
c o m p u t e r s & s e c u r i t y 2 8 (2 0 0 9) 4 2 1 – 4 3 2
ava i lab le at www.sc ienced i rec t . com

journa l homepage : www.e lsev ie r . com/ loca te /cose
A formal framework for real-time information flow
analysis
Joon Son*, Jim Alves-Foss

Center for Secure and Dependable Systems, University of Idaho, P.O. Box 441008, Moscow, ID 83844-1008, USA
a r t i c l e i n f o

Article history:

Received 22 October 2007

Received in revised form

13 January 2009

Accepted 15 January 2009

Keywords:

Real-time information flow

Covert-timing channel free security

policies

Specification of security policies
* Corresponding author.
E-mail address: joonson@gmail.com (J. So

0167-4048/$ – see front matter ª 2009 Elsevi
doi:10.1016/j.cose.2009.01.005
a b s t r a c t

We view Multi-Level Secure (MLS) real-time systems as systems in which MLS real-time

tasks are scheduled and execute, according to a scheduling algorithm employed by the

system. From this perspective, we develop a general trace-based framework that can carry

out a covert-timing channel analysis of a real-time system. In addition, we propose a set of

covert-timing channel free policies: If a system satisfies one of our proposed security

policies, we demonstrated that the system can achieve a certain level of real-time infor-

mation flow security. Finally, we compare the relative strength of the proposed covert-

timing channel free security policies and analyze whether each security policy can be

regarded as a property (a set of execution sequences).

ª 2009 Elsevier Ltd. All rights reserved.
1. Introduction unreliable communication channel between a sender and
When timing information is added to the specification of

a Multi-Level Secure (MLS) system, it may reveal new infor-

mation flow: if a classified entity, High, can modify the

response time of an unclassified entity, Low, and Low can

reliably deduce that the change in its response time is caused

by High, High can use this as a mean to transmit illicit infor-

mation to Low. This timing based information flow leakage is

often called a covert-timing channel. As illustrated in Fig. 1,

a covert (timing) channel has a transmission cycle which

consists of a sender–receiver synchronization (S–R) period,

a transmission period and a feedback period. During the S–R

period, a sender (High) will notify a receiver (Low) that it is

ready to transmit new information. However, the S–R period

may not be necessary if the sender and the receiver have some

prior agreement (e.g. every t units of time, new information is

transmitted). In this paper, we assume there exists a prior

agreement between the sender and receiver. Therefore,

unless stated otherwise, it is assumed that there is no sender–

receiver synchronization (S–R) period. If we assume there is an
n).
er Ltd. All rights reserved
a receiver, a feedback period must exist to establish reliable

communication. Without feedback, the sender is unaware if

the receiver has observed the intended information and does

not know when to start a new transmission.

Numerous papers (Agat, 2000; Cabuk et al., 2004; Hu, 1991;

Janeri et al., 1995; Moskowitz and Kang, 1994; Shah et al., 2006;

Son and Alves-Foss, 2006a,b; Gray, 1993) have presented

covert-timing channel (real-time information flow) analysis

for various MLS systems. We are specifically interested in real-

time systems (Liu, 2000) where time plays a fundamental role

and thus timing information must be included in system

specifications. Previously, formal frameworks such as timed

process algebra (Focardi et al., 2003; Lowe, 2004) or timed

automata (Barbuti and Tesei, 2003), were used to model timed

behaviors of real-time systems and to specify security policies

for preventing illicit information leakage through covert-

timing channels. For the analysis of information flow security

in non-real-time systems, a trace-based possibilistic formal

framework or model has been quite popular (Mantel, 2000;

McLean, 1996; Zakinthinos and Lee, 1997). In the trace-based
.

mailto:joonson@gmail.com
http://www.elsevier.com/locate/cose
http://www.sciencedirect.com

Sender−Receiver
Synchronization

Receiver observes
a symbol

Receiver−Sender
Synchronization

(Feedback)

A symbol
transmitted

Transmission
Period

Time
S−R Period

A symbol
received

Feedback
Period

Transmission cycle

Fig. 1 – Transmission cycle of a covert-timing channel.

c o m p u t e r s & s e c u r i t y 2 8 (2 0 0 9) 4 2 1 – 4 3 2422
possibilistic model, the non-timed behavior of a system is

modeled by a set of traces, where every trace represents

a possible execution sequence of the system and nondeter-

ministic behavior is modeled by the possibility of different

execution sequences. In the possibilistic model, system

specifications do not require probabilities with which the

different possible execution sequence will occur. In this paper,

we present a new trace-based possibilistic framework which

allows us to:

1) formally specify traces (histories) of timed actions of real-

time tasks running under a real-time scheduling algorithm.

2) define security policies which specify how real-time tasks

should behave against covert-timing attacks.

3) formally show, if a system running under a real-time

scheduling algorithm satisfies the proposed security poli-

cies, that the system can achieve a high level of real-time

information flow security. This satisfactory relation between

a system specification and a security policy can reveal that

the schedule of tasks generated by a real-time scheduler

could leak information through a covert-timing channel.

4) compare the proposed security policies in terms of their

relative strength and specification characteristics.
A task submitted A terminating event observed

Response time

TH

TN

TL L outL in

H in

N in

H out

N out

Multi−Level Secure
Real−time system

(scheduler)
2. Our approach to a formal framework

Designating the level of abstraction to specify timed behaviors

of a real-time system is crucial in our approach. A real-time

system should function as follows (see Section 3 for more

details): when multiple tasks arrive at a scheduler for execu-

tion, the way in which scheduling priorities are assigned to

tasks (if a scheduling algorithm is priority based) and the way

in which a task is scheduled to execute on the CPU are

determined by the type of a scheduling algorithm in use and

the (timing) constraints imposed on task executions. Thus, we

model a real-time system as a set of tasks which execute

according to a scheduling algorithm to meet their timing

constraints. In this paper, we assume that a set of tasks

consists of tasks with different security levels, e.g. a high-level

(classified) task TH, a low-level (unclassified) task TL, and

a third party1 (trusted) task TN (Fig. 2). The system model we

employ throughout this paper is a trace or history-based

model, i.e. the timed behavior of a system is modeled by a set

of traces where every trace represents a possible timed

execution sequence of a real-time task running in the system.

