Definitions: Jobs and Tasks

Job (a single unit of work)

Release time t_r, relative deadline D (absolute one is $t_d = D + t_r$) and execution time C. Tardiness of job, completed at t_c: $\max(0, t_c - t_d)$.

Sporadic Task (a sequence of similar dependent jobs)

Characterized by period T and Worst-Case Execution Time (WCET) C. Releases jobs j_1, \ldots, j_k, \ldots, such that

- Distance between releases of j_i and j_{i+1} is at least T.
- Relative deadline of j_i is T time units from the release.
- WCET of j_i does not exceed C.

Task τ_i utilization is $U_i = C / T$, task tardiness is supremum of all its jobs tardiness.
Definitions: Affinity Masks

Affinity Mask α_i of task τ_i

A set of processors, that can execute given task τ_i (any processor that is not in the mask cannot execute the task).

Affinity Graph $AG(\tau)$

- n vertices τ_1, \ldots, τ_n (representing tasks)
- m vertices π_1, \ldots, π_m (representing cores)
- Has an edge (τ_i, π_j) if and only if $\pi_j \in \alpha_i$ (i.e., task τ_i can execute on core π_j).

\[\alpha_1 = \{1\}, \quad \alpha_2 = \{1, 2\}, \quad \alpha_3 = \{1, 2\}, \quad \alpha_4 = \{3\}.\]
Definitions: HRT/SRT-schedulability

Schedulability of \(\tau \)

\(\tau \) is HRT-schedulable (resp., SRT-schedulable) under scheduling algorithm S if each task in \(\tau \) has zero (resp., bounded) tardiness in any schedule for \(\tau \) generated by S.

Feasibility of \(\tau \)

\(\tau \) is HRT-feasible (resp., SRT-feasible) if, for any job release sequence, a schedule exists in which each task has zero (resp., bounded) tardiness.

Optimality of Scheduler S

S is HRT-optimal (resp., SRT-optimal) if every HRT-feasible (resp., SRT-feasible) task set \(\tau \) is HRT-schedulable (resp., SRT-schedulable) under S.
Problem and Motivation

Affinity masks usage

- simplify cache usage analysis
- reduce I/O-related overheads (interrupts)
- easier load balancing
- ensure security isolation

Affinity masks support

- Linux’s SCHED_DEADLINE policy (RT scheduler)
- Windows, Mac OS X, FreeRTOS, QNX, VxWorks, ...

Affinity masks schedulers

- [Baruah 2013]: HMR, requires future knowledge
- [Brandenburg 2014]: improvement for Linux scheduler, HMR
- [Bonifaci 2016]: HMR, only hierarchical, high overheads

HMR = high migrations rate

No optimal scheduler, available for implementation, exist.
Problem and Motivation

Affinity masks usage
- simplify cache usage analysis
- reduce I/O-related overheads (interrupts)
- easier load balancing
- ensure security isolation

Affinity masks support
- Linux’s SCHED_DEADLINE policy (RT scheduler)
- Windows, Mac OS X
- FreeRTOS, QNX, VxWorks, ...
Problem and Motivation

Affinity masks usage
- simplify cache usage analysis
- reduce I/O-related overheads (interrupts)
- easier load balancing
- ensure security isolation

Affinity masks support
- Linux’s SCHED_DEADLINE policy (RT scheduler)
- Windows, Mac OS X
- FreeRTOS, QNX, VxWorks, ...

Affinity masks schedulers
- [Baruah 2013]: HMR, requires future knowledge
- [Brandenburg 2014]: improvement for Linux scheduler, HMR
- [Bonifaci 2016]: HMR, only hierarchical, high overheads

HMR = high migrations rate
No optimal scheduler, available for implementation, exist.
Problem and Motivation

Our goals:
- Build *HRT/SRT-optimal* scheduler that supports *arbitrary* affinity masks
- Make scheduler *as fast as possible* (in the worst case)
- Reduce number of task *migrations* over cores
Our goals:
- Build \textit{HRT/SRT-optimal} scheduler that supports \textit{arbitrary} affinity masks
- Make scheduler \textit{as fast as possible} (in the worst case)
- Reduce number of task \textit{migrations} over cores

