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Intelligence

What am I trying to do?

• Create a lifelong learning system using harvested energy for 
embedded intelligence.
• It keeps learning and improving its intelligence over time in its lifetime.

• The learning task can be updated, changed or evolved.

Energy harvester
(solar, kinetic…)

Energy-efficient learning
(no power/battery)

energy

Energy-Free learning system
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Motivation

• Mobile devices have limited power (battery).
• At present, they almost all rely on some kind of battery that eventually 

runs down.

• “Machine Learning (ML)” requires a large amount of power.
• It drains a battery quickly.

Learning Learning Learning

electrical
power

Embedded devices Battery

Seulki Lee – UNC Chapel Hill 3



Energy harvesting

• A device able to generate power could, in principle, operate forever.
• Need to run in their lifetime.

• Once deployed, inaccessible to change or recharge a battery.
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Implantable medical devices Wildlife monitoring Remote sensing



Example: Energy-harvesting + learning ability

• An energy-free learning system in shoes
• A piezoelectric harvester generates energy for every step.

• Not only harvesting energy but also learning a walking pattern.

• Detect abnormal gait or unusual movement of a user.
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learning
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It’s a hopeful and 
springy walk!

An awkward walk!
Are you OK?



Energy harvesting and learning

• Observation 1: Learning does not happen 
all the time. Systems learn intermittently
in its lifetime.

• Example: 1) learning examples come 
unpredictably and some are useless to 
learn, 2) a learning goal is already met.
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• Observation 2: Energy harvesters 
generate lifelong energy in an intermittent
manner.

• Example: 1) sunny/rainy day for a solar 
panel, 2) slow or no movement for a 
human-kinetic harvester
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A pipedream

• Idea: Can we leverage intermittently-harvested energy for power-
constrained systems, especially for lifelong learning which is also 
performed intermittently?
• Can we match learning and energy pattern intelligently?

• Example: skip a less-important learning example based on energy.

• If not, what is the best way of doing it?
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How does it get done today?

• State-of-the-art energy harvesting systems
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• Wireless Identification Sensing Platform • Piezoelectric step counter

• Limitations
• No learning ability: most are simple sensing/computing platforms.

• Short-term computation: immediate-results focused.

• No estimation of execution time.
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How does it get done today?

• State-of-the-art embedded machine learning
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• Embedded GPU • Tensor Processing Unit (TPU) • Special-purpose Unit (VPU)

• Limitations
• Embedded machine learning usually rely on special hardware.

• They are not available for all embedded systems.

• GPU: expensive, TPU: hard to get, VPU: no general-purpose.

• Without them, an embedded system can hardly learn by itself.
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What is new about your approach?

• Designing of ‘Intermittent learning model’
• Perform a learning task using intermittently-harvested energy.

• No restriction on learning task/algorithm.

• No learning-purpose hardware (no GPU, no TPU): It runs on a general-
purpose computing unit like CPU or microprocessor.
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Normal CPU/
microprocessor

…
Intermittently-provided power

Any learning model

Intelligence



What is new about your approach?

• Providing an expected learning performance
• Looking at whether a learning task is learnable with harvested energy.

• If learnable, provide a reasonable estimation of expected learning 
performance.
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Learning model 𝐴

Is it learnable?

Learning model 𝐵

Yes, it is expected to complete its 
learning at time 𝒕 with 𝑿% of 

learning accuracy.

No, it requires exponential 
computation that cannot be 
performed with harvested 

energy.



What is new about your approach?

• Fitting a learning task into resource-constrained condition
• Harvested energy + small memory + low-computational capacity.

• Finding an energy-efficient/lightweight way of performing a large learning 
task/model.

• Should not degrade learning performance. 
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What difference it will make?

• Battery-less lifelong systems will keep learning persistently.
• Millions of embedded devices with limited power-supply will be able to learn.
• Systems will improve its intelligence over time by lifelong learning.

• Learning will be performed on the spot, not in a remote cloud system.
• Issues caused by learning in a remote system like security, privacy or 

communication will be solved.
• Intelligent IoT environment can be built locally.