In order to accurately define real-time information flow

from High to Low, we first need to specify what Low can

observe and what it can reliably deduce from its observation,

as well as how High can affect Low’s observation. As shown in

Fig. 2, the model assumes Low is able to assess the response

time (the time between the submission of its task to a system

and the output event notifying that it is completed) of a low-

level task; however, we assume that there is a limit to how

accurately Low can record time. Our assumption is that Low

cannot measure the time between any two occurrences of

context switch. When a high-level task TH preempts a low-
1 The third party task TN could be considered as a composite of
tasks running in a system other than TH and TL.
level task TL while TL is running, or TH locks a resource shared

by TL, thereby blocking an execution of TL, the response time

of TL is affected. The delay or change of the response time of TL

could be used as means of transmitting illicit information.

Note that a third party (trusted) task TN can also affect the

response time of TL in the same way that TH affects TL. In our

formal framework, the existence of covert-timing channels

means that, upon observing the response time of a low-level

task, Low can reliably deduce a sequence of timed actions or

traces performed by a high-level task.

3. Real-time systems

3.1. Abstract model of real-time systems

We assume that a real-time system consists of the following

components.

– A set of computational real-time tasks that compete for

shared resources. These real-time tasks are typically

assumed to be software processes or threads.

– A run-time scheduler (or dispatcher) that controls which

task is executing at any given moment.

– A set of shared resources used by real-time tasks. These

shared resources may include software variables, data bus,

CPU, mutual exclusion control, variables, and memory.

3.2. Lifecycle of a real-time task

In a real-time system, which supports the execution of

concurrent tasks on a single processor, a task can be defined

as being in at least six different unique states:

– Running state – a task with highest priority enters this state

as it starts executing on the processor.
and activated and respone time measured
Low entity

Fig. 2 – A system model – task arrival & termination.

Ready Run
activate Terminate

Response time

Blocked
unblock

dispatching

preemption

unblock

block

Fig. 3 – Minimum state transition diagram of a task.

c o m p u t e r s & s e c u r i t y 2 8 (2 0 0 9) 4 2 1 – 4 3 2 423
– Ready state – a task in the ready state is ready to run but

cannot because a higher priority task is executing.

– Blocked state – a task enters the blocked state if it has

requested a busy (unavailable) resource or has delayed itself

for some duration.

– Null state – a task has not been submitted to a scheduler.

– Activation state – when a task in the null state is submitted

to a scheduler for execution, the task becomes activated.

– Termination state – when a task finishes its computation, it

terminates; the task state changes from the termination

state to the null state.

A task moves from one state to another according to the

state transition diagram shown in Fig. 3. When a real-time

task arrives at a run-time scheduler for execution, the task

becomes activated. The task is placed in a ready queue and

turns to the ready state. The queue is ordered according to the

particular run-time scheduling algorithm in force. The task at

the ready queue is released for execution and enters the

running state. While the task is in the running state, it can be

preempted by the arrival of another task with a higher

priority. Once preempted, it moves back to the ready state.

The running task can also move to the blocked state when

blocking on a shared resource occurs or the task delays itself

for some duration. A blocked task remains blocked until the

blocked resource becomes available or an event (signal) the

task is waiting for occurs. When the task is no longer blocked,

it moves to the ready state, or it moves directly to the running

state by preempting the currently running task if it is the

highest priority task. Note that Fig. 3 shows only the minimum

state transition diagram2 of a real-time task.

We can represent the state of a task using six different

atomic propositions (boolean variables). Let Tid be a task with

the unique identifier id. Then, the different atomic proposi-

tions are B(Tid), act(Tid), ready(Tid), block(Tid), run(Tid) and

term(Tid), which describe Tid being null (Tid has not been

submitted to a scheduler), activated, ready, blocked, running,

and terminated, respectively.
3 An alternative formalism that could be used is a timed process
algebra equipped with a true concurrency semantics (Fidge and
Zic, 1995) which can represent true parallelism.

4 Model checking timed properties over Timed Automata (Alur
4. Timed Kripke Structures (TKS)

In this paper, we choose to use the Timed Kripke Structure

(TKS) (Laroussinie et al., 2002, 2006; Logothetis and Schneider,

2001a,b) to describe timed behaviors of real-time tasks
2 Many commercial real-time systems (kernels) define addi-
tional states such as suspended, pended, delayed, etc.
running under a scheduling algorithm for the following

reasons:

– Since TKS is a simple extended version of a state transition

system where each transition is labeled by an integer

number which denotes the time required to move from one

state to another, it is easy to specify a timing constraint

between two consecutive actions performed by a task. From

TKS, it is also easy to obtain the execution traces (histories)

of real-time tasks.

– With TKS, we can easily specify actions performed simul-

taneously3 by (independent) real-time tasks, e.g. simulta-

neous arrival of independent tasks at a scheduler.

– Formal verification (model checking) of timed properties of

a system over TKS is relatively efficient.4

TKS is an extended version of Kripke Structure (KS).

Formally it is defined as follows, where N is the set of non-

negative integers.

Definition 1. Timed Kripke Structure of a system is a tuple

M¼ ðAP; S; Sinit; R; LÞ, where:

– AP is a finite set of atomic propositions,

– S is a finite set of states,

– Sinit4S is a set of initial states,

– R4S �N� S is a set of transitions. A transition

ðsi; di; siþ1Þ˛R is denoted si /
di

siþ1; by where di is the dura-

tion of execution in the state si.

