
Fair Scheduling of Dynamic Task Systems on

Multiprocessors∗

Anand Srinivasan and James H. Anderson
Department of Computer Science, University of North Carolina at Chapel Hill

Abstract

In dynamic real-time task systems, tasks that are sub-
ject to deadlines are allowed to join and leave the sys-
tem. In previous work, Stoica et al. and Baruah et al.
presented conditions under which such joins and leaves
may occur in fair-scheduled uniprocessor systems with-
out causing missed deadlines. In this paper, we extend
their work by considering fair-scheduled multiproces-
sors. We show that their conditions are sufficient onM
processors, under all known (dynamic-priority) Pfair
scheduling algorithms, if the utilization of every subset
of M − 1 tasks is at most one. Further, for the gen-
eral case in which task utilizations are not restricted in
this way, we derive sufficient join/leave conditions for
the PD2 Pfair algorithm. We also show that, in gen-
eral, these conditions cannot be improved upon without
causing missed deadlines.

Keywords: Dynamic task systems, Pfairness, multi-
processors, real-time systems, scheduling

1 Introduction

In many real-time systems, the set of runnable
tasks may change dynamically. For example, in
an embedded system, different modes of opera-
tion may need to be supported; a mode change
may require adding new tasks and deleting exist-
ing tasks. Another example is a desktop system
that supports real-time applications such as mul-
timedia and collaborative-support systems, which
may be initiated at arbitrary times.
The distinguishing characteristic of dynamic

task systems such as these is that tasks are al-
lowed to join and leave the system. If such joins

∗Work supported by NSF grants CCR 9972211, CCR
9988327, ITR 0082866, and CCR 0204312. E-mail:
anands@cs.unc.edu.

and leaves are unrestricted, then the system may
become overloaded, and deadlines may be missed.
Thus, joins and leaves must be performed only un-
der conditions that ensure that deadline guaran-
tees are not compromised. A suitable join con-
dition usually can be obtained from the feasibil-
ity test associated with the scheduling algorithm
being used. A leave condition is somewhat trick-
ier. In particular, if an “over-allocated” task is
allowed to leave, then it might re-join immedi-
ately, and thus effectively execute at a higher-than-
prescribed rate.

In this paper, we consider the problem of
scheduling such task systems on multiprocessors.
This problem has been studied earlier in the con-
text of uniprocessor static-priority [9, 12] and
fair-allocation schemes [5, 11]. Our focus is fair
scheduling because it is the only known way of
optimally scheduling recurrent real-time tasks on
multiprocessors [1, 3, 4, 10]. In addition, practi-
cal interest in multiprocessor fair scheduling algo-
rithms is growing. For example, Ensim Corp., an
Internet service provider, has deployed such algo-
rithms in its product line [8]. Indeed, the need
to support dynamic tasks is fundamental in this
setting.

In fair scheduling disciplines, tasks are required
to make progress at steady rates. Steady alloca-
tion rates are ensured by scheduling in a man-
ner that closely tracks an ideal, fluid allocation.
The lag of a task measures the difference between
its ideal and actual allocations. In fair schedul-
ing schemes, lags are required to remain bounded.
(Such a bound in turn implies a bound on the time-
liness of real-time tasks.) If a task’s lag is positive,
then it has been under-allocated; if negative, then
it has been over-allocated. In the uniprocessor

1

join/leave conditions presented previously [5, 11],
a task is allowed to leave iff it is not over-allocated,
and join iff the total utilization after it joins is at
most one.
Extending the above-mentioned work to multi-

processors is not straightforward; in fact, Baruah
et al. explicitly noted the multiprocessor case as
an open problem [5]. In recent work, dynamic
multiprocessor systems were considered by Chan-
dra et al. [6, 7]. However, their work was en-
tirely experimental in nature, with no formal anal-
ysis of the algorithms considered. In this paper,
we present multiprocessor join/leave conditions for
which such analysis is provided.
We now briefly describe some of the fair schedul-

ing concepts used in this paper. We then present a
more detailed overview of the contributions of this
paper.

Pfair scheduling. The periodic task model pro-
vides the simplest notion of a recurrent real-time
task. In this model, successive job releases by the
same task are spaced apart by a fixed interval,
called the task’s period . Periodic tasks can be op-
timally scheduled on multiprocessors using Pfair
scheduling algorithms [1, 3, 4]. Pfairness requires
the lag of each task to be bounded between −1 and
1, which is a stronger requirement than periodicity.
As we shall see, these lag bounds have the effect of
breaking each task into quantum-length subtasks
that must be scheduled within windows of approx-
imately equal lengths. The length and alignment
of a task’s windows are determined by its weight.
The weight or utilization of a task is the ratio
of its per-job execution cost and period; a task’s
weight determines the processor share it requires.
Fig. 1(a) shows the subtasks and windows for the
first job of a periodic task of weight 8/11.
In the sporadic model, the periodic notion of

recurrence is relaxed by specifying a minimum
(rather than exact) spacing between consecutive
job releases of the same task. In recent work
[2, 10], we extended the sporadic model to ob-
tain the intra-sporadic (IS) and generalized intra-
sporadic (GIS) models. The sporadic model allows
jobs to be released “late”; the IS model allows sub-
tasks to be released late, as illustrated in Fig. 1(b).
The GIS model is obtained from the IS model by

allowing subtasks to be absent. Fig. 1(c) shows an
example.
In [10], we showed that the PD2 Pfair algo-

rithm optimally schedules static GIS task systems
on multiprocessors. In [2], we proved that the
(simpler) earliest-pseudo-deadline-first (EPDF) al-
gorithm is optimal for scheduling static IS task
systems on two processors. (PD2 and EPDF are
described in Sec. 2.2.)

Contributions. In this paper, we extend our
earlier work, as well as prior work on uniproces-
sor fairness, in several significant ways. First,
we show that the previously-presented uniproces-
sor join/leave conditions [5, 11] are insufficient for
avoiding deadline misses when tasks are scheduled
using any of a class of algorithms that includes
all known (dynamic-priority) Pfair scheduling al-
gorithms. Second, we show that these uniprocessor
conditions are sufficient when using any algorithm
in this class, if the total weight of any subset of
M − 1 tasks is at most one at all times. This re-
sult extends our earlier result on the optimality
of EPDF for two-processor systems [2]. Third, we
derive sufficient conditions for the general case in
which task weights are not restricted as above, and
PD2 is used for scheduling.
The rest of the paper is organized as follows.

In Sec. 2, needed definitions are given. In Sec. 3,
our join/leave conditions are stated. Results per-
taining to the EPDF and PD2 algorithms are then
presented in Secs. 4 and 5, respectively. We con-
clude in Sec. 6.

2 Preliminaries

In the following subsections, relevant concepts and
terms are defined. We begin with Pfair scheduling.

2.1 Pfair scheduling

In defining notions relevant to Pfair scheduling,
we limit attention (for now) to periodic tasks.1 A
periodic task T with an integer period T.p and an
integer execution cost T.e has a weight wt(T) =

1Unless specified otherwise, we assume that each peri-
odic task begins execution at time 0.

2

0 1 2 3 4 5 6 7 8 9 10 11 0 1 2 3 4 5 6 7 8 9 10 11 120 1 2 3 4 5 6 7 8 9 10 11 12

T1

T2

T3

T4

T5

T6

T7

T8

T1

T2

T3

T4

T5

T6

T7

T8

T1

T2

T4

T5

T6

T7

T8

(c)(b)(a)

Figure 1: (a) Windows of the first job of a periodic task T with weight 8/11. This job consists of subtasks
T1, . . . , T8. Each of these subtasks must be scheduled during its window, or a lag-bound violation will result.
(This pattern repeats for every job.) (b) The Pfair windows of an IS task. Subtask T5 becomes eligible one time
unit late. (c) The Pfair windows of a GIS task. Subtask T3 is absent and T5 is one time unit late. (Because T3

is absent, this is not an IS task.)

T.e/T.p, where 0 < wt(T) ≤ 1. A task T is light
if wt(T) < 1/2, and heavy otherwise.
Under Pfair scheduling, processor time is allo-

cated in discrete time units, called quanta; the time
interval [t, t+1), where t is a nonnegative integer,
is called slot t. (Hence, time t refers to the begin-
ning of slot t.) In each slot, each processor can be
allocated to at most one task. A task may be allo-
cated time on different processors, but not in the
same slot (i.e., interprocessor migration is allowed
but parallelism is not). The sequence of allocation
decisions over time defines a schedule S. Formally,
S : τ×N �→ {0, 1}, where τ is a set of tasks and N
is the set of nonnegative integers. S(T, t) = 1 iff
T is scheduled in slot t. Thus, in any M -processor
schedule,

∑
T∈τ S(T, t) ≤M for all t.

The notion of a Pfair schedule is defined by
comparing such a schedule to a fluid processor-
sharing schedule that allocates wt(T) processor
time to task T in each slot. Deviance from the
fluid schedule is formally captured by the concept
of lag . The lag of task T at time t is lag(T, t) =
wt(T) · t− ∑t−1

u=0 S(T, u). A schedule is Pfair iff

(∀T, t :: −1 < lag(T, t) < 1). (1)

Informally, the allocation error associated with
each task must always be less than one quantum.
The lag bounds above have the effect of breaking

each task T into an infinite sequence of unit-time
subtasks. We denote the ith subtask of task T as
Ti, where i ≥ 1. As in [3], we associate a pseudo-
release r(Ti) and pseudo-deadline2 d(Ti) with each

2In our earlier work [1, 2, 10], pseudo-deadlines were de-

subtask Ti, as follows. (For brevity, we often drop
the prefix “pseudo-.”)

r(Ti) =
⌊

i−1
wt(T)

⌋
∧ d(Ti) =

⌈
i

wt(T)

⌉
(2)

Ti must be scheduled in the interval w(Ti) =
[r(Ti), d(Ti)), termed its window , or (1) will be
violated. Note that r(Ti+1) is either d(Ti) − 1
or d(Ti). Thus, consecutive windows of the same
task either overlap by one slot or are disjoint (see
Fig. 1(a)). The length of Ti’s window, denoted
|w(Ti)|, is d(Ti) − r(Ti). As an example, consider
subtask T2 in Fig. 1(a). Here, we have r(T2) = 1,
d(T2) = 3, and |w(T2)| = 2. Therefore, T2 must be
scheduled in either slot 1 or 2. (If T1 is scheduled
in slot 1, then T2 must be scheduled in slot 2.)

