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Abstract
Two factors influencing the design and

development of avionics software are 1) the cost of
verification, validation and certification 2) migration
of avionics functionality from hardware to software, to
decrease the weight and power consumption of the
avionics. These two factors are inherently at odds.
Lowering the development costs of engineering
software for safety critical systems, while providing the
abstractions necessary to build systems of ever
increasing complexity, is key to achieving these two
goals. Middleware seems to be the ideal vehicle to
reach these goals.

Middleware is used to isolate the core application
from the underlying distributed system and is
constructed using object-oriented techniques. This has
the benefit of increasing software reuse and minimizing
the code that is verified to various safety criticality
levels when the underlying system microprocessor and
network are changed.  The middleware that meets the
criteria placed on safety critical software is faced with
many challenges.

1. Introduction
The majority of system functionality in modern

avionics systems is provided by software.   This
software functionality comes at the cost of increasing
lines of code. Not only does the increase of software
functionality place higher demands on the computing
resources, but avionics software development is also
painstaking and expensive.  Traditionally, avionics
system designers have made extensive use of
proprietary hardware. The hardware used for avionics
are not like a typical “off the shelf” personal computer.
Some of the typical differences are, memory is error
corrected (ECC) and microprocessor clock derated to
increase reliability with built in self-test (BIST). This
has hampered the ability to exploit commodity
hardware, which has been improving at rates predicted
by (and sometimes exceeding) Moore’s Law.  Avionics
systems of the past have been very tightly coupled to
the hardware capabilities, resulting in fragile software
architectures that are sensitive to underlying hardware

changes.   Middleware allows us to focus more on the
integration of system-level software components that
are decoupled from the underlying RTOS and
hardware.

A simple-minded use of middleware in a system
might just create wrappers around legacy applications.
This would not create the most effective usage of
CORBA.  A top down approach is necessary for
efficiently creating an application component
architecture (see Figure 1).  This abstraction allows us
to concentrate our efforts on specific component layers.
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Figure 1 High Assurance Middleware Systems

“Middleware” refers to a layer of interfaces and
services that resides “between” the application and the
operating system to facilitate the development,
deployment and management of distributed computing
systems. Middleware has emerged as an important
architectural framework component in modern
distributed real time systems because of its ability to
decouple applications from many of the underlying
hardware and real time operating system (RTOS)
concerns.  Some of this is being driven by the hardware
changes and improvements predicted by Moore’s Law.
Use of middleware in a system allows a higher-level,
platform-independent programming model (object-
oriented or component-based) and hides some of the
distributed programming complexities from the
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application (see Figure 1). Some examples of
middleware platforms are CORBA, DCOM, .NET, and
Java-based technologies (Enterprise JavaBeans, Jini,
and RMI).

Businesses are deploying middleware into
embedded and real-time domains to tackle
heterogeneity problems and to decouple applications
from underlying systems.  Middleware technologies
are being applied in a wider range of systems,
including software radios, avionics mission computers,
and many other types of embedded real-time systems
[1].

2. CORBA

The Object Management Group (OMG) has been
fostering CORBA (Common Object Request Broker
Architecture) as a standard Middleware for common
use, supported by the Unified Modeling Language
(UML) as a modeling and design language (see Figure
2).  CORBA and UML are open specifications
developed by OMG members. These specifications
provide support for many different programming
languages.   This allows CORBA-based software to
execute on heterogeneous distributed systems.

Figure 2 CORBA Middleware

Real-Time CORBA is a profile of CORBA
tailored to allow Object Request Brokers (ORBs) to be
components in Real-Time systems.  An ORB
implementation compliant with the Real-Time CORBA
profile may offer a Real-Time Scheduling Service [21].

The CORBA standards are subject to
interpretation and some, in an effort to adapt to an
environment or application, implement a subset of the
standard. This adaptation can have an impact on the
overall performance of an ORB.  In Figure 3 we see a
full-featured general purpose ORB (ACE TAO
implemented in C++) compared to a minimalist,
specialized implementation, ORBit [15].   The ACE
TAO is considered a real-time ORB implementation,

however the full implementation has a performance
cost. The smaller ORBit ORB has been developed
largely as a special purpose ORB to support a
windowing desktop GUI. ORBit performed better than
the ACE TAO.  ORBit does not support the real-time
CORBA policies, priorities and the end-to-end
predictability of activities in the distributed system
with support for resource management. It should be
noted that although ORBit performed better on this
particular test, we had difficulty using it to send and
receive periodic data, unless the data rates were slowed
down considerably. This serves to illustrate that an
ORBs performance and footprint characteristics can be
improved greatly by adapting the ORB to its
environment and removing extraneous functionality.
However, the adaptation must be performed with care
to insure that the resulting ORB runs well in all
necessary situations.
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Figure 3 Real-Time vs. Specialized ORB
(R-T DII COE Test)