– L : S/2AP is a labeling function; for any state s, LðsÞ4AP is

a set of atomic propositions that hold on s.

The difference of TKS from KS is that in TKS,R4S �N� S is

a finite set of transitions labeled by a non-negative integer,

called the duration of the transition, whereas KS has no

duration.

A (computation) path in a TKS is an infinite sequence of

states s0 /
d0

s1 /
d1

/ such that ðsi; di; siþ1Þ˛R for all i� 0. A finite

sequence of transitions s0 /
d0

s1 /
d0

s2.sn in TKS is called a finite

computation path.
et al., 1993) easily suffers from the state explosion problem.
However, model checking of a wide range of timed properties
over TKS can be done in polynomial time.

c o m p u t e r s & s e c u r i t y 2 8 (2 0 0 9) 4 2 1 – 4 3 2424
4.1. Timed computation tree

In KS, a computation path is formed by designating state sR as

initial and then unwinding the KS into an infinite tree with the

designated state sR as the root. Thus, for any KS and state sR˛S,

there is an infinite computation tree with root labeled sR such

that (si, siþ1) is an arc in the tree if and only if ðsi; siþ1Þ˛R in KS.

The same concept is applied to TKS to construct a Timed

Computation Tree. The Timed Computation Tree can be

constructed by unfolding TKS into an infinite tree. Similarly,

for any TKS and state sR˛S, there is an infinite computation

tree with root labeled sR such that (si, di, siþ1) is an arc in the

tree if and only if ðsi; di; siþ1Þ˛R in TKS. The Timed Compu-

tation Tree is a basis used for defining real-time information

flow requirements in Section 6.
5 A task Ti is activated when Ti arrives at the scheduler. The
scheduler makes the task Ti runnable (place it in the running
state) by releasing it (if there are no tasks of higher scheduling
priority than Ti in a priority-driven real-time system). Thus, a task
starts to execute after it is released.
5. A system model

5.1. Labeling states to model timed behaviors of a task

It is important that a state si of TKS should be properly and

consistently labeled to model timed behaviors of a task. We

assume that a real-time system has a set GA of tasks which

constantly change their task states according to a run-time

scheduling algorithm A. The task state of each task Tid

running in a system is described by an atomic proposition

Pid˛APid, where

APid ¼ fBðTidÞ; actðTidÞ; readyðTidÞ; blockðTidÞ; runðTidÞ; termðTidÞg

For all states si˛S, LðsiÞ contains the proposition Pid˛APid for

each task Tid; LðsiÞ has the following form if there are n

number of tasks running concurrently under scheduling

algorithm A, i.e. GA ¼ fTidjid˛f1;.;n gg and AP ¼
Wid˛f1;.;ngAPid:

LðsiÞ ¼ fPidjid˛f1;.;ng^Pid˛APidg

A state si of TKS progresses to the next state siþ1 if one or

more tasks Tid in GA changes their task states, i.e.

Pid˛LðsiÞsP0id˛Lðsiþ1Þ; for the remaining tasks with no change

in their task states, their atomic propositions at the current

state siþ1 remain the same as at the previous state si.

Let sd be a state with the duration of d> 0 units of time and

se be a state with zero duration (d¼ 0). We call an atomic

proposition Pid an action of a task Tid if Pid˛LðsdÞ. An atomic

proposition Pid is called an event of a task Tid if Pid˛LðseÞ. An

execution step of a task is represented as an interleaving

sequence of actions and events. We denote an action Pid˛LðsdÞ
of Tid which requires the task to take d> 0 units of time by Pid

d .

For example, run(Tid)d is used to represent the execution of Tid

for d units of time.

An event of a task is used to describe the following

incidents:

– The event of task activation: a task is activated and placed in

a ready queue. There are two cases to consider. The first

case is that a task is activated immediately after the system

starts (at time zero). The second case is that a task arrives

and is activated while other tasks are running. Let si˛S, i> 0,
and s0˛Sinit. The first case is expressed as s0 /
0

s1/, where

actðTidÞ˛Lðs0Þ, and readyðTidÞ˛Lðs1Þ. The second case is

denoted by //si /
d

siþ1 /
0

siþ2/, where d> 0, BðTidÞ˛LðsiÞ,
actðTidÞ˛Lðsiþ1Þ, and readyðTidÞ˛Lðsiþ2Þ.

– The event of task termination: task termination is expressed

as //si /
d

siþ1 /
0

siþ2/, where d> 0, runðTidÞ˛LðsiÞ,
termðTidÞ˛Lðsiþ1Þ and BðTidÞ˛Lðsiþ2Þ.

– The event of an immediate release5 (execution) of a task Tid

after it is activated: this immediate release of Tid is

expressed in TKS as follows: si /
0

siþ1 /
0

siþ2/, where i� 0,

actðTidÞ˛LðsiÞ, readyðTidÞ˛Lðsiþ1Þ, and runðTidÞ˛Lðsiþ2Þ.

In summary, run(Tid) and block(Tid) are always used to

represent an action of a task, and act(Tid) and term(Tid) always

denote an event. The atomic proposition ready(Tid) is used as

an action to describe a delay before execution or as an event to

describe the immediate release (execution) of a task. The

atomic proposition B(Tid) is used as an action to denote the

passage of time during which a task is in the null state or as an

event to denote a task being null in a state se˛S.

Example 2. Assume GA ¼ fTN; TH; TLg. The set GA of tasks is

assumed to share no resource between them (no task can be

blocked on a busy resource but can delay itself for some

duration) and executes according to the timing diagram of

Fig. 4. There are a few things worth noting in the timing

diagram: at time 5, TH delays itself for three units of time and

TL in the ready queue experiences a delay of one unit of time

before execution. At time 6, TL begins executing. At time 8, TH

preempts TL and begins executing, and TL moves back to the

ready queue. We construct the corresponding TKS as shown

in Fig. 5. Each state of the TKS is labeled as described above.

