 2 EPDF ensures a tardiness of at most one quan-
tum for feasible GIS task systems that satisfy(C).

The proof of the theorem stated next, which establishes
the sufficiency of (D), can be found in [5]. (It is the same as
that for Theorem 2, except for one case.)

Theorem 3 EPDF ensures a tardiness of at most one quan-
tum for feasible GIS task systems that satisfy(D).

Before proving Theorem 2, we reproduce some helpful
definitions and lemmas from [7] and [8].

In a scheduleS, if k processors are idle at time slott,
then we say that there arek holesin S at slott. The follow-
ing lemma relates an increase in total lag to the presence of
holes.

Lemma 2 [7] If LAG(τ, t) < LAG(τ, t + 1), then there is
a hole in slott in S.

We prove Theorem 2 in a manner similar to that used in
[8]. If (C) is not sufficient, thentd andτ defined as follows
both exist.
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Figure 3. Counterexample to prove that tardiness under EPDF can exceed one quantum. 13 periodic tasks with total utilization
10 are scheduled on 10 processors using EPDF. In the schedule, tasks of the same weight are shown together as a group. Each
column corresponds to a time slot. The Pfair window of each subtask is shown as a sequence of dashes that are aligned. An integer
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shown scheduled after their windows. Ties are broken in favor of tasks with lower weights. In this schedule, 11 subtasks miss their
deadlines at time 48. Hence, at least one subtask has a tardiness of two quanta.

Definition 1: td is the earliest deadline of a subtask with
a tardiness of two under EPDF in any task system satisfying
(C), i.e., there exists some task system with a subtask with
a deadline attd and a tardiness of two, and there does not
exist any other task system with a subtask with a deadline
prior to td and a tardiness of two.

Definition 2: τ is a feasible task system satisfying (C) with
the following properties.

(T1) td is the earliest deadline of a subtask inτ with a tar-
diness of two under EPDF.

(T2) No feasible task system satisfying (C) and (T1) re-
leases fewer subtasks in[0, td) thanτ .

(T3) No feasible task system satisfying (C), (T1), and (T2)
has a larger rank thanτ at td, where rank is defined as fol-
lows.

Therankof a systemτ att is the sum of the eligibility times
of all subtasks with deadlines at mostt.

By (T1) and (T2), exactly one subtask inτ has a tardiness
of two: if several such subtasks exist, then all but one can
be removed and the remaining subtask will still have a tardi-
ness of two, contradicting (T2). Additionally, the following
assertions follow from the above properties and definitions.

(A1) (∃Ti ∈ τ : d(Ti) = td ∧ tardiness(Ti) = 2)
(A2) (∀Ti ∈ τ : d(Ti) < td ⇒ tardiness(Ti) ≤ 1)
In the rest of this paper, we useS to denote an EPDF sched-
ule for τ onM processors, in which a subtask with a dead-
line attd has a tardiness of two. The following lemma sum-
marizes some properties ofτ andS. It is proved in [7], [8],
and [5].

Lemma 3 The following properties hold forτ andS, where
Ti is any subtask inτ .

(a) For all Ti, d(Ti) ≤ td.

(b) LAG(τ, td) ≥ M + 1.

(c) There are no holes in slottd − 1.

(d) LAG(τ, td − 1) ≥ M + 1.

(e) There exists a timeu ∈ [0, td − 2] such that
LAG(τ, u) < M + 1 andLAG(τ, u + 1) ≥ M + 1.

By Lemma 3(e), there exists a time slotu < td − 1 across
whichLAG increases to at leastM +1. By Lemma 2, there
is at least one hole inu. Thus, there exists a time slotth
with h ≥ 1 holes satisfying the following.

(A3) 0 ≤ th < td − 1∧ LAG(τ, th + 1) ≥ M + 1∧ (∀u :
u ∈ [0, th] :: LAG(τ, u) < M + 1).
In other words,th is the earliest time slot across whichLAG
increases toM + 1. In what follows, we derive an upper
bound on the lags of all tasks inτ at th + 1 and prove that
if (C) is satisfied, then their sum is strictly less thanM + 1,
contradicting the existence ofth.