• Dumb systems will turn into smart ones
• A dumb system will become smart by having the ability of learning if an 

energy-free learning component is added to it.
• No additional energy/overhead required to the system.
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Problem Statement

• Perform any learning model/task 𝐿 in a sustainable/persistent 
manner given intermittently-provided energy 𝐸 which achieves 
comparable learning performance within an expected 
completion/execution time with reasonable certainty 𝑃.
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Problem 1) and 3)

• Perform any learning model/task 𝐿 in a sustainable/persistent 
manner given intermittently-provided energy 𝐸 which achieves 
comparable learning performance within an expected 
completion/execution time with reasonable certainty 𝑃.
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Energy-harvesting model

• Energy-harvesting model

• 𝐸𝑡(𝑡) – Total available energy at time 𝑡

• 𝐸ℎ(𝑡) – Newly harvested energy at time 𝑡

• 𝐸𝑡 𝑡 = 𝐸𝑡 𝑡 − 1 + 𝐸ℎ 𝑡 or

• 𝐸𝑡 𝑡 = σ𝑖=1
𝑡 𝐸ℎ(𝑖)

• max(𝐸𝑡 𝑡 ), max(𝐸ℎ 𝑡 ) for all 𝑡 ≥ 1
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Energy-consuming model

• Energy-consuming model

• 𝐸𝑐(𝑡) – Energy consumed at time 𝑡

• 𝐸𝑡 𝑡 = 𝐸𝑡 𝑡 − 1 − 𝐸𝑐 𝑡 or

• 𝐸𝑡 𝑡 = 𝐸𝑡 0 − σ𝑖=1
𝑡 𝐸ℎ(𝑖)

• max(𝐸𝑐 𝑡 ) for all 𝑡 ≥ 1
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Harvesting-consuming energy model

• Harvesting and consuming happen at the same time

• 𝐸𝑡 𝑡 = 𝐸𝑡 𝑡 − 1 + 𝐸ℎ 𝑡 − 𝐸𝑐 𝑡 or

• 𝐸𝑡 𝑡 = σ𝑖=1
𝑡 𝐸ℎ 𝑖 − σ𝑖=1

𝑡 𝐸𝑐 (𝑖)
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Intermittent learning

• Given a learning model 𝐿:
• 𝐿 is decomposed into sub-learning tasks: 
𝐿 = {𝑙1, 𝑙2, … , 𝑙𝑚}.

• Each sub-learning task 𝑙𝑖 consumes 𝑒𝑖
amount of energy: 𝐸𝐿 = {𝑒1, 𝑒2, … , 𝑒𝑚}
where 𝐸𝐿 = σ𝑖=1

𝑚 𝑒𝑚.

• Intermittently perform 𝑙𝑖 when 𝐸𝑡(𝑡) ≥ 𝑒𝑖
for all 1 ≤ 𝑖 ≤ 𝑚.

• Keep the latest learning state consistently 
between 𝑙𝑖−1 and 𝑙𝑖 for all 1 ≤ 𝑖 ≤ 𝑚.
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Learning model 
𝐿(𝐸𝐿)

sub-learning 𝑙1(𝑒1)

…

sub-learning 𝑙2(𝑒2)

sub-learning 𝑙𝑚(𝑒𝑚)
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Can we tell when 𝐿 will be completed?

• A learning model 𝐿 is completed if its all sub-learning tasks 𝑙𝑖
complete.

• If 𝐸𝑡(𝑡) or 𝐸ℎ(𝑡) is predictable for future time 𝑡, we can provide an 
expected completion time of 𝐿.

• However, making a prediction of 𝐸𝑡(𝑡) or 𝐸ℎ(𝑡) is impossible.

• Does it mean that completion time of learning 𝐿 cannot be provided?
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Moving from time to energy-event

• Instead of predicting 𝐸𝑡(𝑡) or 𝐸ℎ(𝑡) in terms of time, do it based on a 
new concept called ‘energy-event’.
• Definition: An energy-event 𝑣 is an action of energy-harvesting that 

consequently generates 𝐸ℎ(𝑣) amount of energy.