What do we do:
- Restrict affinity masks, preserving task set feasibility (affinity graph reduction)
Static vs Dynamic Schedulers

<table>
<thead>
<tr>
<th>Static</th>
<th>Dynamic</th>
</tr>
</thead>
<tbody>
<tr>
<td>How to build</td>
<td>Pros</td>
</tr>
<tr>
<td>Create schedule template</td>
<td>Easy to analyze</td>
</tr>
<tr>
<td>Generate “almost static” schedule</td>
<td>Small overheads</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Cons</td>
<td>Cons</td>
</tr>
<tr>
<td>Hard to adjust schedule</td>
<td>Hard to analyze</td>
</tr>
<tr>
<td>Offline phase may take lots of time</td>
<td>High overheads</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Frame is a template of schedule over $[0, 1)$. We scale this template to $[0, F)$ and repeat.
<table>
<thead>
<tr>
<th></th>
<th>Baruah</th>
<th>UB Test</th>
<th>Max Flow</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test</td>
<td>$\forall i : \sum_{j \in \alpha_i} x_{ij} = 1$</td>
<td>$\forall S \subset \tau : U_S \leq \alpha_{\tau}$</td>
<td>$</td>
</tr>
<tr>
<td></td>
<td>$\forall j : \sum_{i} x_{ij} U_i \leq 1$</td>
<td>For every subset of tasks, its aggregated affinity mask size is at least its utilization</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$\forall i, j : x_{ij} \geq 0$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Complexity</td>
<td>$\tilde{O}(mn \cdot (m + n)^{2.9})$</td>
<td>$mn \cdot 2^n$</td>
<td>$\tilde{O}(mn\sqrt{m+n})$</td>
</tr>
</tbody>
</table>

\tilde{O} ignores logarithmic factors: $\tilde{O}(g(n)) = O(g(n) \log^k g(n))$ for some natural number k.
Schedulability Conditions: Utilization Balance

\(\pi_1 \) \(\pi_2 \) \(\pi_3 \)

\(\tau_1 \) \(\tau_2 \) \(\tau_3 \) \(\tau_4 \)

(a) Affinity Graph \(AG(\tau) \)

Utilization Balance Feasibility Test check for \(S = \{ \tau_1, \tau_2 \} \):

\[U_1 + U_2 \leq 2. \]
Schedulability Conditions: Utilization Balance

(a) Affinity Graph $AG(\tau)$

(b) Aggregated affinity mask of $\{\tau_1, \tau_2\}$.

Utilization Balance Feasibility Test check for $S = \{\tau_1, \tau_2\}$: $U_1 + U_2 \leq 2$.

Sergey Voronov and James H. Anderson AM-RED: An Optimal Semi-Partitioned Scheduler Assuming Arbitrary Affinity Masks
Schedulability Conditions: Max Flow Test

(a) Affinity Graph $AG(\tau)$
Schedulability Conditions: Max Flow Test

(a) Affinity Graph $AG(\tau)$

(b) Flow Network $FN(\tau)$

Max Flow Feasibility Test: the maximum flow over $FN(\tau)$ is U.
AM-Red Outline

- Run Max Flow Test
- Remove cycles from Share Graph
- Build extended frame
- Build frame

AM-Red = Affinity Masks REDuction
Max Flow Test passed: $|f| = U$

$f(\tau_i, \pi_j)$ is a flow between τ_i and π_j.
From Flow Solution to Frame: Share Graph

Max Flow Test passed: \[|f| = U \]

\[f(\tau_i; \pi_j) \] is a flow between \(\tau_i \) and \(\pi_j \).

Share Graph \(SG(\tau) \)

Affinity graph \(AG(\tau) \) with \((\tau_i; \pi_j) \) edges removed, if \(f(\tau_i; \pi_j) = 0 \).

\(\tau_1 \) \(\tau_2 \) \(\tau_3 \) \(\tau_4 \)
\(\pi_1 \) \(\pi_2 \) \(\pi_3 \)

(a) Affinity Graph \(AG(\tau) \)

Figure: \(f(\tau_3; \pi_2) = 0 \), all other edges in \(AG(\tau) \) have non-zero \(f \) values.