2.2 Scheduling Algorithms

In earlier work [2], we proved that the earliest-
pseudo-deadline-first (EPDF) Pfair algorithm is
optimal on at most two processors, but not on
more than two processors. As its name suggests,
EPDF gives higher priority to subtasks with ear-
lier deadlines. A tie between subtasks with equal
deadlines is broken arbitrarily.
At present, three Pfair scheduling algorithms are

known to be optimal on an arbitrary number of
processors: PF [3], PD [4], and PD2 [1]. These
algorithms prioritize subtasks on an EPDF basis,
but differ in the choice of tie-breaking rules. PD2,
which is the most efficient of the three, uses two

fined to refer to slots; here, they refer to time. Hence, the
formula for d(Ti) given here is slightly different.

3

tie-break parameters.
The first PD2 tie-break is a bit, denoted by b(Ti).

As mentioned earlier, consecutive windows of a
task are either disjoint or overlap by one slot. b(Ti)
distinguishes between these two possibilities.

b(Ti) = d(Ti)− r(Ti+1) (3)

For example, in Fig. 1(a), b(Ti) = 1 for 1 ≤ i ≤ 7
and b(T8) = 0. PD2 favors a subtask with a b-bit
of 1 over one with a b-bit of 0. Informally, it is
better to execute Ti “early” if its window overlaps
that of Ti+1, because this potentially leaves more
slots available to Ti+1.
The second PD2 tie-break, the group deadline,

is needed in systems containing tasks with win-
dows of length two. A task T has such windows
iff 1/2 ≤ wt(T) < 1. Consider a sequence Ti,
. . . , Tj of subtasks of such a task T such that
b(Tk) = 1 ∧ |w(Tk+1)| = 2 for all i ≤ k < j.
Scheduling Ti in its last slot forces the other sub-
tasks in this sequence to be scheduled in their
last slots. For example, in Fig. 1(a), scheduling
T3 in slot 4 forces T4 and T5 to be scheduled in
slots 5 and 6, respectively. The group deadline
of a subtask Ti, denoted D(Ti), is the earliest
time by which such a “cascade” must end. For-
mally, it is the earliest time t, where t ≥ d(Ti),
such that either (t = d(Tk) ∧ b(Tk) = 0) or
(t+1 = d(Tk) ∧ |w(Tk)| = 3) for some subtask Tk.
For example, in Fig. 1(a), D(T3) = d(T6) − 1 = 8
and D(T7) = d(T8) = 11. PD2 favors subtasks
with later group deadlines because not schedul-
ing them can lead to longer cascades, which places
more constraints on the future schedule.
We can now describe the PD2 priority definition.

If subtasks Ti and Uj are both eligible at time t,
then PD2 prioritizes Ti over Uj at t if (d(Ti) <
d(Uj)), or (d(Ti) = d(Uj) ∧ b(Ti) = 1 ∧ b(Uj) = 0),
or (d(Ti) = d(Uj) ∧ b(Ti) = b(Uj) ∧ D(Ti) ≥
D(Uj)). (Refer to [1] for a more detailed explana-
tion of PD2.)

2.3 Generalized Intra-sporadic Tasks

Having described the concept of Pfair scheduling,
we now describe the intra-sporadic (IS) and the
generalized intra-sporadic (GIS) task models.
The IS model generalizes the sporadic model by

allowing separation between consecutive subtasks
of a task. More specifically, the separation be-
tween r(Ti) and r(Ti+1) is allowed to be more than
�i/wt(T)� − �(i− 1)/wt(T)�, which is the separa-
tion if T were periodic. Thus, an IS task is ob-
tained by allowing a task’s windows to be right-
shifted from where they would appear if the task
were periodic. Fig. 1(b) illustrates this.

Each subtask of an IS task has an offset that
gives the amount by which its window has been
right-shifted. Let θ(Ti) denote the offset of subtask
Ti. Then, by (2), we have the following.

r(Ti) = θ(Ti) +
⌊

i−1
wt(T)

⌋
(4)

d(Ti) = θ(Ti) +
⌈

i
wt(T)

⌉
(5)

These offsets are constrained so that the separa-
tion between any pair of subtask releases is at least
the separation between those releases if the task
were periodic. Formally, the offsets satisfy the fol-
lowing property.

k ≥ i⇒ θ(Tk) ≥ θ(Ti) (6)

Each subtask Ti has an additional parameter
e(Ti) that corresponds to the first time slot in
which Ti is eligible to be scheduled. It is assumed
that e(Ti) ≤ r(Ti) and e(Ti) ≤ e(Ti+1) for all
i ≥ 1. Allowing e(Ti) to be less than r(Ti) is
equivalent to allowing “early” subtask releases as
in ERfair scheduling [1]. The interval [r(Ti), d(Ti))
is called the PF-window of Ti, while the interval
[e(Ti), d(Ti)) is called the IS-window of Ti.

The GIS model generalizes the IS model by al-
lowing subtasks to be absent. Thus, the subtasks
of a GIS task are a subset of the subtasks of an IS
task. Fig. 1(c) shows an example. The formulae
for subtask release times and deadlines of a GIS
task are the same as for an IS task. The b-bit and
group deadline for a subtask are defined as before
assuming that future subtask releases are as early
as possible. Thus, D(Ti) = θ(Ti) +Dp(Ti), where
Dp(Ti) is Ti’s group deadline if T were periodic.

Because the GIS model generalizes the other
task models above, it is the notion of recurrence
considered hereafter. We now present some defini-
tions and properties about GIS task systems.

4

0 2 3 4 5 6 71 0 2 3 4 5 6 71

T1

T2

T3 T3
T2

U1

U2

U3

V1

V2

V3

V1

V2

U2
U1

U3

T1

(b)(a)

a hole

W1 1

2 holes

leads to the following

chain of displacements.

Task T

Task U

Task V

Task W

Removing subtask

, 0, , 11VT1

W

, 1, 1 , 22UV

, 2, 2 , 31WU

Figure 2: A schedule for three tasks of weight 3/7 and one task of weight 1/7 on two processors. Solid lines depict
PF-windows; dashed lines are used to show the extent to which an IS-window extends before a corresponding
PF-window. Note that only subtasks T2 and U2 are eligible before their PF-windows. Inset (b) illustrates the
displacements caused by the removal of subtask T1 from the schedule shown in inset (a).

Terminology. An instance of a task system is
obtained by specifying a unique assignment of re-
lease times and eligibility times for each subtask,
subject to (6). Note that the deadline of a sub-
task is automatically determined once its release
time is fixed (refer to (4) and (5)). If a task T , af-
ter executing subtask Ti, releases subtask Tk, then
Tk is called the successor of Ti and Ti is called
the predecessor of Tk (e.g., T4 is T2’s successor in
Fig. 1(c)).

Feasibility. In [2, 10], we showed that a GIS task
system τ is feasible on M processors iff∑

T∈τ

wt(T) ≤M. (7)

In fact, the proof of this shows that a schedule
exists in which each subtask is scheduled in its PF-
window. In [10], we also proved that PD2 correctly
schedules any GIS task system for which (7) holds.

Displacements. By definition, the removal of
a subtask from one instance of a GIS task sys-
tem results in another valid instance. Let X(i)

denote a subtask of any task in a GIS task sys-
tem τ . Let S denote any schedule of τ ob-
tained by an EPDF-based algorithm. Assume
that removing X(1) scheduled at slot t1 in S
causes X(2) to shift from slot t2 to t1, where
t1 �= t2, which in turn may cause other shifts.
We call this shift a displacement and represent it

by a four-tuple 〈X(1), t1, X
(2), t2〉. A displacement

〈X(1), t1, X
(2), t2〉 is valid iff e(X(2)) ≤ t1. Because

there can be a cascade of shifts, we may have a
chain of displacements, as illustrated in Fig. 2.
Removing a subtask may also lead to slots in

which some processors are idle. In a schedule S,
if k processors are idle in slot t, then we say that
there are k holes in S in slot t. Note that holes
may exist because of late subtask releases, even if
total utilization is M .
The lemmas below concern displacements and

holes. The first two were proved earlier for PD2

[10] but apply to all algorithms that prioritize sub-
tasks on an EPDF basis. Lemma 1 states that a
subtask removal can only cause left-shifts, as in
Fig. 2(b). Lemma 2 indicates when a left-shift
into a slot with a hole can occur. Lemma 3 shows
that shifts across a hole cannot occur. Here, τ is
an instance of a GIS task system and S denotes
a schedule for τ obtained by an EPDF-based al-
gorithm. Throughout this paper, we assume that
ties among subtasks are resolved consistently, i.e.,
if τ ′ is obtained from τ by a subtask removal, then
the relative priorities of two subtasks in τ ′ are the
same as in τ .

Lemma 1 Let X(1) be a subtask that is removed
from τ , and let the resulting chain of displacements
in S be C = ∆1,∆2, . . . ,∆k, where ∆i =〈X(i), ti,
X(i+1), ti+1〉. Then ti+1 > ti for all i ∈ {1, . . . , k}.

5

Lemma 2 Let ∆ = 〈X(1), t1, X
(2), t2〉 be a valid

displacement in S. If t1 < t2 and there is a hole
in slot t1 in that schedule, then X(2) is X(1)’s suc-
cessor in τ .

Lemma 3 Let ∆ = 〈X(1), t1, X
(2), t2〉 be a valid

displacement in S. If t1 < t2 and there is a hole in
slot t′ such that t1 ≤ t′ < t2 in that schedule, then
t′ = t1 and X(2) is the successor of X(1) in τ .