• Example: 1) making a step for a pressure-harvester in shoes, 2) absorbing 
sunlight for 1 second with a solar panel.

• A prediction is made based on energy-event, not time.
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time

𝐸ℎ(𝑡)
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𝐸ℎ(𝑣)

…
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Properties of an energy-event

• Observations and assumptions
• Each energy-event 𝑣 harvests different amount of energy: 𝐸ℎ(𝑣𝑖) ≠ 𝐸ℎ(𝑣𝑗)

for all 𝑖 ≠ 𝑗.

• 𝐸ℎ(𝑣𝑖) comes within some common lower and upper bound usually given 
from physical capacity of a harvester: min(𝐸ℎ(𝑣)) ≤ 𝐸ℎ(𝑣𝑖) ≤ max(𝐸ℎ(𝑣)).

• 𝐸ℎ 𝑣𝑖 ≤ min(𝑒𝑗) for all 𝑖, 𝑗 where 𝑒𝑗 is required energy for a learning task 𝑙𝑗. 
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𝐸ℎ(𝑣)

…

𝑣1

min(𝐸ℎ(𝑣))

max(𝐸ℎ(𝑣))

𝑣2

min(𝑒𝑗)

𝑣3 𝑣4 𝑣𝑛𝑣5 𝑣
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Probabilistic approach

• Thus, 𝐸ℎ(𝑣𝑖) will show statistical pattern within boundaries.

• If 𝐸ℎ(𝑣𝑖) can be statistically inferred, completion time of a learning 𝐿
can be expected.

• If consecutive energy-events 𝐸ℎ 𝑣𝑖 , 𝐸ℎ 𝑣𝑖+1 , … , 𝐸ℎ 𝑣𝑖+𝑛 are given, 
the total amount of energy harvested from those energy-events can 
be also obtained.
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Bayesian statistical inference

• We are interested in a number of consecutive energy-events 𝑣’s that 
collectively generate energy 𝑒.

• Definition: 𝑛𝑒 is a random variable from distribution 𝑓(𝑛𝑒|𝑒) which indicates 
the smallest number of consecutive 𝑣’s for harvesting energy 𝑒.

• 𝑓(𝑛𝑒|𝑒)=Pr(𝑛𝑒|𝑒).

• We’d like to infer distribution 𝑓(𝑛𝑒|𝑒). 

• Let 𝑥𝑒 be observations of 𝑓(𝑛𝑒|𝑒). 

• Then, መ𝑓(𝑥𝑒|𝑒) be a sample distribution of 𝑥𝑒. 
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Pr(𝑥𝑒|𝑒 = 10)

𝑥𝑒1 2 3 4 5 6 7 8
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Inference of መ𝑓(𝑥𝑒|𝑒)

• If መ𝑓(𝑥𝑒|𝑒) can be expressed with population parameter 𝜃: መ𝑓(𝑥𝑒|𝑒, 𝜃)…
• Find 𝜃 that provides the highest probability.

• 𝜃 ↦ መ𝑓(𝑥𝑒|𝑒, 𝜃)

• Maximum Likelihood estimation of 𝜃: ෠𝜃𝑀𝐿 𝑥𝑒 = argmax
𝜃

መ𝑓(𝑥𝑒|𝑒, 𝜃)

• If a prior distribution 𝑔 over 𝜃 exists…

• 𝜃 ↦ መ𝑓(𝜃|𝑥𝑒 , 𝑒) =
መ𝑓 𝑥𝑒 𝑒, 𝜃 𝑔(𝜃|𝑒)

መ𝑓 𝑥𝑒,𝑒

• Maximum A Posteriori estimation of 𝜃:

• ෠𝜃𝑀𝐴𝑃 𝑥𝑒 = argmax
𝜃

መ𝑓(𝜃|𝑥𝑒 , 𝑒)

= argmax
𝜃

መ𝑓 𝑥𝑒 𝑒, 𝜃 𝑔 𝜃|𝑒

መ𝑓 𝑥𝑒 , 𝑒
= argmax

𝜃

መ𝑓 𝑥𝑒 𝑒, 𝜃 𝑔 𝜃|𝑒
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How to optimize 𝜃? 