\(\tau_1 \) \(\tau_2 \) \(\tau_3 \) \(\tau_4 \)
\(\pi_1 \) \(\pi_2 \) \(\pi_3 \)

(b) Share Graph \(SG(\tau) \)
From Flow Solution to Frame: Cycles Removal

If Share Graph $SG(\tau)$ has cycles we can remove them one-by-one. f_m is minimum of $f(\tau_i, \pi_j)$ over all cycle edges.

(a) Cycle in Share Graph before removal.

(b) “Cycle” in Share Graph after removal.

Figure: For dashed edges $f(\tau_i, \pi_j)$ decreases, for solid it increases. $f_m = f(\tau_2, \pi_1) = 0.1$.
Let $I_E(\tau_i, \pi_j)$ be the union of all continuous intervals on core π_j allocated to task τ_i.

\[
\begin{align*}
\forall i, j : & \quad I_E(\tau_i, \pi_j) \text{ is a single continuous interval} \\
\forall i : & \quad \bigcup_j I_E(\tau_i, \pi_j) \text{ is a single continuous interval} \\
\forall j : & \quad \bigcup_i I_E(\tau_i, \pi_j) \text{ is a single continuous interval} \\
\forall i, j_1, j_2 : & \quad |I_E(\tau_i, \pi_{j_1}) \cap I_E(\tau_i, \pi_{j_2})| = 0 \text{ (no overlapping)}
\end{align*}
\]

Frame

\[
\begin{array}{c|ccc}
\tau_1 & \tau_2 & \tau_3 \\
\hline
\pi_1 & 1/3 & 2/3 & - \\
\pi_2 & 1/3 & - & 2/3 \\
\pi_3 & 1/3 & - & - \\
\pi_4 & - & - & 1/3 \\
\end{array}
\]
1: **for** \(\pi_j \in \text{cores order} \) **do**

2: **for** \(\tau_i \in \text{tasks order for } \pi_j \) **do**

3: allocate interval for \(\tau_i \) on \(\pi_j \) (right after previous one)
Proper Order properties:

\[\forall i, j : \tau_i \text{ appears in task order of core } \pi_j \text{ if and only if } f(\tau_i, \pi_j) > 0 \]

\[\forall i : \text{ task } \tau_i \text{ can be non-first task on at most one core} \]

\[\forall i : \text{ if task } \tau_i \text{ is non-first on core } \pi_j, \text{ then on previous cores } \tau \text{ have not appeared} \]

How to get Proper Order:

- Run BFS over acyclic Share Graph
- Order cores in the discovery order
- Order tasks for each core in the discovery order
From Flow Solution to Frame: Extended Frame to Frame

\[t \leftarrow t \mod 1 \] creates a correct schedule for \([0, 1]\) from an extended frame.

\[
\begin{array}{cccc}
\tau_1 & \tau_2 & \tau_3 \\
\pi_1 & 1/3 & 2/3 & - \\
\pi_2 & 1/3 & - & 2/3 \\
\pi_3 & 1/3 & - & - \\
\pi_4 & - & - & 1/3 \\
\end{array}
\]
AM-Red: Sporadic Tasks Scheduling

![Diagram showing allocation intervals for tasks π₁, π₂, and π₃, with job release, job deadline, and job completion for task T₃.](image)

- Allocation intervals for task T₃
- Allocation intervals for all other tasks

- Job release
- Job deadline
- Job completion
AM-Red: Complexity

<table>
<thead>
<tr>
<th>Stage</th>
<th>Complexity</th>
<th>Bound</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max Flow</td>
<td>$\tilde{O}(mn\sqrt{m+n})$</td>
<td>$\Omega(mn)$</td>
</tr>
<tr>
<td>Cycles Removal</td>
<td>$O(m^2n^2)$</td>
<td>$\Omega(mn)$</td>
</tr>
<tr>
<td>Extended Frame</td>
<td>$O(m+n)$</td>
<td>$\Omega(m+n)$</td>
</tr>
<tr>
<td>Frame</td>
<td>$O(m+n)$</td>
<td>$\Omega(m+n)$</td>
</tr>
</tbody>
</table>

At most $m - 1$ migrating tasks; at most $2m - 2$ migrations per frame.