3.1 Categorization of Subtasks

In this subsection, we show how to categorize subtasks
and bound their lags based on those categories.

k-dependentsubtasks. Subtasks of heavy tasks can be di-
vided into “groups” based on their group deadlines in a
straightforward manner: place all subtasks with identical
group deadlines in the samegroup and identify the group
using the smallest index of any subtask in that group. For
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example, in Fig. 1,G1 = {T1, T2}, G3 = {T3, T4, T5}, and
G6 = {T6, T7, T8}. If there are no IS or GIS separations
among the subtasks of a group, then a deadline miss by one
for a subtaskTi will necessarily result in a deadline miss by
at least one for the remaining subtasks inTi’s group. Hence,
a subtaskTj is dependent on all prior subtasks in its group
for not missing its deadline. We say thatTj is k-dependent,
wherek ≥ 0, if T is heavy andTj is the(k + 1)st subtask
in its group (assuming all subtasks are present). If a task
T is light, then we simply define all of its subtasks to be
0-dependent.

Miss initiators. We call a subtask missing its deadline at
t by onea miss initiator(MI) for its group if no subtask of
the same task is scheduled att−1. Thus, a subtask is an MI
if it misses its deadline and is either the first subtask in its
group to do so or is separated from its predecessor by an IS
or GIS separation. Such a subtask is termed a miss initiator
because in the absence of future separations, it causes all
subsequent subtasks in its group to miss their deadlines as
well. Tk ∈ Gi is an MI if tardiness(Tk) = 1 ∧ S(Tk, t) =
1, andS(Tj , t− 1) = 0, for all j < k. Several examples of
MIs are shown in Fig. 4

Successors of miss initiators. The immediate succes-
sor Ti+1 of a miss-initiator subtaskTi is called asuc-
cessor of a miss initiator(SMI) if tardiness(Ti+1) =
tardiness(Ti) = 1 andS(Ti+1, t) = 1⇒ S(Ti, t−1) = 1.
Fig. 4 shows several examples. Note that forTi+1 to be
an SMI, its predecessor inS must beTi, rather than some
lower-indexed subtask ofT .

The following lemma, proved in [5], bounds the lag of
a task at timet, based on thek-dependency of its last-
scheduled subtask.

Lemma 4 [5] LetTi be ak-dependent subtask of a GIS task
T for k ≥ 0, and letd(Ti) < td. Thenlag(T, d(Ti) + 1) <
(k + 2) · wt(T )− k.

The share that a GIS task receives in the ideal system
may be zero during certain time slots, if subtasks are absent
or are released late. We distinguish between tasks with and
without subtasks at timet using the following definition of
anactivetask.

Definition 3:[7] A task U is active at time t if it has a
subtaskUj such thate(Uj) ≤ t < d(Uj).

Earlier, we showed how subtasks can be categorized.
The following is a classification oftasksas given by Srini-
vasan and Anderson [7, 8].

A: Set of all tasks that are active and scheduled atth.

B: Set of all tasks that are active, but not scheduled atth.

I: Set of all tasks that are inactive atth.

A, B, andI form a partition ofτ , i.e.,

A ∪B ∪ I = τ and A ∩B = B ∩ I = I ∩A = ∅. (10)

We further classify tasks inA, based on the tardiness of their
subtasks scheduled atth, as follows.

A0: IncludesT in A iff its subtask scheduled atth has zero
tardiness.

A1: IncludesT in A iff its subtask scheduled atth has a
tardiness of one.

A1 is further partitioned intoA0
1, A1

1, andA2
1.

A0
1: IncludesT in A1 iff its subtask scheduled atth is an

MI.

A1
1: IncludesT in A1 iff its subtask scheduled atth is an

SMI.

