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What am | trying to do?

* Create a lifelong learning system using harvested energy for
embedded intelligence.

* It keeps learning and improving its intelligence over time in its lifetime.
* The learning task can be updated, changed or evolved.
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Motivation

* Mobile devices have limited power (battery).
e At present, they almost all rely on some kind of battery that eventually

runs down.
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Embedded devices Battery

* “Machine Learning (ML)” requires a large amount of power.
* |t drains a battery quickly.
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Energy harvesting

* A device able to generate power could, in principle, operate forever.
* Need to run in their lifetime.

* Once deployed, inaccessible to change or recharge a battery.
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Example: Energy-harvesting + learning ability

* An energy-free learning system in shoes

* A piezoelectric harvester generates energy for every step.

* Not only harvesting energy but also learning a walking pattern.
* Detect abnormal gait or unusual movement of a user.
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Energy harvesting and learning

e Observation 1: Learning does not happen < Observation 2: Energy harvesters
all the time. Systems learn intermittently generate lifelong energy in an intermittent

in its lifetime. manner.
 Example: 1) learning examples come * Example: 1) sunny/rainy day for a solar
unpredictably and some are useless to panel, 2) slow or no movement for a
learn, 2) a learning goal is already met. human-kinetic harvester
learning L, enersy E; E,
pattern Ls harvesting E
L, E; "
L, ! pattern
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A pipedream

* Jdea: Can we leverage intermittently-harvested energy for power-
constrained systems, especially for lifelong learning which is also
performed intermittently?

* Can we match learning and energy pattern intelligently?
* Example: skip a less-important learning example based on energy.
* If not, what is the best way of doing it?

I ‘ o ‘ ‘

time time time
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How does it get done today?

* State-of-the-art energy harvesting systems
* Wireless ldentification Sensing Platform ¢ Piezoelectric step counter

Walking Power

* Limitations
* No learning ability: most are simple sensing/computing platforms.
e Short-term computation: immediate-results focused.
* No estimation of execution time.
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How does it get done today?

* State-of-the-art embedded machine learning
e Embedded GPU ¢ Tensor Processing Unit (TPU) <« Special-purpose Unit (VPU)

* Limitations
* Embedded machine learning usually rely on special hardware.
* They are not available for all embedded systems.
* GPU: expensive, TPU: hard to get, VPU: no general-purpose.
* Without them, an embedded system can hardly learn by itself.
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What is new about your approach?

* Designing of ‘Intermittent learning model’

e Perform a learning task using intermittently-harvested energy.

* No restriction on learning task/algorithm.

* No learning-purpose hardware (no GPU, no TPU): It runs on a general-
purpose computing unit like CPU or microprocessor.

Intermittently-provided power
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What is new about your approach?

* Providing an expected learning performance
* Looking at whether a learning task is learnable with harvested energy.
* |f learnable, provide a reasonable estimation of expected learning

performance.

- Learning model A ~

Hidden
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- Learning model B ~

—[ Is it learnable? ]7

Yes, it is expected to complete its
learning at time t with X% of
learning accuracy.

_ | )
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What is new about your approach?

* Fitting a learning task into resource-constrained condition
* Harvested energy + small memory + low-computational capacity.

* Finding an energy-efficient/lightweight way of performing a large learning
task/model.

* Should not degrade learning performance.

. Energy-Free
~ Learning model A ~ /" learning system

accelerated learning/
\_ / lightweight learning

requires huge small memory/
memory/computation/energy slow computing unit/

harvested-energy
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What difference it will make?

* Battery-less lifelong systems will keep learning persistently.
* Millions of embedded devices with limited power-supply will be able to learn.
* Systems will improve its intelligence over time by lifelong learning.

* Learning will be performed on the spot, not in a remote cloud system.

* |ssues caused by learning in a remote system like security, privacy or
communication will be solved.

* Intelligent loT environment can be built locally.

* Dumb systems will turn into smart ones

* A dumb system will become smart by having the ability of learning if an
energy-free learning component is added to it.

* No additional energy/overhead required to the system.
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Problem Statement

* Perform any learning model/task L in a sustainable/persistent
manner given intermittently-provided energy E which achieves
comparable learning performance within an expected
completion/execution time with reasonable certainty P.
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Problem Statement

* Perform any learning model/task L in a sustainable/persistent
manner given intermittently-provided energy E which achieves

— comparable learning performance within an expected
completion/execution time with reasonable certainty P.

learning

1) Intermittent
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Problem 1) and 3)

* Perform any learning model/task L in a sustainable/persistent
manner given intermittently-provided energy E
an expected

completion/execution time with reasonable certainty P.