Proof (of Lemma 3): Since ∆ is valid, e(X(2)) ≤
t1. If t1 < t′, then e(X(2)) < t′, implying that X(2)

is not scheduled in slot t2 > t′, as assumed, since
there is a hole in t′. Thus, t1 = t′; by Lemma 2,
X(2) is X(1)’s successor. ✷

Flows and lags in GIS task systems. Let v
be the time at which a GIS task T joins the system.
The lag of T at time t is defined in the same way
as it is defined for periodic tasks. Let ideal(T, v, t)
denote the share that T receives in a fluid schedule
in [v, t). Then,

lag(T, t) = ideal(T, v, t)−
t−1∑
u=v

S(T, u). (8)

Before defining ideal(T, v, t), we define flow(T, u),
which is the share assigned to task T in slot u.
flow(T, u) is defined in terms of a function f that
indicates the share assigned to each subtask in
each slot. Define f(Ti, u) as follows.


(
⌊

i−1
wt(T)

⌋
+ 1) · wt(T)− (i− 1), if u = r(Ti)

i− (
⌈

i
wt(T)

⌉
− 1) · wt(T), if u = d(Ti)− 1

wt(T), if r(Ti) < u < d(Ti)− 1
0, otherwise

(9)

Fig. 3 shows the values of f for different sub-
tasks of a task of weight 5/16. flow(T, u) is sim-
ply defined as flow(T, u) =

∑
i f(Ti, u). Observe

that flow(T, u) usually equals wt(T), but in cer-
tain slots, it may be less than wt(T), so that each
subtask of T has a unit share. In [10], we proved
the following flow properties.

(F1) For all time slots t, flow(T, t) ≤ wt(T).
(F2) Let Ti be a subtask of a GIS task and

let Tk be its successor. If b(Ti) = 1 and

r(Tk) ≥ d(Ti), then flow(T, d(Ti) − 1) +
flow(T, d(Ti)) ≤ wt(T).

For example, in Fig. 3(b), flow(T, 3)+flow(T, 4) =
1/16 < 5/16 and flow(T, 14)+flow(T, 15) = 5/16.
Given the above flow values, ideal(T, v, t) is de-

fined as
∑t−1

u=v flow(T, u). Hence, by (8), we obtain
that lag(T, t+ 1) =

∑t
u=0(flow(T, u)− S(T, u)) =

lag(T, t) + flow(T, t)− S(T, t). Similarly, the total
lag for a schedule S and task system τ at time t+1,
denoted by LAG(τ, t+ 1), is

LAG(τ , t+ 1) = LAG(τ , t) (10)
+

∑
T∈τ

(flow(T, t)− S(T, t)).

(LAG(τ, 0) is defined to be 0.) The lemma below
(proved in [10]) is used in the following sections.

Lemma 4 If LAG(τ , t) < LAG(τ , t+ 1), then
there is a hole in slot t.

Proof Sketch: Suppose there is no hole in slot t.
Then,

∑
T∈τ S(T, t) = M . On the other hand, by

(F1) and (7),
∑

T∈τ flow(T, t) ≤ M . Therefore,
by (10), LAG cannot increase from t to t+ 1. ✷

3 Dynamic Task Systems

Prior work in the real-time-sytems literature has
focused mostly on static systems, in which the set
of tasks does not change with time. However, sys-
tems exist in which the set of tasks may change fre-
quently. One example of such a system is a virtual-
reality application in which the user moves within
a virtual environment. As the user moves and the
virtual scene changes, the time required to render
the scene may vary substantially. If a single task
is responsible for rendering, then its weight may
change frequently. Task reweighting can be mod-
eled as a leave-and-join problem, in which a task
with the old weight leaves and a task with the new
weight joins.
As shown in [2, 10], a valid schedule can be ob-

tained for any static GIS task system satisfying (7)
by constructing a flow network with a real-valued
flow based on the flow values defined in Sec. 2 and
illustrated in Fig. 3. A corresponding integral flow
exists because all edge capacities in the network

6

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 160 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

16

5

16

5

16

5 16

5

16

5

16

4

16

1

16

5

16

5

16

3

16

3

16

2

16

5

16

2

16

5

16

4

16

5

16

5

16

5

16

1

16

5

16

5

16

5

16

1

16

2

16

5

16

5

16

4

16

5

16

5

16

4

16

2

16

5

16

3

16

3

16

5

16

5

16

5

16

5

16

1

(a) (b)

Figure 3: Fluid schedule for a task T of weight 5/16. The share of each subtask in the slots of its window is
shown. In (a), no subtask is released late; in (b), T2 and T5 are released late. Note that flow(T, 3) is either 5/16
or 1/16 depending on when subtask T2 is released.

are integers. This gives us a Pfair schedule. This
argument can be easily extended to apply to any
dynamic task system for which the total utilization
of all tasks present at every instant is at most M .
This proof produces an offline schedule3 in which
each subtask is scheduled in its PF-window .
A condition for allowing tasks to join the sys-

tem is an immediate consequence of this feasibil-
ity test, i.e., admit a task if the total utilization
is at most M after its admission. The important
question left is — when should a task be allowed
to leave the system? (Here, we are referring to the
time when we can reclaim the utilization of the
task. The task may be actually allowed to leave
the system earlier.) As shown in [5, 11], if an over-
allocated task is allowed to leave, then it can re-
join immediately and effectively execute at a rate
higher than its specified rate causing other tasks
to miss their deadlines. Hence, we only allow non-
over-allocated tasks (i.e., tasks with non-negative
lags) to leave the system, as stated in (C1) below.

(C1) Join condition: A task T can join at time t
iff the total utilization after joining is at most
M . If T joins at time t, then θ(T1) is set to t.
Leave condition: A task T can leave at time
t iff t ≥ d(Ti), where Ti is the last-released
subtask of T .

The condition t ≥ d(Ti) implies that lag(T, t) =
0. To see why, note that since Ti is the last-released

3The schedule is offline because all subtask release times
must be known beforehand. An online algorithm that does
not respect a fixed quantum can also be easily obtained from
the flow values.

subtask of T , T is neither under-allocated nor over-
allocated at time d(Ti). Thus, only tasks with zero
lag are allowed to leave the system. It is easy to ex-
tend (C1) to allow a task with positive lag to leave.
This is because such a task is under-allocated, and
hence its last-released subtask has not yet been
scheduled. Intuitively, not scheduling a subtask
is equivalent to removing it, and by Lemma 1, the
removal of a subtask cannot lead to a missed dead-
line. Thus, we can allow task T to leave the system
if (C1) is satisfied by Ti−1, i.e., the last-scheduled
subtask of T . However, for simplicity, we assume
(C1) as stated above in our proof.
(C1) is a direct extension of the uniprocessor

conditions presented by Baruah et al. [5] and Sto-
ica et al. [11]. However, as shown below, it can
cause missed deadlines and hence, is not sufficient
on multiprocessors.
The theorem below applies to any “weight-

consistent” Pfair scheduling algorithm. An algo-
rithm is weight-consistent if, given two tasks T and
U of equal weight with eligible subtasks Ti and
Uj , respectively, where i = j and r(Ti) = r(Uj)
(and hence, d(Ti) = d(Uj)), Ti has priority over a
third subtask Vk iff Uj does. All known (dynamic-
priority) Pfair scheduling algorithms are weight-
consistent.

Theorem 1 No weight-consistent scheduler can
guarantee all deadlines on multiprocessors under
(C1).

Proof: Consider a class of task systems consisting
of two sets of tasks X and Y of weights w1 = 2/5
and w2 = 3/8, respectively. Let Xf (Yf) denote

7

the set of first subtasks of tasks in X (Y). We con-
struct a task system depending on the task weight
favored by the scheduler. We say that Xf is fa-
vored (analogously for Yf) if, whenever subtasks
in Xf and Yf are released at the same time, those
in Xf are favored.

Case 1: Xf is favored. Consider a dynamic
task system consisting of the following types of
tasks to be scheduled on 15 processors. (In each of
our counterexamples, no subtask is eligible before
its PF-window.)

Type A: 8 tasks of weight w2 that join at time 0.

Type B: 30 tasks of weight w1 that join at time
0 and leave at time 3.

Type C: 30 tasks of weight w1 that join at time
3.

Because 30w1 + 8w2 = 15, this task system is fea-
sible, and the join condition for type-C tasks in
(C1) is satisfied. Note that d(T1) =

⌈
5
2

⌉
= 3 for

every type-B task T ; hence, the leave condition in
(C1) is also satisfied.
Since subtasks in Xf are favored, type-B tasks

are favored over type-A tasks at times 0 and 1.
Hence, the schedule for [0, 3) will be as shown
in Fig. 4(a). Consider the interval [3, 8). Each
type-A task has two subtasks remaining for execu-
tion, which implies that the type-A tasks need 16
quanta. Similarly, each type-C task also has two
subtasks, which implies that the type-C tasks need
60 quanta. However, the total number of quanta
in [3, 8) is 15 · (8− 3) = 75. Thus, one subtask will
miss its deadline at or before time 8.

Case 2: Yf is favored. Consider a dynamic
task system consisting of the following types of
tasks to be scheduled on 8 processors.

Type A: 5 tasks of weight w1 that join at time 0.

Type B: 16 tasks of weight w2 that join at time
0 and leave at time 3.

Type C: 16 tasks of weight w2 that join at time
3.