A2
1: IncludesT in A1 iff its subtask scheduled atth is nei-

ther an MI nor an SMI.
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Figure 5. Task classification for Lemmas 6 – 11. The PF-
windows of a sample task in each set are shown. An arrow
over release (deadline) indicates that the release (deadline)
could be anywhere in the direction of the arrow. An (no) X
in a slot indicates that a subtask is (not) scheduled in that
slot.

From the above, we have

A0 ∪ A1 = A and A1
0 ∪ A1

1 ∪A2
1 = A1. (11)

This classification of tasks is illustrated in Fig. 5. The car-
dinalities of the subsets ofA are denoted as follows.

a0 = |A0|; a0
1 = |A0

1|; a1
1 = |A1

1|; a2
1 = |A2

1|. (12)

The next lemma, proved in [5], shows thata0 ≥ 1.

Lemma 5 [5] There exists a subtaskWl scheduled atth
with d(Wl) = th + 1.

The next six lemmas give bounds on the lags of tasks in
A, B, andI at th + 1.

Lemma 6 [8] For T ∈ I, lag(I, th + 1) = 0.

Lemma 7 [8] For T ∈ B, lag(B, th + 1) ≤ 0.

Lemma 8 For T ∈ A0, lag(T, th + 1) < wt(T ).

Proof: LetTi be the subtask ofT scheduled atth. As shown
in Fig. 5, the ideal system can be ahead of the actual system
in executingT only by the amount of flow inTi+1’s first
slot. By parts (a) and (b) of Lemma 1, this flow is less than
wt(T ). 2

Lemma 9 For T ∈ A0
1, lag(T, th + 1) < 2 · wt(T ).

Proof: If T ∈ A0
1, then the subtaskTi of T scheduled at

th is an MI , andd(Ti) = th. If Ti is k-dependent, then by
Lemma 4,lag(T, th + 1) is less than((k + 2) ·wt(T )− k),
which is at most2 · wt(T ), for all k ≥ 0. 2

The next two lemmas follow similarly.

Lemma 10 For T ∈ A1
1, lag(T, th + 1) < 3 · wt(T )− 1.

Lemma 11 For T ∈ A2
1, lag(T, th + 1) < 4 · wt(T )− 2.

Finally, we show thatLAG(τ, th + 1) < M + 1 in each
of the following cases.

Case A: A1 = ∅.
Case B: A0

1 6= ∅.
Case C: A0

1 = ∅ andA1
1 6= ∅.

Case D: A0
1 = A1

1 = ∅.

For each case above,LAG(τ, th + 1) can be ex-
pressed as follows. From (10), (11), and Lemmas 6
and 7, we haveLAG(τ, th + 1) ≤

∑
T∈A0

lag(T, th +
1) +

∑
T∈A0

1
lag(T, th + 1) +

∑
T∈A1

1
lag(T, th + 1) +∑

T∈A2
1
lag(T, th + 1), which by Lemmas 8– 11 implies

thatLAG(τ, th+1) <
∑

T∈A0
wt(T )+

∑
T∈A0

1
2·wt(T )+∑

T∈A1
1
(3 · wt(T ) − 1) +

∑
T∈A2

1
(4 · wt(t) − 2). Let-

ting wt denote the weight of the heaviest task, by (12),
LAG(τ, th + 1) can be bounded as

LAG(τ, th + 1) < a0 · wt + a0
1 · 2 · wt

+a1
1 · (3 · wt− 1) + a2

1 · (4 · wt− 2). (13)

The total number of processors,M , expressed in terms of
the number of subtasks in each subset ofA scheduled atth,
and the number of holes inth, is as follows.

M = a0 + a0
1 + a1

1 + a2
1 + h (14)

Case A:A1 = ∅. Case A is dealt with as follows.

Lemma 12 If A1 = ∅, thenLAG(τ, th + 1) < M − 1.