• Expectation Maximization

• Expectation step (E step): calculate 𝑄(𝜃|𝜃 𝑡 ) = 𝐸[log 𝐿 መ𝑓 𝑥𝑒 𝑒, 𝜃 ].

• Maximization step (M step): find the parameters 𝜃 that maximize: 

𝜃 𝑡+1 = argmax
𝜃

𝑄(𝜃|𝜃 𝑡 ).

• Repeat E and M step: monotonically converges to a local minimum.

• MCMC (Markov Chain Monte Carlo)
• Sampling from a probability distribution based on constructing a Markov 

chain.

• Metropolis–Hastings algorithm or Gibbs sampling.

Seulki Lee – UNC Chapel Hill 27



Providing expected completion time

• Recall: Pr 𝑥𝑒 𝑒 = መ𝑓(𝑥𝑒|𝑒, 𝜃)

• Now that 𝜃 is known, 𝑥𝑒 for harvesting energy 𝑒 with the highest 
probability 𝑃 can be obtained.
• 𝑥𝑒 = argmax

𝑥𝑒

Pr(𝑥𝑒|𝑒) = argmax
𝑥𝑒

( መ𝑓(𝑥𝑒|𝑒, 𝜃))

• 𝑃 = max
𝑥𝑒

(Pr(𝑥𝑒|𝑒))= max
𝑥𝑒

( መ𝑓(𝑥𝑒|𝑒, 𝜃))

• Finally, we can claim:
• A learning model 𝐿 = {𝑙1, 𝑙2, … , 𝑙𝑚} consuming 𝐸𝐿 = {𝑒1, 𝑒2, … , 𝑒𝑚} amount 

of energy is expected to complete its learning task after 𝑥𝑒 number of energy-
events with probability 𝑃.

• Also, an expected number of energy-events can be provided: 𝐸[𝑥𝑒]. 
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Problem of energy-event approach

• Limitation
• Pr 𝑥𝑒 𝑒 does not provide when the next energy-event 𝑣 will happen.

• Not intuitive: It is not expressed in terms of time.

• Example: how do we know when a person will make next step (𝑣) that would 
generates energy?

• Thus, only depending on energy-event is not enough…

Seulki Lee – UNC Chapel Hill 29

Step at time 𝑡1:
generating energy 𝑒1

Step at time 𝑡2:
generating energy 𝑒2

How much time? How much time?

Step at time 𝑡3:
generating energy 𝑒3



Holistic view 

• Flow of energy harvesting with time and energy-event
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Energy-event
𝑣

𝑷𝒕: When will 𝑣’s happen?

No
energy-event

Harvesting
energy 𝑒

𝑷𝒆: If 𝑣’s happened,
how much energy will be 

harvested from them?

Soft Probability:
May not be predictable

Hard Probability:
Predictable

• If 𝑃𝑡 is given…
• The time expected to complete a learning task can be given with Pr 𝑥𝑒 𝑒 .

• But obtaining 𝑃𝑡 is difficult.

Obtained with 
Pr 𝑥𝑒 𝑒

?



Problem 2)

• Perform any learning model/task 𝐿 in a sustainable/persistent 
manner given intermittently-provided energy 𝐸 which achieves 
comparable learning performance within an expected 
completion/execution time with reasonable certainty 𝑃.
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Is a learning model 𝐿 learnable?

• Some class 𝐶 of target concepts is learnable if…
• Each target concept in 𝐶 can be learned from a polynomial number of training 

examples.

• The processing time per example is also polynomially bounded.
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Learning performance criteria

• Sample complexity: How many training examples are needed for a 
learner to converge (with high probability) to a successful hypothesis?