\tilde{O} ignores logarithmic factors: $\tilde{O}(g(n)) = O(g(n)\log^k g(n))$ for some natural number k.
<table>
<thead>
<tr>
<th>Stage</th>
<th>Complexity</th>
<th>Bound</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max Flow</td>
<td>$\tilde{O}(mn\sqrt{m+n})$</td>
<td>$\Omega(mn)$</td>
</tr>
<tr>
<td>Cycles Removal</td>
<td>$O(m^2n^2)$</td>
<td>$\Omega(mn)$</td>
</tr>
<tr>
<td>Extended Frame</td>
<td>$O(m + n)$</td>
<td>$\Omega(m + n)$</td>
</tr>
<tr>
<td>Frame</td>
<td>$O(m + n)$</td>
<td>$\Omega(m + n)$</td>
</tr>
</tbody>
</table>

At most $m - 1$ migrating tasks; at most $2m - 2$ migrations per frame.

Max Flow + Cycles Removal = find and modify $f(\tau_i, \pi_j)$.

\tilde{O} ignores logarithmic factors: $\tilde{O}(g(n)) = O(g(n)\log^k g(n))$ for some natural number k.
$AG(\tau)$ does not have any cycles $\Rightarrow SG(\tau)$ does not have cycles.

<table>
<thead>
<tr>
<th>Stage</th>
<th>Complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max Flow</td>
<td>$O(m + n)$</td>
</tr>
<tr>
<td>Cycles Removal</td>
<td>0</td>
</tr>
<tr>
<td>Extended Frame</td>
<td>$O(m + n)$</td>
</tr>
<tr>
<td>Frame</td>
<td>$O(m + n)$</td>
</tr>
</tbody>
</table>

Max Flow: run BFS over $AG(\tau)$ and apply Ford-Fulkerson algorithm.
FF heuristic: augmenting path searches over vertexes in reversed discovery order.

Input data size: $O(m + n)$.

For any two masks α_i, α_j: $\alpha_i \subset \alpha_j$, or $\alpha_i \supset \alpha_j$, or $\alpha_i \cup \alpha_j = \emptyset$.

Importance: follows multiprocessor architecture.

Input data size: $O(mn)$, special packing is needed to ensure $O(m + n)$.

Hierarchical masks specialty: at most $2m - 1$ unique masks and tree masks structure.
AM-Red Enhancements: Hierarchical Masks

For any two masks α_i, α_j: $\alpha_i \subset \alpha_j$, or $\alpha_i \supset \alpha_j$, or $\alpha_i \cup \alpha_j = \emptyset$.

Importance: follows multiprocessor architecture.

Input data size: $O(mn)$, special packing is needed to ensure $O(m + n)$.

Hierarchical masks specialty: at most $2m - 1$ unique masks and tree masks structure.
AM-Red Enhancements: Hierarchical Masks

For any two masks α_i, α_j: $\alpha_i \subset \alpha_j$, or $\alpha_i \supset \alpha_j$, or $\alpha_i \cup \alpha_j = \emptyset$.

Importance: follows multiprocessor architecture.

Input data size: $O(mn)$, special packing is needed to ensure $O(m + n)$.

Hierarchical masks specialty: at most $2m - 1$ unique masks and tree masks structure.

Max Flow: compute shown order and apply Ford-Fulkerson algorithm. (note that direct flow network $FN(\tau)$ construction requires $\Omega(mn)$, so we avoid it) FF heuristic: augmenting path searches over tasks vertexes according to masks order.
(a) Light tasks.

(b) Medium tasks.

(c) Heavy tasks.

Figure: Exp. 1 (hierarchical masks): total number of migrations under AM-Red and HPA-EDF (assuming periodic releases), averaged over the generated task sets, as a function of relative system utilization.
Figure: Exp. 2 (hierarchical masks): maximum tardiness, averaged over the generated task sets, as a function of relative system utilization.

[Brandenburg 2014] Linux’s processor affinity API, refined: shifting real-time tasks towards higher schedulability