Because 5w1+16w2 = 8, this task system is feasi-
ble, and the join condition for type-C tasks in (C1)
is satisfied. Note that d(T1) =

⌈
8
3

⌉
= 3 for every

type-B task T ; hence, the leave condition in (C1)
is also satisfied.
Since subtasks in Yf are favored, type-B tasks

are favored over type-A tasks at times 0 and 1.
Hence, the schedule for [0, 3) will be as shown in
Fig. 4(b). Consider the interval [3, 35). The num-
ber of subtasks of each type-A task that need to
be executed in [3, 35) is 1 + (35 − 5) · 2/5 = 13.
Similarly, the number of subtasks of each type-
C task is (35 − 3) · 3/8 = 12. The total is
5 ·13+16 ·12 = 257, whereas the number of quanta
in [3, 35) is (35 − 3) · 8 = 256. Thus, one subtask
will miss its deadline at or before time 35. ✷

Theorem 1 can be “circumvented” if it can be
known at the time a subtask is released whether
it is the final subtask of its task. For example, in
Fig. 4(a), if we knew that the first subtask T1 of
each type-B task is its last, then we could have
given T1 an effective b-bit of zero. Hence, PD2

would have scheduled it with a lower priority than
any type-A task. However, in general, such knowl-
edge may not be available to the scheduler.
The examples in Fig. 4(a)–(b) show that allow-

ing a light task T to leave at d(Ti) when b(Ti) = 1
can lead to deadline misses. We now derive a sim-
ilar, but stronger, condition for heavy tasks.

Theorem 2 If a heavy task T is allowed to leave
before D(Ti), where Ti is the last-released subtask
of T , then there exist task systems that miss a
deadline under PD2.

Proof: Consider the following dynamic task sys-
tem to be scheduled on 35 processors, where 2 ≤
t ≤ 4.

Type A: 9 tasks of weight 7/9 that join at time
0.

Type B: 35 tasks of weight 4/5 that join at time 0
and leave at time t; each releases one subtask.

Type C: 35 tasks of weight 4/5 that join at time
t.

8

0 1 2 3 4 5 6 7 8 9 10 30 31 32 33 34 35 0 1 2 3 4 5 6 7 8 90 1 2 3 4 5 6 7 8

...

...

8 8

5

... 35

9

15 15

8

C (30 x 2/5)

B (30 x 2/5)

 A (8 x 3/8)

C (35 x 4/5)

B (35 x 4/5)

 A (9 x 7/9)

B (16 x 3/8)

C (16 x 3/8)

 A (5 x 2/5)

9

(c)(b)(a)

Figure 4: Counterexamples demonstrating insufficiency of (C1) and tightness of (C2). An integer value n in slot
t of some window means that n of the subtasks that must execute within that window are scheduled in slot t.
No integer value means that no such subtask is scheduled in slot t. The vertical lines depict intervals with excess
demand. (a) Theorem 1. Case 1: Tasks of weight 2/5 are favored at times 0 and 1. (b) Theorem 1. Case 2:
Tasks of weight 3/8 are favored at times 0 and 1. (c) Theorem 2. The tasks of weight 4/5 are allowed to leave
at time 3 and re-join immediately.

All type-A and type-B tasks have the same PD2

priority at time 0, because each has a deadline
at time 2, a b-bit of 1, and a group deadline at
time 5. Hence, the type-B tasks may be given
higher priority.4 Assuming this, Fig. 4(c) depicts
the schedule for the case of t = 3.
Consider the interval [t, t+5). Each type-A and

type-C task has four subtasks with deadlines in
[t, t+5) (see Fig. 4(c)). Thus, 9·4+35·4 = 35·5+1
subtasks must be executed in [t, t+5). Since 35 ·5
quanta are available in [t, t + 5), one subtask will
miss its deadline. ✷

Although (C1) is not sufficient in general, in
Sec. 4, we show that it is sufficient for a restricted
class of task systems, even under EPDF. Theo-
rems 1 and 2 provide us with the following new
conditions, which are sufficient when used with
PD2 (proved in Sec. 5). Theorems 1 and 2 also
show that these are tight.

(C2) Join condition: A task T can join at time t
iff the total utilization after joining is at most
M . If T joins at time t, then θ(T1) is set
to t. Leave condition: Let Ti denote the last-
released subtask of T . If T is light, then T can
leave at time t iff either t = d(Ti) ∧ b(Ti) = 0
or t > d(Ti) holds. If T is heavy, then T can
leave at time t iff t ≥ D(Ti).

4This counterexample applies to PF and PD as well, be-
cause both favor the type-B tasks at time 0.

As before with (C1), when a task T leaves the sys-
tem at time t, (C2) implies that lag(T, t) = 0. We
can also allow T to leave with positive lag, pro-
vided its last-scheduled subtask satisfies the leave
condition in (C2).
(C2) reduces to (C1) if the leaving task is actu-

ally periodic or sporadic and its final job executes
for its worst-case execution requirement. That is,
such a task can leave at the deadline of its last job.
To see why, note that if Ti is the last subtask of the
final job, then, because consecutive task periods do
not overlap, b(Ti) = 0 (and hence D(Ti) = d(Ti),
if T is heavy). Thus, by (C2), T can leave at time
d(Ti), as in (C1).

4 Sufficiency of (C1) for Re-
stricted Systems

In this section, we show that task systems can be
correctly scheduled using EPDF on M processors
provided (C1) and (M1) below hold.

(M1) At any time, the sum of the weights of the
M − 1 heaviest tasks is at most 1.

We use the phrase “C1M1 task system” to refer
to task systems satisfying both (C1) and (M1). As-
sume to the contrary that there exists a C1M1 task
system τ that misses a deadline under EPDF. Let
S denote its EPDF schedule. Let Ti be the subtask
(in some given schedule) with the earliest deadline

9

among all subtasks that miss a deadline, and let
td = d(Ti). Thus, all subtasks with deadlines less
than td meet their deadlines.
Note that any subtask with deadline after td is

scheduled at a slot prior to td only if no subtask
with a deadline at most td is eligible at that slot.
Thus, the scheduling of Ti is not affected by sub-
tasks with deadlines greater than td. Hence, we
can assume that no task in τ releases any subtask
with a deadline greater than td. In other words,

for every subtask Uj ∈ τ, d(Uj) ≤ td. (11)

Using this, we obtain the following lower bound
on LAG(τ, td).

Lemma 5 LAG(τ, td) ≥ 1.
Proof: By (10), we have

LAG(τ , td) =
td−1∑
t=0

∑
T∈τ

share(T, t)−
td−1∑
t=0

∑
T∈τ

S(T, t).

The first term on the right-hand side of the above
equation is the total share in the ideal schedule in
[0, td), which equals the total number of subtasks
in τ . (Follows from (11).) The second term cor-
responds to the number of subtasks scheduled by
EPDF in [0, td). Since Ti misses its deadline at td,
the difference between these two terms is at least
one. ✷

Because LAG(τ, 0) = 0, it follows by Lemma 5
that there exists a time t < td such that
LAG(τ, t) < 1 and LAG(τ, t + 1) ≥ 1. We now
prove some properties about task lags at time t+1;
using these properties and (M1), we later derive a
contradiction concerning the existence of time t.
By Lemma 4, there is at least one hole in slot t

(i.e., in [t, t + 1)). In other words, the number of
tasks scheduled in slot t is at most M − 1. Let A
denote the set of tasks scheduled in slot t. Then,
we have

|A| ≤M − 1. (12)

Let B denote the set of tasks not in A that are
“active” at t. A task U is active at time t if it has
a subtask Uj such that e(Uj) ≤ t < d(Uj). (A task
may be inactive either because it has already left
the system or because of a late subtask release.)

t t+1

h

k

j

hole

B

I

A
U

W

V

Figure 5: In this figure, PF-windows are denoted by
line segments. An arrow over a release (respectively,
deadline) indicates that the release (respectively, dead-
line) could be anywhere in the direction of the arrow.
There is a hole in slot t. (a) Sets A, B, and I. The
PF-windows of a sample task of each set are shown.

Consider any task U ∈ B and let Uj be such that
e(Uj) ≤ t < d(Uj). Because there is a hole in slot
t and no subtask of U is scheduled at time t, and
because e(Uj) ≤ t < d(Uj), Uj must be scheduled
before time t.
Let I denote the set of the remaining tasks that

are not active at time t. Fig. 5 shows how the tasks
in A, B, and I are scheduled. We now estimate the
lag values for the tasks in each of A, B, and I at
time t+ 1.

Lemma 6 For W ∈ I, lag(W, t+ 1) = 0.

Proof: Consider any subtask Wh of task W . If
e(Wh) ≥ t + 1, then r(Wh) ≥ t + 1. Therefore,
by (9), f(Wh, u) = 0 for all slots u ≤ t < r(Wh).
Hence, the share of Wh in the ideal schedule in
[0, t+ 1) is zero. Also, in the EPDF schedule, Wh

is scheduled at or after t+ 1. On the other hand,
if e(Wh) ≤ t, then by the definition of I, d(Wh) ≤
t < td. Since such a subtask meets its deadline,Wh

is scheduled in [0, t). Hence, the share received
by Wh in [0, t + 1) is one in both the ideal and
EPDF schedules. Thus, we have shown that for
all subtasks of W , the share of that subtask in
[0, t+ 1) is the same in both the ideal and EPDF
schedules. (Furthermore, recall from Sec. 3 that
any task that leaves the system does so with zero
lag.) Therefore, lag(W, t+ 1) = 0. ✷

Lemma 7 For V ∈ B, lag(V, t+ 1) ≤ 0.

10

Proof: Consider any subtask Vk of task V . Again,
as in the proof of Lemma 6, if r(Vk) ≥ t+ 1, then
by (9), the share of Vk in [0, t + 1) in the ideal
schedule is zero. On the other hand, if r(Vk) ≤ t,
then, as discussed earlier, Vk is scheduled before t
because of the hole in slot t. Thus, the share of
Vk in [0, t + 1) is one in the EPDF schedule, and
at most one in the ideal schedule. (d(Vk) may be
greater than t+ 1, in which case a portion of Vk’s
share in the ideal schedule is allocated after t+1.)
Thus, for any subtask of V , its share in [0, t+1) in
the EPDF schedule is at least its share in [0, t+1)
in the ideal schedule. Hence, lag(V, t+ 1) ≤ 0. ✷

Lemma 8 For U ∈ A, lag(U, t+ 1) < wt(U).

Proof: Let Uj be the subtask of U scheduled at
time t. Since t < td, Uj meets its deadline. There-
fore, d(Uj) ≥ t+ 1.
If d(Uj) > t+1, then by (4)–(6), r(Uj+1) ≥ t+1.