• Computational complexity: How much computational effort is 
needed for a learner to converge (with high probability) to a 
successful hypothesis?

• Mistake bound: How many training examples will the learner 
misclassify before converging to a successful hypothesis?
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PAC-learnable (Computational learning theory)

• PAC: Probably Approximately Correct learning
• Definition: Consider a concept class 𝐶 defined over a set of instances 𝑋 of 

length 𝑛 and a learner 𝐿 using hypothesis space 𝐻. 𝐶 is PAC-learnable by 𝐿
using 𝐻 if for all 𝑐 ∈ 𝐶, distributions 𝐷 over 𝑋, 𝜖 such that 0 < 𝜖 < 1/2, and 
𝛿 such that 0 < 𝛿 < 1/2, learner 𝐿 will with probability at least (1 − 𝛿)
output a hypothesis h ∈ 𝐻 such that 𝑒𝑟𝑟𝑜𝑟𝐷(ℎ) ≤ 𝜖, in time that is 
polynomial in 1/𝜖, 1/𝛿, 𝑛, and 𝑠𝑖𝑧𝑒(𝑐). - Leslie Valiant, 1984 –

• With high probability (1 − 𝛿) (the "probably" part), the selected 
function will have low generalization error 𝜖 (the "approximately 
correct" part).
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Learning complexity

• Sample complexity of a PAC-learnable learning model

• 𝑚 ≥
1

𝜖
4 log2

2

𝛿
+ 8𝑉𝐶 𝐻 log2

13

𝜖
- Blumer, 1989

• 𝑚: the number of training example required to achieve PAC learning. 

• Definition: The Vapnik-Chervonenkis dimension, 𝑉𝐶(𝐻), of hypothesis space 
𝐻 defined over instance space 𝑋 is the size of the largest finite subset of 𝐻
shattered by 𝐻. If arbitrarily large finite sets of 𝑋 can be shattered by 𝐻, then 
𝑉𝐶(𝐻) ≡ ∞.

• The complexity grows only polynomially with 1/𝜖, 1/𝛿, the size of the 
instances, and the size of the target concept if it is PAC-learnable.
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Construction of 𝐿 and 𝐸𝐿 from 𝐶𝐿

• Total computation 𝐶𝐿 = {𝑐1,𝑐2, … , 𝑐𝑚} for a learning model 𝐿 can be 
provided from the PAC-learnable analysis.
• Thus, a learning model 𝐿 = {𝑙1, 𝑙2, … , 𝑙𝑚} and its consequential energy 

consumption 𝐸𝐿 = {𝑒1, 𝑒2, … , 𝑒𝑚} can be constructed based on 𝐶𝐿.
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Other constraints

• Embedded systems have other resource constraints besides energy
• Small memory and low computational capacity.

• Usually, they cannot perform 𝐿 as it is even if sufficient energy is given.

• Thus, the learning model 𝐿 should be reduced to fit into them.
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Learning model 𝐿
with 𝐶𝐿 and 𝑀𝐿

Energy-Free
learning system 𝐴

with 𝐶𝐴 and 𝑀𝐴

Requires computation 𝐶𝐿
and 𝑀𝐿 amount of memory 

Computational capability of 𝐶𝐴
and 𝑀𝐴 amount of memory 

X
𝐿 can’t fit into 𝐴
since 𝐶𝐿 ≫ 𝐶𝐴

and
𝑀𝐿 ≫ 𝑀𝐴



AdaBoost – Schapire, 2012

• Construct a number of weak learners 𝑤𝑖 that perform same learning 
task as 𝐿 but use less resource.
• Each 𝑤𝑖 uses only the amount of resource available in the system. 

• A strong learner 𝑆 can be built by adaptively boosting learning ability of 𝑤𝑖.

• 𝑆 would eventually show comparable learning performance to 𝐿.
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Learning model 𝐿

Weak learner 𝑤1

Weak learner 𝑤2

Weak learner 𝑤𝑘
… Strong 

learner 𝑆

𝛼1

𝛼2

𝛼𝑘

Comparable performance
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