5.2. Real-time trace

We define a (real-time) history of a system as:

Definition 3. For a computation path p ¼ s0 /
d0

s1 /
d1

s2/sn in

TKS, a history s(p) is an ordered sequence of sets of atomic

propositions, i� 0, where the set LðsiÞ holds in state si for di

units of time. Thus, we denote a history s(p) by

sðpÞ ¼ Lðs0Þd0 $Lðs1Þd1 $.LðsiÞdi $.LðsnÞdn .

A history s(p) describes timing behaviors of a set GA of real-

time tasks. For convenience when di¼ 0, we omit di from the

history. To obtain a real-time behavior of an individual task Tid

from a history, we introduce a restriction operator jid:

Definition 4. Let sðpÞ ¼ Lðs0Þd0 $Lðs1Þd1 $.LðsiÞdi $.LðsnÞdn . We

define s(p)jid as an ordered sequence of propositions ri˛APid

with a superscript di, i� 0, formed by extracting ri from each

LðsiÞ; thus, sðpÞjid ¼ r
d0
0 $r

d1
1 $.rdn

n , where ri˛APid and ri˛LðsiÞ.
We call s(p)jid a trace of an individual task Tid. The same

consecutive propositions listed in a trace can be simplified as:

r
d0

i $.$r
dk

iþk ¼ r
d0þ/þdk

i , where ri¼ riþ1.¼ riþk.

Task
activation

Task
termination

TN

TH

TL

time

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Fig. 4 – Timing diagram.

c o m p u t e r s & s e c u r i t y 2 8 (2 0 0 9) 4 2 1 – 4 3 2 425
Definition 5. DðsðpÞjidÞ denotes the cumulative duration of the

trace spjid of an individual task Tid:

D
�
sðpÞjid

�
¼
Xn

i¼0

di; where sðpÞjid¼ r
d0
0 .rdn

n

Example 6. Let p1 be the computation path shown in Fig. 5.

Then, the history s(p1) is:

sðp1Þ¼ factðTNÞ; BðTHÞ; actðTLÞg$freadyðTNÞ; BðTHÞ; readyðTLÞg$
frunðTNÞ; BðTHÞ; readyðTLÞg2

$ftermðTNÞ; actðTHÞ; readyðTLÞg$
fBðTNÞ; readyðTHÞ; readyðTLÞg$fBðTNÞ; runðTHÞ; readyðTLÞg3

$

fBðTNÞ; blockðTHÞ; readyðTLÞg1.fBðTNÞ; BðTHÞ; termðTLÞg

The trace of TL is:

sðp1ÞjL¼ actðTLÞ$readyðTLÞ$readyðTLÞ2$readyðTLÞ$readyðTLÞ
$readyðTLÞ3$readyðTLÞ1$runðTLÞ2$readyðTLÞ3$readyðTLÞ
$runðTLÞ2$termðTLÞ ¼ actðTLÞ$readyðTLÞ0þ0þ2þ0þ0þ3þ1

$runðTLÞ2$readyðTLÞ3þ0$runðTLÞ2$termðTLÞ
¼ actðTLÞ$readyðTLÞ6$runðTLÞ2$readyðTLÞ3$runðTLÞ2

$termðTLÞ

Furthermore, Dðsðp1ÞjLÞ ¼ 0þ 6þ 2þ 3þ 2þ 0 ¼ 13. Note that,

in this example, Dðsðp1ÞjLÞ is the response time of TL since

s(p1)jL represents a sequence of events and actions occurring

during the time between act(TL) and term(TL).

We introduce a function RUN which takes a trace s(p)jid of

Tid as an input and returns an execution trace of Tid revealing

only act(Tid) and run(Tid) from s(p)jid. High uses the execution

trace RUN(s(p)jid) as the means of transmitting illicit infor-

mation to Low.

Definition 7. Given a trace s(p)jid, the execution trace RUN-

(s(p)jid) is obtained by removing all the propositions except

act(Tid) and run(Tid) from s(p)jid and adding a notation Yni
right

after act(Tid) to denote the activation time of Tid. Thus, RUN-

(s(p)jid) has the following form:

RUN
�
sðpÞjid

�
¼

8><
>:
<>run; if no runðTidÞ is enabled in sðpÞjid;

actðTidÞYn1
$runðTidÞk1 $actðTidÞYn2

$runðTidÞk2 $

$$$:actðTidÞYni
$runðTidÞki $.; otherwise:

Yni
used in actðTidÞYni

denotes the time ni of the ith activation of

Tid. If Tid is a periodic task with period p, niþ1¼ niþ p. ki used in

runðTidÞki denotes the total execution (run) time of Tid during

the ith activation interval. We call RUN(s(p)jid) the run trace of Tid.
Example 8. Let s(p1)jL be the trace of TL we used in Example 6,

i.e.

s(p1)jL¼ act(TL).ready(TL)
6.run(TL)

2.ready(TL)
3.run(TL)

2.term(TL).

Note that TL is activated at time 0 and has only one activation

interval (not a periodic task). In addition, during the interval,

the total execution time of Tid is 4 units of time since there are

two runs (run(TL)
2 and run(TL)

2) in s(p1)jL. Then, the run trace of

TL is:

RUN
�
sðpÞjid

�
¼ actðTidÞY0$runðTidÞ2$runðTidÞ2

¼ actðTidÞY0$runðTidÞ4

Definition 9. Let RUNðsðpÞjidÞ ¼ actðTidÞYn1
$runðTidÞk1 $actðTidÞYn2

$

runðTidÞk2 . and RUNðsðp0ÞjidÞ ¼ actðTidÞYn01
$runðTidÞk

0
1 $actðTidÞYn0

2
$

runðTidÞk
0
2 . Any two run traces RUN(s(p)jid) and RUN(s(p0)jid) are

equivalent if ci ˛ {1, 2, .}. ni¼ ni
0 ^ ki¼ ki

0.