Reasoning exactly as in the proof of Lemma 7, we
can show that lag(U, t+ 1) ≤ 0.
In the rest of the proof, we assume that d(Uj) =

t+ 1. Let Uk be Uj ’s successor (if it exists). Since
consecutive PF-windows overlap by at most one
slot, r(Uk) ≥ d(Uj)− 1, i.e., r(Uk) ≥ t.
If r(Uk) ≥ t + 1, then the share in the ideal

schedule for any subtask after Uj is zero. Thus, the
total share of U in [0, t+1) is same in both the ideal
and the EPDF schedules, i.e., lag(U, t+ 1) = 0.
If r(Uk) = t, then r(Uk) = d(Uj)−1. Therefore,

by (4)–(6), we obtain k = j + 1. Therefore, by
(4) and (5), �j/wt(U)� = �j/wt(U)� − 1, which
implies that �j/wt(U)� < j/wt(U).
The excess share of U in the ideal schedule

in [0, t + 1) is due to f(Uk, t). Therefore, we
have lag(U, t + 1) ≤ f(Uk, t), i.e., lag(U, t + 1) ≤
f(Uj+1, r(Uj+1)).
By (9), f(Uj+1, r(Uj+1)) = (�j/wt(U)� + 1) ·

wt(U) − j. Hence, lag(U, t + 1) ≤ (�j/wt(U)� +
1) · wt(U)− j < (j/wt(U) + 1) · wt(U)− j. Thus,
lag(U, t+ 1) < wt(U). ✷

Because LAG(τ, t+1) =
∑

U∈A∪B∪I lag(U, t+1),
by Lemmas 6–8, LAG(τ, t + 1) <

∑
U∈Awt(U).

By (12), |A| ≤ M − 1. Therefore, by (M1),
LAG(τ, t + 1) < 1, contradicting our assumption
about t. Thus, we have the following theorem.

Theorem 3 EPDF correctly schedules every
C1M1 task system on M processors.

Ensuring (M1) involves identifying the M − 1
heaviest tasks and summing their weights. A more
efficient (and more restrictive) way to enforce (M1)
is to require each individual task weight to be at
most 1/(M − 1).
Corollary 1 EPDF correctly schedules any dy-
namic GIS task system satisfying (C1) onM (> 1)
processors if the weight of each task is at most
1/(M − 1).
Since any feasible static task system satisfies (C1),
we obtain the following generalization of an earlier
result that EPDF is optimal for scheduling IS tasks
on two processors [2].

Corollary 2 EPDF correctly schedules any feasi-
ble static GIS task system satisfying (M1) on M
processors.

Condition (M1) can be improved by more ac-
curately bounding lag(U, t + 1) for U ∈ A. Let
U.f = U.e−gcd(U.e,U.p)

U.p . Using (9), it can be shown
that if d(Uj) = r(Uj+1) + 1, then U.f is the maxi-
mum share subtask Uj+1 can have in slot r(Uj+1).
Thus, we can improve Lemma 8 to show that
lag(U, j + 1) ≤ U.f for U ∈ A. Performing the
same analysis as above, we obtain a contradiction
if

∑
U∈A U.f < 1. Thus, EPDF produces a correct

schedule if, at all times,
∑

U∈H U.f < 1 for all sets
H of at most M − 1 tasks.

5 Sufficiency of (C2) for PD2

We now prove by contradiction that PD2 correctly
schedules any dynamic task system for which (C2)
holds. The proof strategy used here is similar to
that used in [10].
Suppose that PD2 misses a deadline for some

task system that satisfies (C1). Then there exists
a time td and a task system τ as given in Defs. 1
and 2 below.

Definition 1 td is the earliest time at which any
task system instance misses a deadline under PD2.

✷

11

Definition 2 τ is an instance of a task system
with the following properties.5

(T1) τ misses a deadline under PD2 at td.

(T2) No task system instance satisfying (T1) re-
leases fewer subtasks in [0, td) than τ .

(T3) No task system instance satisfying (T1) and
(T2) has a larger rank than τ , where the rank of
an instance is the sum of the eligibility times of all
subtasks with deadlines at most td. ✷

By (T1), (T2), and Def. 1, exactly one subtask
in τ misses its deadline: if several subtasks miss
their deadlines, all but one can be removed and
the remaining subtask will still miss its deadline,
contradicting (T2).
We now prove several properties about the S,

the PD2 schedule for τ .

Lemma 9 The following properties hold for τ and
S, the EPDF schedule for τ , where Ti is any sub-
task in S.

(a) Let t be the time at which Ti is scheduled.
Then, e(Ti) ≥ min(r(Ti), t).

(b) Let t be as in (a). If either d(Ti) > t + 1 or
d(Ti) = t + 1 ∧ b(Ti) = 0, then Ti’s successor is
not eligible before t+ 1.

(c) For all Ti, d(Ti) ≤ td.
(d) There are no holes in slot td − 1.
(e) LAG(τ , td) = 1.

(f) LAG(τ , td − 1) ≥ 1.
Proof of (a): Suppose that e(Ti) < min(r(Ti), t).
Consider the task system instance τ ′ obtained from
τ by changing e(Ti) to min(r(Ti), t). Note that
e(Ti) is still at most r(Ti) and τ ′’s rank is larger
than τ ’s. It is easy to show that the relative pri-
orities of the subtasks do not change for any slot
u ∈ {0, . . . , td − 1}, and hence, τ ′ and τ have iden-
tical PD2 schedules. Thus, τ ′ misses a deadline at
td, contradicting (T3).

5Note that (T1)–(T3) are being applied in sequence; e.g.,
τ is not claimed to be of maximal rank — rather, its rank is
maximal among those task system instances satisfying (T1)
and (T2).

Proof of (b): Let subtask Tk be Ti’s successor.
By (3) and (6), r(Tk) ≥ d(Ti)− b(Ti). (Recall that
consecutive PF-windows overlap by at most one
slot.) If d(Ti) > t+1 or d(Ti) = t+1 ∧ b(Ti) = 0,
then r(Tk) ≥ t+ 1. Since Ti is scheduled in slot t,
Tk is scheduled at or after t+1. Therefore, by (a),
e(Tk) ≥ t+ 1.
Proof of (c): Suppose τ contains a subtask Uj

with a deadline greater than td. Uj can be removed
without affecting the scheduling of higher-priority
subtasks with earlier deadlines. Thus, if Uj is re-
moved, then a deadline is still missed at td. This
contradicts (T2).

Proof of (d): If there were a hole in slot td −
1, then the subtask that misses its deadline at td
would have been scheduled there, a contradiction.
(Note that its predecessor meets its deadline at or
before time td − 1 and hence is not scheduled in
slot td − 1.)
Proof of (e): By (10), we have

LAG(τ , td) =
td−1∑
t=0

∑
T∈τ

flow(T, t)−
td−1∑
t=0

∑
T∈τ

S(T, t).

The first term on the right-hand side of the above
equation is the total share in [0, td), which equals
the total number of subtasks in τ . The second
term corresponds to the number of subtasks sched-
uled by EPDF in [0, td). Since exactly one subtask
misses its deadline, the difference between these
two terms is 1, i.e., LAG(τ , td) = 1.

Proof of (f): By (d), there are no holes in slot
td − 1. Hence, by Lemma 4, LAG(τ , td − 1) ≥
LAG(τ , td). Therefore, by (e), LAG(τ , td − 1) ≥
1. ✷

Because LAG(τ , 0) = 0, by part (f) of Lemma 9,
there exists a time t such that

0 ≤ t < td−1 ∧ LAG(τ , t) < 1 ∧ LAG(τ , t+ 1) ≥ 1.
(13)

Without loss of generality, let t be the latest such
time, i.e., for all u such that t < u ≤ td − 1,
LAG(τ, u) ≥ 1. We now show that such a t cannot
exist, thus contradicting our starting assumption
that td and τ exist.

12

By (13), LAG(τ , t) < LAG(τ , t+ 1). Hence, by
Lemma 4, there is at least one hole in slot t. Define
sets A, B, and I as in Sec. 4 (refer to Fig. 5). We
begin by proving certain properties about B.

Lemma 10 B is non-empty.

Proof: Let the number of the holes in slot t
be h. Then,

∑
T∈τ S(T, t) = M − h. By (10),

LAG(τ , t+ 1) = LAG(τ , t) +
∑

T∈τ (flow(T, t) −
S(T, t)). Thus, because LAG(τ , t) <
LAG(τ , t+ 1), we have

∑
T∈τ flow(T, t) > M − h.

Since for every V ∈ I, either d(Vk) < t or
r(Vk) > t, by (9), flow(V, t) = 0. It follows
that

∑
T∈A∪B flow(T, t) > M − h. Therefore,

by (F1),
∑

T∈A∪B wt(T) > M − h. Because the
number of tasks scheduled in slot t is M − h,
|A| = M − h. Because wt(T) ≤ 1 for any task
T ,

∑
T∈Awt(T) ≤M−h. Thus, ∑T∈B wt(T) > 0.

Hence, B is not empty. ✷

Lemmas 11–13, and 15 below are proved in an
appendix. In the proof of each of Lemmas 11–
13, we show that if the required condition is not
satisfied, then a subtask can be removed without
causing the missed deadline at td to be met. Thus,
we obtain a contradiction of (T2).

Lemma 11 Let U be any task in B. Let Uj be the
subtask with the largest index such that e(Uj) ≤
t < d(Uj). Then, d(Uj) = t+ 1 ∧ b(Uj) = 1.

Lemma 12 If B has at least one light task, then
there is no hole in slot t+ 1.

Lemma 13 Let U be a heavy task in B and let Uj

be the subtask of U with the largest index such that
e(Uj) ≤ t < d(Uj). Then, there exists a slot with
no holes in [d(Uj),min(D(Uj), td)).

Lemma 14 If B has at least one light task, then
LAG(τ , t+ 2) < 1.