3. Challenges for Avionics Middleware
The current OMG Real-Time CORBA

specifications do not consider all of the forces driving
application development for commercial avionics
systems.  The primary consideration that is not met is
the development of software following RTCA DO-
178B guidelines (e.g. safety criticality).  Another
application development constraint that is not met is
the need for small size (memory footprint), due to
hardware size, weight, and power requirements for
avionics.

There is a need to research specific CORBA areas
for use in safety critical avionics environments.  The
top issues needed to be researched and explored for
using CORBA in avionics are (not in any order):

• System Partitioning
• Time and Space Partitioning
• Federated Architecture

• Fault Tolerance
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• Deterministic replica consistency
• Fragmented Objects
• Interoperability limitations
• Analytic Redundancy
• Leadership rules
• Data integrity

• Quality of Service
• Reflective Middleware

Aspects or Cross-Cutting concerns[3]
• Generative programming[5][10]
• Avionics Domain Services
• High Assurance

Improved software engineering tools are also necessary
that support the research areas outlined.

3.1. System Partitioning

RTCA DO-255, an avionics industry standard for
computing resources[20], dictates a time and space
partitioned real-time operating system (see Figure 4).
This requires the Avionics Computing Resource (ACR)
to have the necessary hardware and software
mechanisms to ensure that time, space, and I/O
allocations are static. Static means that time, space, and
I/O allocations are established at initialization time of a
program or process, and are not altered during runtime.
This ensures that safety critical applications are
provided the computing resources necessary to fulfill
their function. Chief among these resources are
processor time and memory.

Conceptually, a real time operating system
(RTOS) that supports multiple virtual machines
capable of running a real time POSIX application or an
operating system such as Linux is what RTCA DO-255
allows.

There are not currently any commercial ORBs
running on an operating system supporting time and
space partitioning.  Running an ORB in this type of
environment may have unforeseen consequences,
mainly because legacy avionics applications have been
tightly coupled to the hardware and system data flows.
As discussed later, middleware offers new
opportunities for developers to abstract the underlying
system network and hardware.

The core ACR software performs access mediation
between partitions, independent of other provided
services. Importantly, access mediation between
partitions must be complete, tamper-proof, and
assured.  Security minded people recognize this as
being related to basic security requirements.  An ORB
could be the mechanism of cross partition

communications, providing a consistent
communication mechanism.  This may mean ORB
functionality should be provided by the core ACR
system (i.e. OS kernel space).
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Figure 4 Partitioned Computing Platform

Avionics systems architectures are evolving from
the federated architectures traditionally used.   This
type of system architecture and its impact on CORBA
Fault Tolerant and Security Domains needs to be
explored.  Avionics are moving toward distributed
architectures, providing a need for a middleware layer,
such as CORBA, to provide the necessary abstractions
to facilitate highly reliable distributed computing. How
the system is partitioned has a flow down effect on
Software Architecture, Fault Tolerance, Quality of
Service, Security, etc.

3. 2. Fault Tolerance

Use of CORBA Fault Tolerance (F-T) [13] in
avionics may require several different service levels
depending on where and how an object is used in the
system.   For instance, the simplest type of Fault
Tolerance is to have multiple instances of an object
running in the system, with a fault detection
mechanism that determines which instance is used.
Another scenario is to have a Factory Object that
replicates the object by creating instances on another
computing resource in the system according to an a
priori scheme.  A third possible way to support F-T is
to have the ORB support Object Fragmentation, in
which parts of an object’s functionality can be
replicated in the system to support both F-T and
performance concerns.  This type of scheme is not in
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the current CORBA F-T specification, but is being
researched.

Areas where the CORBA F-T specification can be
improved are:

• Interoperability limitations dictate that F-T
components be well specified for
interoperability

• Determinism of varying degrees may need to
be supported for replica consistency (Policy
based Fault Tolerance.)