6. Real-time information flow security
policies

In the previous section, we provide the general model which

can describe the timed behaviors of the set GA of concurrently

running tasks. In this section, to specify real-time information

flow security policies, we restrict (simplify) our assumption in

such a way that the set GA consists only of three tasks with

different security levels. Our restricted assumption is that

GA ¼ fTH; TL; TNg, where TH, TL, and TN denote a high-level

task, a low-level task, and a third party task, respectively. A

tupleM of TKS is used to model all possible timed behaviors of

the set GA ¼ fTH; TL; TNg of real-time tasks running under

a scheduling algorithm A, i.e.M¼ ðAP; S; Sinit; R; LÞ, where,

for every state s˛S, LðsÞ ¼ fPN˛APN; PH˛APH; PL˛APLg and

AP ¼Wid˛fH; L; NgAPid.
6.1. Finite Timed Computation Tree (TCT)

For real-time information flow analysis, which is assumed to

have a zero sender–receiver (S–R) period, it is important to trace

the sequence of state transitions made during a transmission

period (Fig. 3). In our context, the transmission period means

the time between the activation and the termination of TL. We

assume that, during the transmission period, TL always

terminates (in order for Low to observe a response time). Thus,

in our model, the timed behavior of a real-time system during

the transmission period means a collection of finite computa-

tion paths p (each path p consists of an interleave of actions

Fig. 5 – TKS with labels.

c o m p u t e r s & s e c u r i t y 2 8 (2 0 0 9) 4 2 1 – 4 3 2426
and events of the set GA of tasks) occurring during the time

between TL’s activation and termination. The computation

path p is formed by designating state6 sI˛S as initial and then

unwinding TKSM into a finite tree uMwith the designated state

sI as the root and a set F of multiple states as leaf nodes, where

actðTLÞ˛LðsIÞ and F ¼ fsf jsf ˛S^termðTLÞ˛Lðsf Þg. We call uM the

finite Timed Computation Tree (TCT) of TKSM. uM consists of

one or more computation paths. The computation path

p ¼ sI /
dI

/sf of uM is denoted by p½sI .sf �, where actðTLÞ˛LðsIÞ
and sf ˛ F. Therefore, the finite Timed Computation Tree uM

represents all possible sequences of actions and events of a set

GA of tasks occurring during the transmission period. The

activation time of TL is a reference point for the first activation

time n1 of TH. If TH is activated before or at the same time as TL’s

activation time, we use n1¼ 0 (the run trace of TH starts with

actðTHÞY0). If TH is activated m units of time after TL’s activation

time, n1¼m (the run trace of TH starts with actðTHÞYm).
6.2. Notation

To specify real-time information flow policies, we use the

following notations:

– r denotesa finite computation path p from root sI toa leafnode

sf ˛ F of uM, i.e. r¼p[sI.sf]. We call r a complete path in uM. In

addition, PATHSuM denotes a set of all possible complete paths

in uM, i.e. PATHSuM ¼ frjr ¼ p½sI.sf ;� actðTidÞ˛LðsIÞ; sf ˛F :g
– s(r) represents the history of a complete path r.

– RuM ¼ fDðsðrÞjLÞjr˛PATHSuMg is a set of all possible response

times of TL which Low can observe.

We need to define all possible execution behaviors (run

traces) of TH. Additionally, we need a way to express which

run trace(s) of TH is/are responsible for a particular response

time t˛RuM .
6 For simplicity, we assume that TKSM has a single state SI ˛ S
where act(TL) holds; as a result, only one Timed Computation Tree
with root SI is constructed for analysis. If there are multiple states
on which act(TL) holds, multiple Timed Computation Trees
should be constructed for analysis.
Definition 10. The timed behavior set RTH
uM

of TH is defined as

a set which contains all possible run traces of complete paths

taken by TH in uM, i.e. RTH
uM
¼ fRUNðsðrÞjHÞjr˛PATHSuMg. RTH

uM

can be thought of as a set of all possible timed behaviors of TH

which can affect the response time of TL. The response time

specific behavior set RTH
uM
ðtÞ of TH, RTH

uM
ðtÞ4RTH

uM
, is a set of

run traces which is responsible for the response time t˛RuM of

TL, i.e. RTH
uM
ðtÞ ¼ fRUNðsðrÞjHÞjcr˛PATHSuM$DðsðrÞjLÞ ¼ tg.

Example 11. Assume a set GA ¼ fTH; TL; TNg of tasks

concurrently runs on a single processor and the finite Timed

Computation Tree uM shown in Fig. 6 represents all possible

sequences of actions and events of a set GA of tasks occurring

during the transmission period of TL. For better readability,

we omit the states with zero duration except initial state sI and

terminal states sf ˛ F. In addition, the state sd with the dura-

tion d are labeled by only run(Tid) to indicate Tid executes for

d units of time at sd. The terminal states sf are labeled by only

term(TL) to indicate that TL terminates at sf. The finite Timed

Computation Tree uM has the following characteristics:

– s0 as the initial state sI and a set F of leaf nodes, i.e. F¼ {s7,

s8, s9, s10}.
Fig. 6 – Example: a finite Timed Computation Tree.

c o m p u t e r s & s e c u r i t y 2 8 (2 0 0 9) 4 2 1 – 4 3 2 427
– PATHSuM ¼ fr1 ¼ p½s0.s7 ; r2 ¼ p½s0.s8 ; r3 ¼ p½s0.s9 ;���
r4 ¼ p½s0.s10 :g�

– Since Dðsðr1jLÞÞ ¼ Dðsðr3jLÞÞ ¼ 3 and Dðsðr2jLÞÞ ¼
Dðsðr4jLÞÞ ¼ 4, RuM ¼ f3; 4g.

