Energy-Free Learning for Lifelong Embedded Intelligence

Seulki Lee

Smart and Connected Systems Group UNC Chapel Hill

What am I trying to do?

- Create a lifelong learning system using harvested energy for embedded intelligence.
 - It keeps learning and improving its intelligence over time in its lifetime.
 - The learning task can be updated, changed or evolved.

Motivation

- Mobile devices have limited power (battery).
 - At present, they almost all rely on some kind of battery that eventually runs down.

- "Machine Learning (ML)" requires a large amount of power.
 - It drains a battery quickly.

Energy harvesting

- A device able to generate power could, in principle, operate forever.
 - Need to run in their lifetime.
 - Once deployed, inaccessible to change or recharge a battery.

Implantable medical devices

Wildlife monitoring

Remote sensing

Example: Energy-harvesting + learning ability

- An energy-free learning system in shoes
 - A piezoelectric harvester generates energy for every step.
 - Not only harvesting energy but also learning a walking pattern.
 - Detect abnormal gait or unusual movement of a user.

Energy harvesting and learning

- **Observation 1**: Learning does not happen all the time. Systems learn intermittently in its lifetime.
- *Example*: 1) learning examples come unpredictably and some are useless to learn, 2) a learning goal is already met.
- Observation 2: Energy harvesters generate lifelong energy in an intermittent manner.
- *Example*: 1) sunny/rainy day for a solar panel, 2) slow or no movement for a human-kinetic harvester

A pipedream

- *Idea*: Can we leverage intermittently-harvested energy for powerconstrained systems, especially for lifelong learning which is also performed intermittently?
 - Can we match learning and energy pattern intelligently?
 - **Example**: skip a less-important learning example based on energy.
 - If not, what is the best way of doing it?

How does it get done today?

- State-of-the-art energy harvesting systems
 - Wireless Identification Sensing Platform

Piezoelectric step counter

- Limitations
 - No learning ability: most are simple sensing/computing platforms.
 - Short-term computation: immediate-results focused.
 - No estimation of execution time.

How does it get done today?

- State-of-the-art embedded machine learning
 - Embedded GPU Tensor Processing Unit (TPU) Special-purpose Unit (VPU)

- Limitations
 - Embedded machine learning usually rely on special hardware.
 - They are not available for all embedded systems.
 - GPU: expensive, TPU: hard to get, VPU: no general-purpose.
 - Without them, an embedded system can hardly learn by itself.

What is new about your approach?

- Designing of 'Intermittent learning model'
 - Perform a learning task using intermittently-harvested energy.
 - No restriction on learning task/algorithm.
 - No learning-purpose hardware (no GPU, no TPU): It runs on a generalpurpose computing unit like CPU or microprocessor.

What is new about your approach?

- Providing an expected learning performance
 - Looking at whether a learning task is learnable with harvested energy.
 - If learnable, provide a reasonable estimation of expected learning performance.

What is new about your approach?

- Fitting a learning task into resource-constrained condition
 - Harvested energy + small memory + low-computational capacity.
 - Finding an energy-efficient/lightweight way of performing a large learning task/model.
 - Should not degrade learning performance.

requires huge memory/computation/energy small memory/ slow computing unit/ harvested-energy

What difference it will make?

- Battery-less lifelong systems will keep learning persistently.
 - Millions of embedded devices with limited power-supply will be able to learn.
 - Systems will improve its intelligence over time by lifelong learning.
- Learning will be performed on the spot, not in a remote cloud system.
 - Issues caused by learning in a remote system like security, privacy or communication will be solved.
 - Intelligent IoT environment can be built locally.
- Dumb systems will turn into smart ones
 - A dumb system will become smart by having the ability of learning if an energy-free learning component is added to it.
 - No additional energy/overhead required to the system.

Problem Statement

• Perform any learning model/task *L* in a sustainable/persistent manner given intermittently-provided energy *E* which achieves comparable learning performance within an expected completion/execution time with reasonable certainty *P*.

Problem Statement

Problem 1) and 3)

Energy-harvesting model

- Energy-harvesting model
 - $E_t(t)$ Total available energy at time t
 - $E_h(t)$ Newly harvested energy at time t
 - $E_t(t) = E_t(t-1) + E_h(t)$ or
 - $E_t(t) = \sum_{i=1}^t E_h(i)$
 - $\max(E_t(t))$, $\max(E_h(t))$ for all $t \ge 1$

Energy-consuming model

- Energy-consuming model
 - $E_c(t)$ Energy consumed at time t
 - $E_t(t) = E_t(t-1) E_c(t)$ or
 - $E_t(t) = E_t(0) \sum_{i=1}^t E_h(i)$
 - $\max(E_c(t))$ for all $t \ge 1$