Proof: Let the number of holes in slot t be h. We
now derive some properties about the flow values
in slots t and t+ 1.
By the definition of I, only tasks in A ∪ B

are active at time t. Thus,
∑

T∈τ flow(T, t) =∑
T∈A∪B flow(T, t). Since wt(T) ≤ 1 for any T ,

we have
∑

T∈Awt(T) ≤ |A|. Thus, by (F1),∑
T∈A flow(T, t) ≤ |A|. Now, because there are

h holes in slot t, M − h tasks are scheduled at t,
i.e., |A| =M −h. Thus, ∑T∈A flow(T, t) ≤M −h
and∑

T∈τ

flow(T, t) ≤M − h+
∑
T∈B

flow(T, t). (14)

Consider U ∈ B. Let Uj be the subtask of U
with the largest index such that e(Uj) ≤ t < d(Uj).
Let C denote the set of such subtasks for all tasks
in B. Then, by Lemma 11,

for all Uj ∈ C, d(Uj) = t+ 1 ∧ b(Uj) = 1. (15)

If U is heavy, then this would imply that D(Uj) >
t + 1. (By the definition of a group deadline, for
any subtask Ti of a heavy task T , D(Ti) = d(Ti)
holds iff b(Ti) = 0.) Thus, the leave condition in
(C2) is not satisfied at time t + 1, and hence no
task in B leaves at time t+ 1.

Let A′ (I ′) denote the tasks in A (I) that are
active at time t+ 1. Then, the set of active tasks
at time t + 1 is A′ ∪ I ′ ∪ B. Thus, by the join
condition in (C2),∑

T∈A′∪I′∪B

wt(T) ≤M. (16)

Also,
∑

T∈τ flow(T, t+1) =
∑

T∈A′∪I′∪B flow(T, t+
1). By (F1), this implies that

∑
T∈τ flow(T, t +

1) ≤ ∑
T∈A′∪I′ wt(T)+

∑
T∈B flow(T, t+1). Thus,

by (14),

∑
T∈τ

(flow(T, t) + flow(T, t+ 1)) ≤M − h+
∑

T∈A′∪I′
wt(T) +

∑
T∈B

(flow(T, t) + flow(T, t+ 1))

(17)

Consider Uj ∈ C (hence, U ∈ B). Let Uk denote
the successor of Uj . Since Uj is the subtask with
the largest index such that e(Uj) ≤ t < d(Uj), we
have e(Uk) ≥ t + 1. Hence, r(Uk) ≥ t + 1. By
(15), we have d(Uj) = t + 1. Therefore, by (F2),
flow(U, t) + flow(U, t + 1) ≤ wt(U) for each U ∈
B. By (17), this implies that

∑
T∈τ (flow(T, t) +

flow(T, t+1)) ≤M−h+∑
T∈A′∪I′∪B wt(T). Thus,

13

from (16), it follows that∑
T∈τ

(flow(T, t)+flow(T, t+1)) ≤M−h+M. (18)

By the statement of the lemma, B contains at least
one light task. Therefore, by Lemma 12, there is
no hole in slot t+1. Since there are h holes in slot
t, we have

∑
T∈τ (S(T, t)+S(T, t+1)) =M−h+M .

Hence, by (18),
∑

T∈τ (flow(T, t) + flow(T, t +
1)) ≤ ∑

T∈τ (S(T, t) + S(T, t + 1)). Using this
relation in the identity (obtained from (10)),
LAG(τ , t+ 2) = LAG(τ , t) +

∑
T∈τ (flow(T, t) +

flow(T, t + 1)) − ∑
T∈τ (S(T, t) + S(T, t + 1)),

and the fact that LAG(τ , t) < 1, we obtain
LAG(τ , t+ 2) < 1. ✷

The following lemma generalizes Lemma 14 by
allowing B to consist solely of heavy tasks.

Lemma 15 There exists v ∈ {t + 2, . . . , td} such
that LAG(τ , v) < 1.

Recall our assumption that t is the latest time
such that LAG(τ, t) < 1 and LAG(τ, t + 1) ≥ 1.
Because t ≤ td − 2 (by (13)), we have t + 2 ≤
td. By Lemma 15, LAG(τ , v) ≤ 0 for some v ∈
{t + 2, . . . , td}. By Lemma 9, parts (e) and (f), v
cannot be td or td − 1. Thus, v ≤ td − 2. Because
LAG(τ , td) ≥ 1, this contradicts the maximality
of t. Therefore, td and τ as defined cannot exist.
Thus, we have the following.

Theorem 4 PD2 correctly schedules any dynamic
GIS task system satisfying (C2).

6 Conclusions

In this paper, we have addressed the problem of
scheduling dynamic GIS task systems on multi-
processors. We have shown that if the sum of the
weights of the M − 1 heaviest tasks is at most
1, then the uniprocessor join/leave conditions pre-
sented previously [5, 11] are sufficient to avoid
deadline misses on M processors when EDPF is
used. This result applies to any EPDF-based al-
gorithm, and hence to PD2 as well. We have also
provided join/leave conditions for the general case
in which weights are not restricted in this way and

tasks are scheduled using PD2. We have further
shown that, in general, it is not possible to im-
prove upon these conditions.

References

[1] J. Anderson and A. Srinivasan. Early-release fair
scheduling. In Proc. of the 12th Euromicro Con-
ference on Real-Time Systems, pages 35–43, June
2000.

[2] J. Anderson and A. Srinivasan. Pfair scheduling:
Beyond periodic task systems. In Proc. of the 7th
International Conference on Real-Time Comput-
ing Systems and Applications, pages 297–306, Dec.
2000.

[3] S. Baruah, N. Cohen, C.G. Plaxton, and D. Varvel.
Proportionate progress: A notion of fairness in re-
source allocation. Algorithmica, 15:600–625, 1996.

[4] S. Baruah, J. Gehrke, and C. G. Plaxton. Fast
scheduling of periodic tasks on multiple resources.
In Proc. of the 9th International Parallel Process-
ing Symposium, pages 280–288, April 1995.

[5] S. Baruah, J. Gehrke, C. G. Plaxton, I. Stoica,
H. Abdel-Wahab, and K. Jeffay. Fair on-line
scheduling of a dynamic set of tasks on a single re-
source. Information Processing Letters, 26(1):43–
51, Jan. 1998.

[6] A. Chandra, M. Adler, P. Goyal, and P. Shenoy.
Surplus fair scheduling: A proportional-share cpu
scheduling algorithm for symmetric multiproces-
sors. In Proc. of the Fourth ACM Symposium
on Operating System Design and Implementation,
pages 45–58, Oct. 2000.

[7] A. Chandra, M. Adler, and P. Shenoy. Deadline
fair scheduling: Bridging the theory and practice
of proportionate-fair scheduling in multiprocessor
servers. In Proc. of the 7th IEEE Real-Time Tech-
nology and Applications Symposium, pages 3–14,
May 2001.

[8] S. Keshav. Private communication, 2001.

[9] L. Sha, R. Rajkumar, J. Lehoczky, and K. Ra-
mamritham. Mode change protocols for priority-
driven pre-emptive scheduling. Real-Time Sys-
tems, 1(3):244–264, 1989.

[10] A. Srinivasan and J. Anderson. Optimal rate-
based scheduling on multiprocessors. In Proc. of
the 34th Annual ACM Symposium on Theory of
Computing, pages 189–198, May 2002.

14

[11] I. Stoica, H. Abdel-Wahab, K. Jeffay, S. Baruah,
J. Gehrke, and C.G. Plaxton. A proportional share
resource allocation algorithm for real-time, time-
shared systems. In Proc. of the 17th IEEE Real-
Time Systems Symposium, pages 288–299, Dec.
1996.

[12] K. Tindell, A. Burns, and A. Wellings. Mode
changes in priority pre-emptively scheduled sys-
tems. In Proc. of the IEEE Real-Time Systems
Symposium, pages 100–109, Dec. 1992.

Appendix: Remaining Proofs

In this appendix, we present all proofs omitted earlier.
In all the lemmas, the time t corresponds to that de-
fined in Equation (13).

Lemma 11 Let U be any task in B. Let Uj be the
subtask with the largest index such that e(Uj) ≤ t <
d(Uj). Then, d(Uj) = t+ 1 ∧ b(Uj) = 1.

Proof: As shown in Sec. 4, Uj must be scheduled before
t. By (13), t < td. Hence, Uj does not miss its deadline
and d(Uj) ≥ t+ 1. Suppose that the following holds.

d(Uj) > t+ 1 or d(Uj) = t+ 1 ∧ b(Uj) = 0 (19)

We now show that Uj can be removed and a dead-
line will still be missed at td, contradicting (T2). Let
the chain of displacements caused by removing Uj be
∆1,∆2, . . . ,∆k, where ∆i = 〈X(i), ti, X

(i+1), ti+1〉 and
X(1) = Uj . By Lemma 1, ti+1 > ti for 1 ≤ i ≤ k.
Note that at slot ti, the priority of subtask X(i) is

at least that of X(i+1), because X(i) was chosen over
X(i+1) in S. Thus, because X(1) = Uj , by (19), for
each subtask X(i), 1 ≤ i ≤ k+ 1, either d(X(i)) > t+ 1
or d(X(i)) = t + 1 ∧ b(X(i)) = 0. Therefore, by part
(b) of Lemma 9, the following property holds.

(E) The eligibility time of the successor of X(i) (if it
exists in τ) is at least t+ 1 for all i ∈ [1, k + 1].

We now show that the displacements do not extend
beyond slot t. Assume, to the contrary, that tk+1 > t.
Consider h ∈ {2, . . . , k+1} such that th > t and th−1 ≤
t, as depicted in Fig. 6(a). Such an h exists because
t1 < t < tk+1. Because there is a hole in slot t and
th−1 ≤ t < th, by Lemma 3, th−1 = t and X(h) must be
X(h−1)’s successor. Therefore, by (E), e(X(h)) ≥ t+1.
This implies that ∆h−1 is not valid.
Thus, the displacements do not extend beyond slot

t, implying that no subtask scheduled after t is left-
shifted. Hence, a deadline is still missed at time td,
contradicting (T2). Hence, d(Uj) = t+1 ∧ b(Uj) = 1.