– In path r1, TH is activated at time 0 and executes for 1 unit of

time. Thus, RUNðsðr1ÞjHÞ ¼ actðTHÞY0$runðTHÞ1. Similarly,

RUNðsðr2ÞjHÞ ¼ actðTHÞY0$runðTHÞ2 and

RUNðsðr3ÞjHÞ ¼ RUNðsðr4ÞjHÞ ¼<>run

– RTH
uM
¼ f<>run; actðTHÞY0$runðTHÞ1; actðTHÞY0$runðTHÞ2g

– RTH
uM
ð3Þ ¼ f<>run; actðTHÞY0$runðTHÞ1g and

RTH
uM
ð4Þ ¼ f<>run; actðTHÞY0$runðTHÞ2 :g
7 Formally, jRuM j ¼ 15cr1
cr2

˛PATHSuM $Dðsðr1ÞjLÞ ¼ Dðsðr2ÞjLÞ.
6.3. Timing channel free policies

In this section, we propose four Timing Channel Free (TCF)

policies. If a finite Timed Computation Tree uM of TKSM has

the characteristics which can satisfy the TCF policy, we show

that the system is free from covert-timing channels

(to a certain degree). Formally, we use uMk ¼ P to denote

that the characteristics of uM satisfies the TCF policy P.

We provide the formal definitions of the TCF policies as

follows.

6.3.1. Weak timing channel free policy
To satisfy the Weak Timing Channel Free (WTCF) policy, for

every complete path with a response time t˛RuM , which has

one or more high-level actions run(T) enabled, there must

exist a complete path with the same response time t which

does not have any high-level action enabled. The formal

definition of the WTCF policy is:

Definition 12. Weak Timing Channel Free (WTCF) policy

ct˛RuM$WTCF
�

RTH
uM
ðtÞ
�
; where WTCFðTÞhdr˛T$r ¼<>run

Lemma 13. If uMk ¼WTCF, upon observing a response time

t˛RuM , Low cannot reliably deduce occurrences of any run trace

r˛RTH
uM
ðtÞ of TH.

Proof. We assume uMk ¼WTCF. Using Definition 12, for every

response time t of TL, the response time specific timed

behavior set RTH
uM
ðtÞ has at least one element (<>run) which

does not have any high-level action run(TH) enabled. There-

fore, Low cannot reliably deduce occurrences of any run trace

r˛RTH
uM
ðtÞ of TH since the response time t could have been

observed without an intervention of timed actions of a high-

level task. ,

There still exists real-time information flow in a real-time

system which satisfies WTCF policy. Although Low cannot

reliably deduce occurrences of a run trace of TH, when Low

observes a response time t, it can still deduce which run trace

of TH cannot be responsible for the response time t. This type

of a covert channel is called a negative channel (Mantel, 2000;

McCullough, 1988; Son and Alves-Foss, 2006a). To prevent Low

from deducing nonoccurrences of run traces of TH, we need

a stronger security policy than WTCF.
6.3.2. Strong timing channel free policy
We propose the Strong Timing Channel Free (STCF) policy to

prevent Low from deducing not only occurrences, but also

nonoccurrences of any run trace of TH. To prevent Low from

deducing nonoccurrences of run traces of TH, for every

response time t, the response specific behavior set RTH
uM
ðtÞ

must include all run traces that a high-level task can possibly

execute. The formal definition of STCF policy is:

Definition 14. Strong Timing Channel Free (STCF) policy

ct˛RuM$STCF
�

RTH
uM
ðtÞ
�
; where STCFðTÞhWTCFðTÞ^NONðTÞ;

where NONðTÞhRTH
uM
¼ T

Theorem 15. If uMk ¼ STCF, there is no real-time information flow

from High to Low in a real-time systemM:

Proof. Assume uMk ¼ STCF. From Definition 14, uMk ¼WTCF,

which prevents Low from reliably deducing occurrences of any

run trace r of TH (Lemma 13). By definition, uM also satisfies

NON(T), where T ¼ RTH
uM
ðtÞ. NON(T) requires that the

response time specific behavior set RTH
uM
ðtÞ must be equal to

the set of all run traces which TH can possibly produce (any

measured value of the response time t will not rule out any

possible run trace of TH since RTH
uM
ðtÞ ¼ RTH

uM
for every t).

These two predicates together (WTCF and NON) prevent Low

from reliably deducing anything about the run traces of TH

upon observing a response time. ,

Example 16. The finite Timed Computation Tree uM shown in

Fig. 6 of Example 11 satisfies the WTCF policy because the

response time specific timed behavior set RTH
uM
ðtÞ includes

<>run for every response time t. However, the finite compu-

tation tree uM does not satisfy the STCF policy because

RTH
uM
ðtÞsRTH

uM
for every response time t.
6.3.3. Rigid timing channel free policy

Definition 17. Rigid Timing Channel Free (RTCF) policy

��RuM

�� ¼ 1^STCF
�

RTH
uM
ðtÞ
�
; where t˛RuM

The difference between STCF and RTCF is that RTCF

requires that Low should always observe the same response

time7 ðjRuMj ¼ 1Þ, while STCF does not.