1) Intermittent

learning
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Energy-harvesting model

* Energy-harvesting model E, (1)

* E;(t) —Total available energy at time t
* E,(t) — Newly harvested energy at time ¢ ‘ ‘ ‘

tiF\ﬂe
¢ Et(t) — Et(t - 1) —+ Eh(t) or A
B = Xiet Ba) pecmug e
* max(E.(t)), max(Ey(t)) forallt > 1

En(t) |
T RIS
time
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Energy-consuming model

* Energy-consuming model E, (1)
* E.(t) —Energy consumed at time t
e E,(t) = E,(t — 1) — E(t) or ‘ I
« Ey(t) = Er(0) — Yoy En (i) —
A
* max(E.(t))forallt > 1 Consuming energy
over time
Ee(t) |
ti;ne
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Harvesting-consuming energy model

* Harvesting and consuming happen at the same time

* E;(t) = E.(t — 1) + Ep(t) — Ec(t) or
« B¢ (t) = f=1 Ep (i) — 2%:1 E. (1)

Ep(t)

»

time

E.(t) |

time
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Intermittent learning

* Given a learning model L:

e L is decomposed into sub-learning tasks:
L= {lll lz, e ) lm}

* Each sub-learning task [; consumes ¢;
amount of energy: E; = {eq, €5, ..., €}
where E;, = Y70 e

* Intermittently perform [; when E;(t) = ¢;
foralll <i <m.

* Keep the latest learning state consistently
between [;_; and [; forall1 < i < m.
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Can we tell when L will be completed?

* A learning model L is completed if its all sub-learning tasks [;
complete.

* If E.(t) or Ep(t) is predictable for future time t, we can provide an
expected completion time of L.

* However, making a prediction of E;(t) or E; (t) is impossible.

* Does it mean that completion time of learning L cannot be provided?
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Moving from time to energy-event

* Instead of predicting E;(t) or E;,(t) in terms of time, do it based on a
new concept called ‘energy-event’.

* Definition: An energy-event v is an action of energy-harvesting that
consequently generates E;, (v) amount of energy.

 Example: 1) making a step for a pressure-harvester in shoes, 2) absorbing
sunlight for 1 second with a solar panel.

* A prediction is made based on energy-event, not time.

En(t) Ey(v) | ‘

‘I I Il.'.l ‘ “l...l
[ R R

time energy-event

| T

Seulki Lee — UNC Chapel Hill 22



Properties of an energy-event

* Observations and assumptions
* Each energy-event v harvests different amount of energy: Ep, (v;) # Ep (v;)

forall i # J.

* E;(v;) comes within some common lower and upper bound usually given
from physical capacity of a harvester: min(E; (v)) < E, (v;) < max(Ex(v)).

e £, (v;) < min(e;) for all i, j where e; is required energy for a learning task [;.

En(v) ¢

Il"'

__________ min(Ey (v))

Seulki Lee — UNC Chapel Hill

v1 vz 173 v4_ V5 vn v

23



Probabilistic approach

* Thus, Ep, (v;) will show statistical pattern within boundaries.

* If E; (v;) can be statistically inferred, completion time of a learning L
can be expected.

* If consecutive energy-events Ey, (v;), En,(Vi41), ..., En(vi4y) are given,
the total amount of energy harvested from those energy-events can

be also obtained.
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Bayesian statistical inference

* We are interested in a number of consecutive energy-events v’s that
collectively generate energy e.

Definition: n, is a random variable from distribution f (n,|e) which indicates
the smallest number of consecutive v’s for harvesting energy e.

Pr(x.le = 10) |

f(nele)=Pr(nc|e).
We’d like to infer distribution f(n,|e).
Let x, be observations of f (n,|e).

* Then, f(x,|e) be a sample distribution of x,,.

123 45 67 8 Xe
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Inference of f(x,|e)

« If f(x,|e) can be expressed with population parameter 6: f (x,|e, 6)..

* Find 6 that provides the highest probability.

* 0+ f(xele,6)

» Maximum Likelihood estimation of 8: 8,,; (x,) = argmax f (x,|e, 0)
0

* |If a prior distribution g over 8 exists...

C f X ele g(@l@)
° 6 Hf(@lxe, e) — ( elf‘(xe,)e)

* Maximum A Posteriori estimation of 6:

* Oyap(xe) = argmax f(6]x,, )

f(xcle,8)g(O]e)
Flxzre)

= argmax = argmax f (x,|e,0)g(6|e)
0 6
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How to optimize 8°?

* Expectation Maximization
« Expectation step (E step): calculate Q(8|6®)) = E[log L (f(xele, 9))].
* Maximization step (M step): find the parameters 6 that maximize:
g(t+1) = arggnax Q(6]0).

e Repeat E and M step: monotonically converges to a local minimum.

* MCMC (Markov Chain Monte Carlo)

* Sampling from a probability distribution based on constructing a Markov
chain.

* Metropolis—Hastings algorithm or Gibbs sampling.