Harvesting-consuming energy model

• Harvesting and consuming happen at the same time

•
$$E_t(t) = E_t(t-1) + E_h(t) - E_c(t)$$
 or
• $E_t(t) = \sum_{i=1}^t E_h(i) - \sum_{i=1}^t E_c(i)$

Intermittent learning

- Given a learning model *L*:
 - L is decomposed into sub-learning tasks: $I = \{l \mid l = l\}$
 - $L = \{l_1, l_2, \dots, l_m\}.$
 - Each sub-learning task l_i consumes e_i amount of energy: $E_L = \{e_1, e_2, \dots, e_m\}$ where $E_L = \sum_{i=1}^m e_m$.
 - Intermittently perform l_i when $E_t(t) \ge e_i$ for all $1 \le i \le m$.
 - Keep the latest learning state consistently between l_{i-1} and l_i for all $1 \le i \le m$.

Can we tell when *L* will be completed?

- A learning model L is completed if its all sub-learning tasks l_i complete.
- If $E_t(t)$ or $E_h(t)$ is predictable for future time t, we can provide an expected completion time of L.
- However, making a prediction of $E_t(t)$ or $E_h(t)$ is impossible.
- Does it mean that completion time of learning *L* cannot be provided?

Moving from time to energy-event

- Instead of predicting $E_t(t)$ or $E_h(t)$ in terms of time, do it based on a new concept called '*energy-event*'.
 - **Definition**: An energy-event v is an action of energy-harvesting that consequently generates $E_h(v)$ amount of energy.
 - **Example**: 1) making a step for a pressure-harvester in shoes, 2) absorbing sunlight for 1 second with a solar panel.
 - A prediction is made based on energy-event, not time.

Properties of an energy-event

- Observations and assumptions
 - Each energy-event v harvests different amount of energy: $E_h(v_i) \neq E_h(v_j)$ for all $i \neq j$.
 - $E_h(v_i)$ comes within some common lower and upper bound usually given from physical capacity of a harvester: $\min(E_h(v)) \le E_h(v_i) \le \max(E_h(v))$.
 - $E_h(v_i) \leq \min(e_j)$ for all i, j where e_j is required energy for a learning task l_j .

Probabilistic approach

- Thus, $E_h(v_i)$ will show statistical pattern within boundaries.
- If $E_h(v_i)$ can be statistically inferred, completion time of a learning L can be expected.
- If consecutive energy-events $E_h(v_i)$, $E_h(v_{i+1})$, ..., $E_h(v_{i+n})$ are given, the total amount of energy harvested from those energy-events can be also obtained.

Bayesian statistical inference

- We are interested in a number of consecutive energy-events v's that collectively generate energy e.
 - **Definition**: n_e is a random variable from distribution $f(n_e|e)$ which indicates the smallest number of consecutive v's for harvesting energy e.
 - $f(n_e|e)$ =Pr $(n_e|e)$.
 - We'd like to infer distribution $f(n_e|e)$.
 - Let x_e be observations of $f(n_e|e)$.
 - Then, $\hat{f}(x_e|e)$ be a sample distribution of x_e .

Inference of $\hat{f}(x_e|e)$

- If $\hat{f}(x_e|e)$ can be expressed with population parameter θ : $\hat{f}(x_e|e,\theta)$...
 - Find θ that provides the highest probability.
 - $\theta \mapsto \hat{f}(x_e | e, \theta)$
 - Maximum Likelihood estimation of θ : $\hat{\theta}_{ML}(x_e) = \arg\max_{o} \hat{f}(x_e|e,\theta)$
- If a prior distribution g over θ exists...
 - $\theta \mapsto \hat{f}(\theta | x_e, e) = \frac{\hat{f}(x_e | e, \theta)g(\theta | e)}{\hat{f}(x_e, e)}$
 - Maximum A Posteriori estimation of θ :

•
$$\hat{\theta}_{MAP}(x_e) = \operatorname*{argmax}_{\theta} \hat{f}(\theta|x_e, e)$$

= $\operatorname*{argmax}_{\theta} \frac{\hat{f}(x_e|e, \theta)g(\theta|e)}{\hat{f}(x_e, e)} = \operatorname*{argmax}_{\theta} \hat{f}(x_e|e, \theta)g(\theta|e)$

How to optimize θ ?