The definition of the RTCF policy, which is a special case of

STCF, may be useful to convert a system satisfying only WTCF

to a system satisfying RTCF; it is easier to design and verify

a system satisfying RTCF than STCF (see Section 7.2). In addi-

tion, from Shannon’s information theoretic view point (Cover

and Thomas, 1991; Weaver and Shannon, 1963), the quantity

(capacity) of real-time information flow from TH to TL over

a covert channel for an RTCF system is zero no matter what

probability distribution the channel has since Low, as an

information receiver, always observes the same value

(response time).

c o m p u t e r s & s e c u r i t y 2 8 (2 0 0 9) 4 2 1 – 4 3 2428
6.3.4. Non-preemptive timing channel free policy
The Non-preemptive Timing Channel Free (NTCF) policy

prevents the existence of covert-timing channels for both

real-time and non-real-time systems. It simply says that

a low-level task TL must not be preempted by a high-level task

TH. The formal definition of NTCF is:

Definition 18. Non-preemption Timing Channel Free (NTCF)

policy

cr˛RTH
uM

$r ¼<>run

In Appendix, we demonstrate a few examples of how our

formal framework can be applied to more realistic problems.

7. Comparing real-time information flow
policies

7.1. Relative strength of real-time information flow
policies

In this section, we compare Timing Channel Free (TCF) poli-

cies to evaluate the relative strength of each policy. We first

define what it means to compare TCF policies. Assume we

have two TCF policies P1 and P2. To compare two policies, P1

and P2, we evaluate P10P2 and P20P1. If the first statement

is true, P1 is at least as strong as P2, and vice versa. If both are

true the policies are of equal strength. If neither is true, they

are not comparable.

Theorem 19. The hierarchical strength of Timing Channel Free

requirements follows the partial ordering shown in Fig. 7.

Proof. We first prove NTCF 0 STCF and STCF L NTCF:

(NTCF 0 STCF) Let uM be a finite Timed Computation Tree

model of TKSM1. If uM1k ¼ NTCF, meaning that no run(TH) is

performed during an execution of TH, the set RTH
uM

has a single

element<>run. Since RTH
uM
ðtÞ4RTH

uM
, RTH

uM
ðtÞ ¼ RTH

uM
¼ f<>rung

for all response times t˛RuM ; this condition satisfies the
STCF
(Strong TCF)

WTCF
(Weak TCF)

RTCF
(Rigid TCF)

NTCF
(Non−preemptive TCF)

Fig. 7 – Partial ordering of Timing Channel Free

requirements.
predicate NON of STCF. In addition, for every response time t,

the response specific behavior set RTH
uM
ðtÞ contains the

element <>run, which satisfies the predicate WTCF. Therefore,

uM1k ¼ NTCF implies that uM1 satisfies both predicates WTCF

and NON of STCF.

(STCF L NTCF) Let uM2 be a finite Timed Computation Tree

model of TKSM2. If uM2k ¼ STCF, any run trace r˛RTH
uM

of TH

could have the running action run(TH) enabled in it (meaning

that TH preempts TL while TL is running). This violates the

NTCF policy.

Next, we prove NTCF P RTCF: while NTCF requires that TL

should not be preempted by TH, a system satisfying RTCF may

allow the preemption. Thus, RTCF L NTCF. While RTCF

requires that Low should only observe a single response time,

a system satisfying NTCF may produce multiple response

times (due to interference caused by timed action of TN)

observable by Low. Thus, NTCF L RTCF.

We do not include the proofs showing the hierarchical

strength of Timing Channel Free policies between WTCF,

STCF, and RTCF since the careful observation of each definition

can easily reveal the relative strength; the definition of RTCF is

a more restrictive form of STCF and the definition of STCF

includes one of WTCF. ,

7.2. Specifying security policies

The Alpern–Schneider’s framework (Alpern and Schneider,

1985) has been the dominant model in the specification of

programs: a system is identified with the set
Q

of possible

execution sequences p (an execution sequence p can be

thought of as a history of a single computation path in TKS)

that a system can produce and a property is regarded as the

set of execution sequences. A property is often called a prop-

erty of traces (Mantel, 2000). A system satisfies a property of

traces if the system’s set of execution sequences is a subset of

the property’s set. A set of execution sequences is called

a property of traces if set membership is solely determined by

each element and not by other members of the set. This

implies that a security policy or a requirement P is a property

if the security policy or the requirement P can be specified by

a predicate bP of the form (Schneider, 2000):

P
�Y�

hcp˛
Y

$bPðpÞ (1)

The above equation (1) reads as: the security policy or the

requirement P is a property of traces if every execution

sequence p in the set
Q

satisfies the predicate bP (form of the

security policy) on an individual execution sequence. From

the equation (1), it is obvious that, given Pð
Q
Þ, Pð

Q0Þmust also

hold for any subset
Q0 of

Q
.

Lemma 20. The NTCF policy is a property of traces.

Proof. Let uM satisfy NTCF and p be an individual execution

sequence (computation path), i.e. p˛PATHSuM . To prove NTCF

is a property of traces, we must demonstrate that we can

construct a predicate bP defined on a single execution

sequence p such that cp˛PATHSuM$bPðpÞ.
The NTCF policy specifies that a low-level task TL must not

be preempted by a high-level task TH during the transmission

period (the time between TL’ activation and termination).

c o m p u t e r s & s e c u r i t y 2 8 (2 0 0 9) 4 2 1 – 4 3 2 429
Thus, the predicate bP can be constructed to establish if any

individual execution path p should not include any high-level

action run(TH) enabled. Therefore, NTCF is a property of

traces. ,

In general, an information flow security policy is not

a property of traces unless we restrict its definition. It is

generally known that information flow security policies are

expressed as a closure condition on a trace set
Q

of possible

execution sequences p (Alur et al., 2006; McLean, 1996). A

closure condition is often called a property of a trace set. For

example, the simplest form of a closure condition on a trace set

can be expressed as: p˛
Q

0fðpÞ˛
Q

for some function f which

returns an execution sequence for an input p. This implies the

following: given an information flow security policyP, two sets

of executions
Q

and
Q0, and

Q03Q, Pð
Q
ÞL P

Q0.
WTCF, STCF and RTCF policies have the following

characteristics:

Lemma 21. The WTCF, STCF and RTCF policies are not properties

of traces; each policy is a property of a trace set.