• Analytical Redundancy [4] to allow for
temporal differences in system data. (i.e.
Using knowledge of temporal data changes to
predict correctness.)

• No Real Time (R-T) provisions in the current
F-T spec (the OMG R-T SIG plans to work on
this)

• Usage of known temporal data produced at
expected intervals for Heartbeat/Liveness
checks.

• Leadership rules are needed to support
federated architectures.

3. 3. Quality of Service

Basic system Quality of Service (QoS) means
providing consistent, predictable data delivery service.
For avionics, this includes satisfying safety,
availability, and integrity requirements. This provides
network congestion control that is transparent to the
endpoint applications. A useful (and relevant) analogy
might be event delivery such that the endpoint
applications can not differentiate whether a sensor is
delivering the data directly or through an event service.
The OMG is currently working on adoption of a
specification that allows for a user framework
permitting replacement of TCP/IP with other protocols
as necessary for embedded R-T systems. We are
evaluating embedding CORBA transport mechanisms
into the network with the potential of improving QoS
and overall performance.

The following characteristics are the most
important system QoS considerations:

• minimizing end-to-end delivery delay (bounded
latency)

• minimizing end-to-end delay variations
(bounded jitter)

• consistent end-to-end data throughput

For safety critical systems, this means having a
predictable Real-Time Operating System (RTOS),
Communications Protocol Stack, and ORB data

delivery service.  Current R-T ORB implementations
have some QoS considerations.  However, the
unpredictable “best effort” network protocol used in
most operating systems does not ensure the predictable
end-to-end requirements for safety critical systems.

Feature additions have a performance impact.
Typical avionics applications only deliver functionality
that is needed.   Since not every application needs all of
the real-time ORB functionality, a promising way to
customize an ORB (and application) is through Aspect-
Oriented Programming[3].  Through the development
of feature sets the application developer can deliver a
core set of features and the aspects that add features
necessary to support the overall goals of the
application.

Currently the major need for research in this area
is on predictable end-to-end QoS policies, and
consistent infrastructure (i.e. Predictable ORB, RTOS,
and Predictable Network Protocols).   Much of the
current research has been on QoS applied at specific
functional layers without consideration for meeting the
stringent end-to-end predictability requirements of
safety critical systems.   Another issue for Safety
Critical systems is how to continue applying the end-
to-end QoS policies predictably when the system is
reconfigured to compensate for component failure.

There is a need to provide the application with a
consistent set of end-to-end Real-Time adaptations to
the services and the ORB functionality (i.e. naming,
event/notification, etc.).

3. 4. Reflective Middleware

Reflective Middleware is a term that describes the
capability of a system to reason about and act upon
itself. For safety critical systems this can be used in
conjunction with QoS, Integrity, and Fault-Tolerance
policies.  Current research has focused on meta-
interfaces to manage internal operation and structure of
the middleware for runtime changes.

A more generalized approach would be to have a
rules approach allowing causal manipulation of the
appropriate meta-interfaces.  Safety critical systems
could use a causal-net [14] applying pre-determined
behaviors to direct adaptations in response to system
changes.  With causal adaptation of a system, changes
are immediately reflected in state and behavior.  This
allows for safe systems that can react dynamically with
predictable behavior.  Some reflective properties may
also be applied statically at compile or system
generation time  using generative programming.
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3. 5. Generative Programming

Generative Programming [5][10] is the
construction of a program by specification.  This is
done with a specification language that is processed by
a “generator” to produce the implementation source
code corresponding to the specification.  This whole
process should sound very familiar to those
knowledgeable with the OMG Interface Definition
Language (IDL).  The IDL (an interface specification)
is processed to produce the routines called by the
client, known as “stubs” and the definitions (without
implementation) of the server routines, called “skels”.

The important aspect of this generation of
interface code is the code necessary to handle the
distributed nature of the program is generated from the
IDL. In the future, it may be possible, through further
enhancement of specification languages, to assist a
developer in generating an increasing amount of the
application by a generative process.  The use of
“Aspects” further customizes the generated code with
only the application specific features (adaptations)
used[7]. Moreover, IDL compilers should be enhanced
to generate coverage tests which are a necessary part of
the DO-178B software process.

3. 6. Avionics Domain Services

Definition of Standard Commercial Avionics
domain services and their interfaces allows for a more
open component oriented system.  These standardized
interfaces in turn lead to having a reusable system
framework that allows for usage of well-defined
architectural, component, communication, and
synchronization patterns.  This helps to increase the
software reliability and decrease component integration
problems.  Developers in turn can concentrate more on
the application requirements and ultimately improve
software productivity.