- Expectation Maximization
 - **Expectation step (E step)**: calculate $Q(\theta|\theta^{(t)}) = E[\log L(\hat{f}(x_e|e,\theta))]$.
 - **Maximization step (M step)**: find the parameters θ that maximize: $\theta^{(t+1)} = \underset{\theta}{\operatorname{argmax}} Q(\theta | \theta^{(t)}).$
 - Repeat E and M step: monotonically converges to a local minimum.
- MCMC (Markov Chain Monte Carlo)
 - Sampling from a probability distribution based on constructing a Markov chain.
 - Metropolis–Hastings algorithm or Gibbs sampling.

Providing expected completion time

- Recall: $\Pr(x_e|e) = \hat{f}(x_e|e,\theta)$
- Now that θ is known, x_e for harvesting energy e with the highest probability P can be obtained.

•
$$x_e = \underset{x_e}{\operatorname{argmax}} \Pr(x_e|e) = \underset{x_e}{\operatorname{argmax}} (\hat{f}(x_e|e,\theta))$$

• $P = \underset{x_e}{\operatorname{max}} (\Pr(x_e|e)) = \underset{x_e}{\operatorname{max}} (\hat{f}(x_e|e,\theta))$

- Finally, we can claim:
 - A learning model L = {l₁, l₂, ..., l_m} consuming E_L = {e₁, e₂, ..., e_m} amount of energy is expected to complete its learning task after x_e number of energy-events with probability P.
 - Also, an expected number of energy-events can be provided: $E[x_e]$.

Problem of energy-event approach

- Limitation
 - $Pr(x_e|e)$ does not provide when the next energy-event v will happen.
 - Not intuitive: It is not expressed in terms of time.
 - **Example:** how do we know when a person will make next step (v) that would generates energy?

• Thus, only depending on energy-event is not enough...

Holistic view

• Flow of energy harvesting with time and energy-event

- If P_t is given...
 - The time expected to complete a learning task can be given with $Pr(x_e|e)$.
 - But obtaining P_t is difficult.

Problem 2)

Is a learning model *L* learnable?

- Some class C of target concepts is learnable if...
 - Each target concept in *C* can be learned from a polynomial number of training examples.
 - The processing time per example is also polynomially bounded.

Learning performance criteria

- **Sample complexity**: How many training examples are needed for a learner to converge (with high probability) to a successful hypothesis?
- Computational complexity: How much computational effort is needed for a learner to converge (with high probability) to a successful hypothesis?
- *Mistake bound*: How many training examples will the learner misclassify before converging to a successful hypothesis?

PAC-learnable (Computational learning theory)

- PAC: Probably Approximately Correct learning
 - **Definition**: Consider a concept class C defined over a set of instances X of length n and a learner L using hypothesis space H. C is **PAC-learnable** by Lusing H if for all $c \in C$, distributions D over X, ϵ such that $0 < \epsilon < 1/2$, and δ such that $0 < \delta < 1/2$, learner L will with probability at least $(1 - \delta)$ output a hypothesis $h \in H$ such that $error_D(h) \le \epsilon$, in time that is polynomial in $1/\epsilon$, $1/\delta$, n, and size(c). - Leslie Valiant, 1984 –
- With high probability (1δ) (the "probably" part), the selected function will have low generalization error ϵ (the "approximately correct" part).

Learning complexity

- Sample complexity of a PAC-learnable learning model
 - $m \ge \frac{1}{\epsilon} \left(4 \log_2 \frac{2}{\delta} + 8VC(H) \log_2 \frac{13}{\epsilon} \right)$ Blumer, 1989
 - *m*: the number of training example required to achieve PAC learning.
 - **Definition**: The **Vapnik-Chervonenkis dimension**, VC(H), of hypothesis space H defined over instance space X is the size of the largest finite subset of H shattered by H. If arbitrarily large finite sets of X can be shattered by H, then $VC(H) \equiv \infty$.
- The complexity grows only polynomially with $1/\epsilon$, $1/\delta$, the size of the instances, and the size of the target concept if it is PAC-learnable.

Construction of L and E_L from C_L

- Total computation $C_L = \{c_{1,}c_2, ..., c_m\}$ for a learning model L can be provided from the PAC-learnable analysis.
 - Thus, a learning model $L = \{l_1, l_2, ..., l_m\}$ and its consequential energy consumption $E_L = \{e_1, e_2, ..., e_m\}$ can be constructed based on C_L .

Other constraints

- Embedded systems have other resource constraints besides energy
 - Small memory and low computational capacity.
 - Usually, they cannot perform *L* as it is even if sufficient energy is given.
 - Thus, the learning model L should be reduced to fit into them.

AdaBoost – Schapire, 2012

- Construct a number of weak learners w_i that perform same learning task as L but use less resource.
 - Each w_i uses only the amount of resource available in the system.
 - A strong learner S can be built by adaptively boosting learning ability of w_i .
 - S would eventually show comparable learning performance to L.

Thank you!