✷

The following property is used in the proof of the
next lemma. It follows from the fact that light tasks
have PF-windows of length at least three and consecu-
tive PF-windows overlap by at most one slot [1].

(L) For a light task T , if Tk is the successor of Ti, then
d(Tk) ≥ d(Ti) + 2.

Lemma 12 If B has at least one light task, then there
is no hole in slot t+ 1.

Proof: By (13), t < td−1, and therefore, t+1 ≤ td−1.
Suppose that there is a hole in slot t + 1. By part (d)
of Lemma 9, t+ 1 < td − 1, i.e.,

t+ 2 ≤ td − 1. (20)

Let U be a light task in B and let Uj be the subtask
of U with the largest index such that e(Uj) ≤ t < d(Uj).
Our approach is the same as in the proof of Lemma 11.
Let the chain of displacements caused by removing Uj

be ∆1,∆2, . . . ,∆k, where ∆i = 〈X(i), ti, X
(i+1), ti+1〉

and X(1) = Uj . By Lemma 1, we have ti+1 > ti for all
i ∈ [1, k]. Also, the priority of X(i) is at least that of
X(i+1) at ti, because X(i) was chosen over X(i+1) in S.
Because U is light and d(Uj) = t+ 1 ∧ b(Uj) = 1 (by
Lemma 11), this implies the following.

(P) For all i ∈ [1, k + 1], either (i) d(X(i)) > t + 1 or
(ii) d(X(i)) = t + 1 and X(i) is the subtask of a
light task.

Suppose the chain of displacements extends beyond
t + 1, i.e., tk+1 > t + 1. Consider h ∈ {1, . . . , k + 1}
such that that th > t + 1 and th−1 ≤ t + 1. Because
there is a hole in slot t + 1 and th−1 ≤ t + 1 < th,
by Lemma 3, th−1 = t + 1 and X(h) is the successor
of X(h−1). Similarly, because there is a hole in slot t,
th−2 = t and X(h−1) is the successor of X(h−2). This
is illustrated in Fig. 6(b).
By (P), either d(X(h−2)) > t + 1 or d(X(h−2)) =

t + 1 and X(h−2) is the subtask of a light task. In
either case, d(X(h−1)) > t+2. To see why, note that if
d(X(h−2)) > t+1, then because X(h−1) is the successor
of X(h−2), by (5), d(X(h−1)) > t + 2. On the other
hand, if d(X(h−2)) = t + 1 and X(h−2) is the subtask
of a light task, then, by (L), d(X(h−1)) > t+ 2.
Now, because X(h−1) is scheduled at t + 1, by part

(b) of Lemma 9, the successor of X(h−1) is not eligible
before t + 2, i.e., e(X(h)) ≥ t + 2. This implies that
the displacement ∆h−1 is not valid. Thus, the chain of
displacements cannot extend beyond time t+2. Hence,
because t + 2 ≤ td − 1 (by (20)), removing Uj cannot
cause a missed deadline at td to be met. This contra-
dicts (T2). Hence, there is no hole in slot t+ 1. ✷

15

t(=)h−1
. . . ht1t ht1t . . .

t(=)h−2 t(=)h−1
tht1 t1 th

X (h)

. . .

. . .

X

X

X

(h−2)

(h−1)

(2)

holehole

t t+1 . . .t+2+1 +1

hole

X

X

. . .

X

(2)

(h−1)

(h)

t t+1 . . .+1 +1

(a) (b)

Figure 6: IS-windows are denoted by line segments. (a) Lemma 11. X(h) must be the successor of X(h−1)

because there is a hole in slot t. (b) Lemma 12. If there is a hole in both slots t and t + 1, then X(h−2) and
X(h−1) must be scheduled at t and t + 1 in S, respectively. Also, in τ , X(h) must be the successor of X(h−1),
which in turn, must be the successor of X(h−2).

The following lemma is the counterpart of Lemma 12
for heavy tasks.

Lemma 13 Let U be a heavy task in B and let Uj be
the subtask of U with the largest index such that e(Uj) ≤
t < d(Uj). Then, there exists a slot with no holes in
[d(Uj),min(D(Uj), td)).

Proof: By Lemma 11, d(Uj) = t + 1 ∧ b(Uj) = 1.
By (13), t < td − 1. Therefore d(Uj) ≤ td − 1. If
min(D(Uj), td) = td, then by part (f) of Lemma 9, slot
td−1 satisfies the stated requirement. In the rest of the
proof, assume that D(Uj) < td. Let v = D(Uj). Since
b(Uj) = 1, by the definition of D, D(Uj) > d(Uj), i.e.,

t+ 1 < v. (21)

Suppose that the following property holds.

(H) There is a hole in slot u for all u ∈ {t, . . . , v − 1}.
Given (H), we show that removing Uj does not cause
the missed deadline to be met, contradicting (T2). Let
∆1,∆2, . . . ,∆k be the chain of displacements caused by
removing Uj , where ∆i = 〈X(i), ti,X

(i+1), ti+1〉, X(1)

= Uj , and t1 is the slot in which Uj is scheduled. By
Lemma 1, ti+1 > ti for all i ∈ [1, k−1]. Also, the prior-
ity of X(i) is at least that of X(i+1) at ti, because X(i)

was chosen over X(i+1) at ti in S. Thus, by Lemma 11,
for all i ∈ [2, k + 1], one of the following holds:
(a) d(X(i)) > t+ 1,

(b) d(X(i)) = t+ 1 ∧ b(X(i)) = 0, or

(c) d(X(i)) = t+ 1 ∧ b(X(i)) = 1 ∧ D(X(i)) ≤ v.
We now show that the displacements do not extend

beyond slot v − 1 (which implies that Uj can be re-
moved without causing the missed deadline to be met).

Suppose, to the contrary, they do extend beyond slot
v − 1, i.e., tk+1 > v − 1.
Let tg be the largest ti such that ti < t and let th be

the smallest ti such that ti > v − 1. (Note that such a
tg exists because t1 < t.) Then, by (H), there are holes
in all slots in [tg+1, th−1]. Thus, by Lemma 3,

∀i∈ [g+1, h−1], X(i+1) is the successor of X(i). (22)

Also, ti+1 = ti + 1 for all i ∈ [g + 1, h− 2].

tg+1 = t ∧ th−1 = v − 1 (23)
∀i ∈ {g + 1, . . . , h− 1}, ti = t+ i− (g + 1) (24)

Earlier, we showed that one of (a)–(c) holds for all
i ∈ [2, k+1]. If either d(X(g+1)) > t+1 or d(X(g+1)) =
t+1 ∧ b(X(g+1)) = 0, then since X(g+1) is scheduled at
t, by Lemma 9, part (b), e(X(g+2)) ≥ t+1 (recall that,
by (22), X(g+2) is the successor of X(g+1)). In other
words, the displacement ∆g is not valid. Therefore,

d(X(g+1))= t+ 1 ∧ b(X(g+1))=1 ∧ D(X(g+1))≤v.
(25)

We now consider two cases. In each, we show that the
displacements do not extend beyond v − 1, as desired.

Case 1: X(g+1) is the subtask of a light task.
By (21), t+1 ≤ v−1 and hence, by (H), there is a hole
in both t and t + 1. Also, by (23) and (24), we have
v − 1 = t+ (h− 1)− (g + 1) = t+ h− g − 2. Because
t < v − 1 (by (21)), we have h > g + 2, i.e.,

h ≥ g + 3.

Because X(g+1) is the subtask of a light task, the rea-
soning used in the proof of Lemma 12 applies. Thus,

16

X(h−1)

+1t it i

t i +1t i

. . .

X(2)

holehole

. . .

. . .

holes holehole

.
X(g+1)

X(g+2)

X(i)

X(i+1)

t’ t t+1 t+2 . . .

holeholes

vv−1

(a)

. . .

X(2)

holehole

. . .

. . .

holes holehole

. . .

hole

X(g+2)

X(g+1)

X(i)

X(i+1)

. . .

. . .

holes

t’ t t+1 v’v’−1 vv−1. . .

Group deadline of X(g+1)

X(w)

(b)

Figure 7: Lemma 13. (a) There are holes in all slots in [t, v). X(i) scheduled at ti displaces X(i−1) scheduled at
ti−1. By (24), the ti’s are consecutive and satisfy ti = t+ i− (g+1). Further, X(h−1) is the subtask scheduled in
slot v−1. (b) Case 2. D(X(g+1)) = v′. Hence, either d(X(w)) = v′ ∧ b(X(w)) = 0 (as depicted) or d(X(w)) > v′.

the displacement ∆g+2 is not valid. Hence, the dis-
placements do not extend beyond slot t+1 (and hence,
slot v − 1).

Case 2: X(g+1) is the subtask of a heavy task.
Let v′ = D(X(g+1)). By (25), v′ ≤ v. We now show
that the displacements cannot extend beyond slot v′−1
(and hence, slot v − 1). By (24), X(i) is scheduled in
slot t+ i− (g+1) in S for all i ∈ {g+1, . . . , h− 1}. By
(22), all X(i) where g + 1 ≤ i ≤ h are subtasks of the
same heavy task. We now show that the displacement
∆v′−1−t+(g+1)(= ∆v′−t+g) is not valid. Let w = v′ −
t+ g.
By (24), tw = v′−1. Because X(i) is scheduled at ti,

the subtask scheduled at v′ − 1 is X(w). Since X(i+1)

is the successor of X(i), by (5), d(X(i)) > d(X(i−1)) for
all i ∈ [g + 2, w]. Because d(X(g+1)) = t+ 1 (by (25)),

∀i ∈ [g + 1, w], d(X(i)) ≥ t+ i− g. (26)

In particular, d(X(w)) ≥ v′.
We now show that if d(X(w)) = v′, then b(X(w)) = 0.