Focusing on system services and standardized
interfaces allows a System Engineer to have a more
abstract view of the system.  Rather than worrying
about low-level data formats, the system engineer can
design the system from a high level model based
viewpoint.  This in turn enables application providers
to work with standard interfaces appropriate to an
application.  Either the platform or application provider
can act as the system integrator as appropriate for the
software or hardware being developed (see Figure 5).

We have developed a prototype data distribution
service for avionics. The goal of the work was to move
towards an ‘Aircraft Abstraction Layer’ (AAL).  With
such an abstraction an avionics application can request

the requisite data and receive the data with high
assurance.  High assurance in this context can be taken
to mean that the data’s value correctly portrays the
physical phenomenon that it represents and the data is
not so old that it is no longer valid.  The process of
creating the high assurance for the data is moved from
the application to the middleware and applied
uniformly through out the system.  Furthermore, the
property of location transparency, provided by
CORBA, removed any knowledge of the underlying
transport mechanism from the application, rendering
them more portable and reusable.
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Figure 5 System Integration of Software and
Hardware

Our prototype avionics data distribution service
also assists the application with data interpretation.
This includes the automatic data type and units
conversions as well as automatically performing
operations such as low-pass filtering on incoming data.

3. 7. High Assurance

The Boeing Company has paved the way by using
CORBA in the mission computer of a military weapons
platform[1].  CORBA is not currently used in any
commercial safety critical avionics.  However,
CORBA is finding its way into less critical parts of
commercial avionics systems.

For CORBA to move into Level-A critical
systems, ORB developers must follow the RTCA DO-
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178B Software Considerations in Airborne Systems
and Equipment Certification guidelines.   Most current
Open Source ORBs have been developed in C++
without any consideration for the assurance processes
necessary to certify the ORB.   Recently, the
Aerospace Vehicle System Institute (AVSI) guidelines
[2] for certification of Object-Oriented software have
become available.  However, these guidelines have not
yet been validated or applied to the construction of an
ORB and associated Services.

CORBA security is essential for access mediation
as part of the services provided by an ACR.  Access
mediation with respect to CORBA must be complete,
tamper-proof, and assured as follows:

Complete. Software running in any partition must not
be able to bypass the ORB to access system resources
outside of its partition.

Tamper-proof.  Applications running in any partition
must not be able to tamper with the ORB or CORBA
Services in any manner that subverts CORBA when
accessing system resources.

Assured. CORBA Security routines must be
evaluatable; that is, they must be amenable to
investigation and analysis for correctness.  Note that
this means evaluatable with respect to both DO-178B
[19] and the Common Criteria [6].

An important consideration in using CORBA
security with a real-time system is how much of an
impact Security will have on the systems laxity.

4. Conclusions

The Middleware technologies identified should
enable a consistent layered development of large,
complex avionics systems. Middleware abstracts the
operating system and hardware platform providing
widely used domain services.  Avionics application
developers can then use consistent software
architectures.  CORBA in avionics frees software
developers to focus on application domain
requirements.  This allows developers to focus on
better requirements and integration of the domain
components rather than lower level details (see Figure
6).

1980’s 1990’s Future

Figure 6 Avionics Application Environment
The recent Joint Strike Fighter award highlights

the current emphasis on providing a modular
component platform.  CORBA is the leading
technology for creating an open modular and reusable
software base for complex software systems.  The
creation of “reusable software radio waveforms” for
the Joint Tactical Radio System (JTRS) [11][17], is an
example system with hard real time constraints using
CORBA.  The JTRS system providers are also leading
the way toward creating lighter weight CORBA
services[13].  Rockwell Collins is an active participant
in the Software Radio and Real-Time working groups
at the OMG.

It is apparent that CORBA technologies have
matured considerably since the early 1990’s.
However, current middleware has some technical
challenges to overcome before it will be acceptable for
use in safety critical systems.  Some of the current
CORBA limitations are due to the black-box
implementations of most current ORBs.  Specifically,
middleware must flexibly allow for small systems and
scale to larger platforms offering various capabilities.
A CORBA-based system must be flexible enough for
developers to create high assurance systems with a
consistent approach for cross cutting concerns.
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