Proof: If A1 = ∅, thena0
1 = a1

1 = a2
1 = 0. Therefore, by

(13),LAG(τ, th + 1) < a0 ·wt, and by (14),a0 = M − h.
Hence, becausewt < 1, LAG(τ, th + 1) < M − h, which,
becauseh > 0, implies thatLAG(τ, th + 1) < M − 1. 2

Case B:A0
1 6= ∅. The following lemma, proved in [5],

shows that if an MI is scheduled atth, then the total lag at
th + 1 is less thanM + 1.

Lemma 13 [5] If a0
1 > 0, thenLAG(τ, th + 1) < M + 1.



Case C:A0
1 = ∅; A1

1 6= ∅. The following lemma estab-
lishes the sufficiency of (C) for this case.

Lemma 14 If A0
1 = ∅ andA1

1 6= ∅, thenLAG(τ, th +1) <
M + 1.

Proof: The proof is by contradiction. Assume to the con-
trary thatLAG(τ, th +1) ≥ M +1. From (13) andA0

1 = ∅,
we haveLAG(τ, th + 1) < a0 ·wt + a1

1 · (3wt− 1) + a2
1 ·

(4wt − 2). Becausewt < 1, we have4wt − 2 < 3wt − 1.
Therefore,LAG(τ, th+1) < a0 ·wt+(a1

1+a2
1) ·(3wt−1),

which by (14) yieldsLAG(τ, th + 1) < a0 · wt + (M −
h − a0) · (3wt − 1). If LAG(τ, th + 1) ≥ M + 1, then
a0 ·wt+(M −h−a0) · (3wt−1) > M +1, which implies
thatwt > f = 2M−h−a0+1

3M−3h−2a0
. By Lemma 5,a0 ≥ 1. It can

be shown thatf is minimized whenh = a0 = 1. Because
a1
1 > 0, this implies thatM ≥ 3, by (14). Forh = a0 = 1,

f = 2M−1
3M−5 > 2

3 , for all M ≥ 2. Thus, (C) is violated. 2

Case D:A0
1 = A1

1 = ∅.

Lemma 15 If A0
1 = A1

1 = ∅, thenLAG(τ, th + 1) < M +
1.

Proof: The proof is again by contradiction. From (13) and
A0

1 = A1
1 = ∅, LAG(τ, th + 1) < a0 ·wt + (4wt− 2) · a2

1,
which, by (14), equalsa0 · wt + (4wt − 2) · (M − h −
a0). If LAG(τ, th + 1) ≥ M + 1, thena0 · wt + (4wt −
2) · (M − h − a0) > M + 1, which in turn implies that
wt > f = 3M−2h−2a0+1

4M−4h−3a0
. M , h, anda0 are constrained

by M ≥ h + a0, andM,h, a0 > 0. It can be shown that
the value off is minimized whenh = a0 = 1, for which
f = 3M−3

4M−7 > 3
4 , for all M > 1. This violates (C) (and (D)).

2

By Lemmas 12–15, if (C) is satisfied, thenLAG(τ, th +
1) < M + 1, which is a contradiction to (A3). Thus, Theo-
rem 2 is proved.

3.2 Other Results
(C) and (D) can be generalized by giving per-task weight

restrictions of1+q
2+q and 7+4q

11+4q , respectively, for ensuring a
tardiness ofq, whereq ≥ 1. The proof for each is the same
as before, except for generalizations to allow subtasks with
tardiness up toq to be scheduled in any slot.

It can be shown that a tardiness of two less than the
largest difference between successive group deadlines of
any task can be ensured, in the absence of any restrictions.
A formal proof is omitted due to space constraints. How-
ever, note that the key to the proof we have presented is deal-
ing with the impact of cascades of deadline misses in heavy
tasks. Such cascades must end by the next group deadline,
regardless of any restrictions.

4 Conclusion
We have presented counterexamples that show that tar-

diness under the EPDF Pfair algorithm can exceed a small

constant number of quanta for task systems that are not re-
stricted, thereby proving false the conjecture that EPDF en-
sures a tardiness of one quantum. We have also presented
sufficient weight restrictions that are more liberal than those
previously known.
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