In this case, because d(X(w−1)) < d(X(w)), we have
d(X(w−1)) < v′. By (26), d(X(w−1)) ≥ v′ − 1. There-
fore, d(X(w−1)) = v′ − 1. Similarly, by induction,
d(X(i)) = u + i − g) for all i ∈ [g + 1, w]. (Refer to

Fig. 7(b).) Because D(X(g+1)) = v′, by the definition
of D, b(X(v′−u+g+1)) = 0. (In this case, the group
deadline corresponds to the last slot of a window of
length two.)
Thus, either d(X(w)) > v′ or d(X(w)) = v′ ∧

b(X(w)) = 0. Since X(w) is scheduled at v′ − 1, by
Lemma 9, part (b), the eligibility time of the successor
of X(w) is at least v′. Hence, ∆w is not valid. Thus,
the displacements do not extend beyond slot v′ − 1. ✷

The following claims are used in proving Lemma 15.

Claim 1 If Uj is scheduled in slot u, where 0 ≤ u < td
and u ≤ d(Uj), and if there is a hole in slot u, then
d(Uj) = u+ 1.

Proof: Because u < td, by Def. 1, no deadline is missed
in [0, u + 1). Because Uj is scheduled in slot u, i.e.,
[u, u+1), we have d(Uj) ≥ u+1. Suppose that d(Uj) >
u+ 1. Then, by part (b) of Lemma 9, the successor of
Uj (if it exists) is not eligible before u + 1. Hence, by
Lemma 2, we can remove Uj and no displacements will
result, i.e., a deadline is still missed at td, contradicting
(T2). Therefore, d(Uj) = u+ 1. ✷

Claim 2 Suppose there is a hole in slot u ∈ {0, . . . , td−
1}. Let Uj be a subtask scheduled at t′ ≤ u. If the

17

eligibility time of the successor of Uj is at least u + 1,
then d(Uj) ≤ u+ 1.

Proof: If t′ = u, then by Claim 1, d(Uj) = u + 1.
On the other hand, if t′ < u and d(Uj) ≥ u, then by
Lemma 11, d(Uj) = u+ 1. ✷

We use the following property about flows (proved
in [10]) in the proof of Lemma 15.

(F3) Let Ti be a subtask of a heavy task T such that
b(Ti) = 1 and let Tk be the successor of Ti. If
u ∈ {d(Ti), . . . , D(Ti) − 1} and u ≤ r(Tk), then
flow(T, d(Ti)) + flow(T, u) ≤ wt(T).

Lemma 15 There exists v ∈ {t + 2, . . . , td} such that
LAG(τ , v) < 1.

Proof: Because LAG(τ , t) < 1 and LAG(τ , t+ 1) ≥ 1
(by (13)),

LAG(τ , t) < LAG(τ , t+ 1). (27)

Thus, by Lemma 4, we have the following property.

(H) There is at least one hole in slot t.

Let A,B, and I be as defined in the proof of
Lemma 14. If any task in B is light, then by Lemma 14,
LAG(τ , t+ 2) ≤ 0, which establishes our proof obliga-
tion. We henceforth assume all tasks in B are heavy.
Let U be any task in B. Let Uj be the subtask with

the largest index such that e(Uj) ≤ t < d(Uj). Let C
denote the set of such subtasks of all tasks in B. Then,
by Lemma 11,

∀ Uj ∈ C, d(Uj) = t+ 1 ∧ b(Uj) = 1. (28)

Let Li be the lowest-priority subtask in C. Then,

∀Uj ∈ C, d(Uj)= t+ 1 ∧ b(Uj) = 1 ∧ D(Uj)≥D(Li).
(29)

By Lemma 13, there is a slot in [t,min(D(Li), td)) with
no hole. Let u be as follows.

(U) u is the earliest slot in [t,min(D(Li), td)) with no
hole.

Fig. 8 depicts this situation. By (U) and (H),

u ≥ t+ 1, (30)

and there are holes in all slots in {t, . . . , u − 1}. We
now establish the following property about tasks in B.

Claim 3 All tasks in B are inactive over the in-
terval [t+ 1, u).
Proof: If the interval [t+1, u) is empty, then the
claim is vacuously true, so assume it is nonempty.

j

holes

. . .
no

holes
UU k

Group deadline of U
is at or after this slot

t ut+1 u+1

Figure 8: Lemma 15. Uj ∈ C and Uk is the successor
of Uj . There is a hole in each slot in [t, u) and there
is no hole in slot u. The earliest time at which Uk’s
PF-window starts is u, i.e., r(Uk) ≥ u.

Let V be any task in B. We first show that no
subtask of V is scheduled in [t, u).

Note that because V ∈ B, no subtask of V is
scheduled in slot t. Let Vi be the earliest sub-
task of V scheduled in [t + 1, u) and let v be the
slot in which it is scheduled. Because there is hole
in slot v, by Claim 1, d(Vi) = v + 1. By (4) and
(5), this implies that r(Vi) ≤ v. If r(Vi) < v, then
e(Vi) < v. Thus, because there are holes in all
slots in {t, . . . , v − 1}, it should have been sched-
uled earlier. Therefore, r(Vi) = v, which implies
that wt(V) = 1. However, this contradicts the fact
that some subtask of V has a b-bit of 1 (by (28)).
Hence, no subtask of any task in B is scheduled
in [t, u) (see Fig. 8). Moreover, because there are
holes in all slots in [t, u), the earliest slot after t
at which a subtask of a task in B is eligible to be
scheduled is u. By (28), this implies that all the
tasks in B are inactive in [t+ 1, u− 1]. ✷

For any Uj ∈ C, by (29) and (U), D(Uj) > u. There-
fore, by (C2), task U cannot leave before time u + 1.
Thus, no task in B can leave before time u+ 1.
Let Uj be any subtask in C, and let Uk be the suc-

cessor of Uj . By Claim 3, r(Uk) ≥ u. Furthermore, by
(28)–(30) and (U), d(Uj) = t+ 1 ≤ u < D(Uj). Hence,
by (F3), flow(U, t) + flow(U, u) ≤ wt(U). Because this
argument applies to all tasks in B, we have

∀U ∈ B, flow(U, t) + flow(U, u) ≤ wt(U). (31)

We now show that LAG is non-increasing over [t+1, u).

Claim 4 LAG(τ , v + 1) ≤ LAG(τ , v) for all v ∈
{t+ 1, . . . u− 1},
Proof: If {t+1, . . . , u} is empty, then the claim is
vacuously true, so assume it is nonempty. Suppose
for some v ∈ {t + 1, . . . , u − 1}, LAG(τ , v + 1) >
LAG(τ , v). Then, by Lemma 10, there exists a
task that is active at v but not scheduled at v.
Let V be one such task and let Vk be the subtask

18

with the largest index such that

e(Vk) ≤ v < d(Vk). (32)

Because no subtask of V is scheduled at v and
because there is a hole at v, Vk is scheduled be-
fore v. By (U), there is a hole at v − 1; more-
over, because t + 1 ≤ v ≤ u − 1, we have
v − 1 ∈ {t, . . . , u − 2} ⊆ {0, . . . , td − 1}. Hence,
by Claim 2, we have d(Vk) ≤ v, which contradicts
(32). Therefore, LAG(τ , v + 1) ≤ LAG(τ , v) for
all v ∈ [t+ 1, u− 1]. ✷

We now show that LAG(τ , u+ 1) ≤ 0, which estab-
lishes our proof obligation.

For each v ∈ {t, . . . , u}, let Hv denote the number of
holes in slot v. Then, M − Hv tasks are scheduled in
slot v. Also, let Iv (Av) denote the tasks in I (A) that
are active at v.

By (10) and Claim 4,
∑

T∈τ flow(T, v) ≤∑
T∈τ S(T, v). Therefore,

∀ v ∈ {t+1, . . . , u−1},
∑
T∈τ

flow(T, v) ≤M−Hv. (33)

By the join condition in (C2) and by (7), we
have

∑
T∈B∪Iu∪Au

wt(T) ≤ M . Hence, by (31)
and (F1), we get

∑
T∈B(flow(T, t) + flow(T, u)) +∑

T∈Iu∪Au
flow(T, u) ≤M . Thus,

∑
T∈B

flow(T, t) +
∑

T∈B∪Iu∪Au

flow(T, u) ≤M. (34)

Because the tasks in A(= At) are the ones scheduled in
slot t, the number of tasks in set At is M −Ht. Hence,
by (F1) and because the weight of each task is at most
one, ∑

T∈At

flow(T, t) ≤
∑

T∈At

wt(T) ≤M −Ht. (35)

We are now ready to show that LAG(τ , u+ 1) ≤ 0.
Because S(T, v) = M −Hv, by (10), LAG(τ , u+ 1) −
LAG(τ , t) = R, where R =

∑u
v=t

(∑
T∈τ flow(T, v)

) −∑u
v=t(M −Hv). Because, by (U), there are no holes in

slot u, Hu = 0. Therefore,

R =
u∑

v=t

(∑
T∈τ

flow(T, v)

)
−

u−1∑
v=t

(M −Hv)−M. (36)

The right-hand side of (36) can be rewritten as follows.∑
T∈τ

(flow(T, t) + flow(T, u))− (M −Ht)−M

+
u−1∑

v=t+1

(∑
T∈τ

flow(T, v)− (M −Hv)

)
.

Rearranging terms, and using
∑

T∈I flow(T, t) = 0
(which follows by the definition of I), we get∑

T∈B

flow(T, t) +
∑

T∈B∪Iu∪Au

flow(T, u)−M

+
∑

T∈At

flow(T, t)− (M −Ht)

+
u−1∑

v=t+1

(∑
T∈τ

flow(T, v)− (M −Hv)

)
.

By (33)–(35), the above value is non-positive. Hence,
by (36), LAG(τ , u+ 1) − LAG(τ , t) ≤ 0. Because
LAG(τ , t) < 1, this implies that LAG(τ , u+ 1) < 1.
By (U) and (30), t + 1 ≤ u ≤ min(D(Uj), td) − 1.

Hence, t + 2 ≤ u + 1 ≤ td. Thus, there exists a v ∈
{t+ 2, . . . , td} such that LAG(τ , v) < 1. ✷

19