Seulki Lee — UNC Chapel Hill 27



Providing expected completion time

* Recall: Pr(x,.|e) = f(x,|e, 6)
* Now that 8 is known, x, for harvesting energy e with the highest
probability P can be obtained.

* x, = argmax Pr(x,|e) = argmax(f (x,|e, 8))
Xe Xe

* P = max(Pr(x,|e))= max(f (xc|e, 0))

* Finally, we can claim:

* Alearning model L = {l4, 5, ..., ,,} consuming E; = {eq, €5, ..., €} amount
of energy is expected to complete its learning task after x, number of energy-
events with probability P.

* Also, an expected number of energy-events can be provided: E|x,].
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Problem of energy-event approach

* Limitation
* Pr(x,|e) does not provide when the next energy-event v will happen.
* Not intuitive: It is not expressed in terms of time.

* Example: how do we know when a person will make next step (v) that would
generates energy?

How much time? How much time?
e \ e I\ e
] 28 - §7
Step at time t4: Step at time t,: Step at time t5:
generating energy e, generating energy e, generating energy e;

* Thus, only depending on energy-event is not enough...
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Holistic view

* Flow of energy harvesting with time and energy-event

Soft Probability: Hard Probability:
May not be predictable Predictable
No ‘(Energy-event] ( Harvesting
energy-event [ L % J [ L energy e
«— . ill v’ ? . !
? P;: When will v’s happen: P.: If v's happened, Obtained with

how much energy will be —

harvested from them? Pr(xcle)

* If P is given...
* The time expected to complete a learning task can be given with Pr(x,|e).
* But obtaining P; is difficult.
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Problem 2)

— comparable learning performance

achieves
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s a learning model L learnable?

* Some class C of target concepts is learnable if...

e Each target concept in C can be learned from a polynomial number of training
examples.

* The processing time per example is also polynomially bounded.
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Learning performance criteria

* Sample complexity: How many training examples are needed for a
learner to converge (with high probability) to a successful hypothesis?

* Computational complexity: How much computational effort is
needed for a learner to converge (with high probability) to a
successful hypothesis?

* Mistake bound: How many training examples will the learner
misclassify before converging to a successful hypothesis?
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PAC-learnable (Computational learning theory)

* PAC: Probably Approximately Correct learning

* Definition: Consider a concept class C defined over a set of instances X of
length n and a learner L using hypothesis space H. C is PAC-learnable by L
using H if for all ¢ € C, distributions D over X, e suchthat 0 < e < 1/2, and
6 such that 0 < § < 1/2, learner L will with probability at least (1 — §)
output a hypothesis h € H such that errorp(h) < €, in time that is
polynomialin 1/¢,1/8, n, and size(c). - Leslie Valiant, 1984 —

* With high probability (1 — ¢) (the "probably" part), the selected
function will have low generalization error € (the "approximately

correct" part).
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Learning complexity

* Sample complexity of a PAC-learnable learning model
m>= 2(4 log, % + 8VC(H)log, 1—:) - Blumer, 1989

* m: the number of training example required to achieve PAC learning.

* Definition: The Vapnik-Chervonenkis dimension, VC (H), of hypothesis space
H defined over instance space X is the size of the largest finite subset of H

shattered by H. If arbitrarily large finite sets of X can be shattered by H, then
VC(H) = co.

* The complexity grows only polynomially with 1/¢, 1/6, the size of the
instances, and the size of the target concept if it is PAC-learnable.
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Construction of L and E; from C;

* Total computation €}, = {c; ¢3, ..., ¢, } for a learning model L can be
provided from the PAC-learnable analysis.

* Thus, a learning model L = {4, [,, ..., l,;;} and its consequential energy
consumption E; = {eq, e,, ..., e;,} can be constructed based on C;.

| Cn > @lm > [N €

CL - = EL
| Cy > % lZ > h €,
_ ' ’ @ L

computétion enérgy

> I eq
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Other constraints

* Embedded systems have other resource constraints besides energy
* Small memory and low computational capacity.
e Usually, they cannot perform L as it is even if sufficient energy is given.
* Thus, the learning model L should be reduced to fit into them.

Energy-Free

Le;?rnmg model L X > learning system A
with C; and M, ,
L can’t fitinto A with C4 and M,
since C;, > Cy Computational capability of C,
and and M, amount of memory
Requires computation C;, My > M,

and M; amount of memory
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AdaBoost — Schapire, 2012

* Construct a number of weak learners w; that perform same learning
task as L but use less resource.
* Each w; uses only the amount of resource available in the system.
* Astrong learner S can be built by adaptively boosting learning ability of w;.
* S would eventually show comparable learning performance to L.

Learning model L

aq

A 4

Weak learner wy

(04}

\ 4

Weak learner w,

Strong
learner S

A
—{ Weak learner wy, ]7
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Thank youl!