Proof. We use a proof by contradiction to show that the WTCF,

STCF and RTCF policies are not properties of traces. Let us

assume that WTCF is a propertyP of traces and a TCT model uM

satisfies P. Thus, the following must hold:

PðPATHSuMÞhcp˛PATHSuM$bPðpÞ. Further, for any subset
Q0 of

PATHSuM ,Pð
Q0Þmust also hold. Specifically, let

Q0 be a set with

a single execution path in which a high-level action run(TH) is

enabled. This set
Q0 cannot satisfies WTCF since WTCF requires

another execution path with the same response time in which

no high-level action is enabled. This clearly shows that WTCF is

not a property of traces but a property of a trace set. The same

reasoning can be applied to STCF and RTCF. ,

The big difference between NTCF and other policies is that

only NTCF demands that a low-level task TL should not be

preempted by a high-level task TH. This difference and the

previous two lemmas lead to the following corollary.

Corollary 22. To define a real-time information flow security policy

for a system, where a low-level task must be preempted by a high-

level task to meet the timing constraints, the policy must be specified

by a property of a trace set.

Proof. A preemption of TL by TH, while TL is running, always

affects (delays) an execution of TL. This preemption may cause

possible information leakage through a covert-timing

channel. For a computation path in which the preemption of

TL by TH occurs, there must exist at least one (or more)

different computation paths which can obfuscate Low’s view

on timed actions taken by High. Therefore, the policy must be

specified by the property of a trace set. ,
8. Discussion and conclusion

Our view of real-time systems is that multi-level secure real-

time tasks are scheduled and running, according to a sched-

uling algorithm employed by the systems. From this
perspective, we develop a general trace-based framework in

which one can carry out a covert-timing channel analysis of

a real-time system. In addition, we provide the formal defi-

nitions of the Timing Channel Free (TCF) policies; if a system

satisfies one of our proposed TCF security policies, we have

demonstrated that the system can achieve a certain level of

real-time information flow security. Finally, we compare the

relative strength of the proposed TCF policies and prove that

all TCF policies are not properties of traces except NTCF.

Our formal framework can be used to model the timed

behaviors of MLS real-time tasks and check if the system

model satisfies the TCF requirements. When the timed

behaviors of real-time tasks do not satisfy any of the TCF

polices, an attacker can easily construct a covert-timing

channel from a high-level to a low-level task and leak clas-

sified information through the timing channel. Some

defensive measures must be applied to remove or mitigate

the impact of covert-timing channels. The defensive

measures typically require modification to an insecure real-

time scheduler or scheduling algorithm. For example, one

popular defensive measure is to inject a dummy task into

the system having timing vulnerabilities to introduce noise

into a covert-timing channel. This addition of the dummy

task and its influence on timed behaviors of other tasks can

be easily incorporated into an existing model via our formal

framework. In addition, system engineers can use the formal

definition of the TCF policies as a guideline to design and

implement a covert-timing channel free scheduler or

scheduling algorithm.

Directions for future research are twofold: The first is to

investigate if a specific real-time scheduling algorithm such as

Rate Monotonic scheduling or Earliest Deadline First sched-

uling (Liu and Layland, 1973; Liu, 2000) has any timing

vulnerabilities (Son and Alves-Foss, 2006a,b). We believe that

some real-time scheduling algorithms are more vulnerable to

timing attacks than other. The second is to research how to

relax the definitions of our TCF policies to make them more

practical for checking timing vulnerabilities of hard-real-time

systems. In hard-real-time systems, system requirements

such as timing constraints cannot be compromised by secu-

rity requirements if a system is to be usable; satisfying timing

constraints is the top priority for hard-real-time systems. We

should rewrite and relax the security policies if they prevent

a system from achieving system requirements; therefore, it is

necessary to devise a weaker security policy than our TCF

which allows some control of real-time information flow

without permitting too much.
Acknowledgements

This material is based on research sponsored by AFRL and

DARPA under agreement number F30602-02-1-0178. The U.S.

Government is authorized to reproduce and distribute

reprints for Governmental purposes notwithstanding any

copyright notation thereon. The views and conclusions con-

tained herein are those of the authors and should not be

interpreted as necessarily representing the official policies or

endorsements, either expresses or implied, of AFLR and

DARPA or the U.S. Government.

c o m p u t e r s & s e c u r i t y 2 8 (2 0 0 9) 4 2 1 – 4 3 2430
Appendix.

In this Appendix, we show a few examples of how our formal

framework can be applied to more realistic problems (a set of

tasks scheduled by a well-known scheduling algorithm). The

notations and terminologies used to describe the well-known

scheduling algorithm are as follows:

– A (periodic) task Ti has the individual jobs and we denote

them Ji,1, Ji,2, and so on, Ji,k being the kth job in Ti.

– The activation (arrival) time of the first job Ji,1 in each task Ti

is called the phase Fi of Ti. The relative deadline Di of Ti is the

length of unit time from activation by which every job of Ti

must finish.

– A periodic task Ti with phase Fi, period Ti, the maximum

(worst-case) execution time Ci, and relative deadline Di is

characterized as the 4-tuple, i.e. Ti(Fi, Ti, Ci, Di). The activa-

tion time of the periodic task Ti is Fiþ (k�1)Ti, k¼ 0, 1, ..

The task Ti can be simply characterized as Ti(Ti, Ci) if Fi¼ 0

and Ti¼Di (Ti has the deadline equal to its period).

– A task is aperiodic if the jobs in it has no deadline and the

activation time of the jobs are not known a priori.

In the following example, we assume that the Rate Mono-

tonic (RM) scheduling algorithm (14) is employed to schedule

a set of independent periodic tasks. The RM scheduling algo-

rithm schedules a set of independent periodic tasks according

to the following rules :

– Tasks with shorter periods (higher request rates) will have

higher priorities.

– A priority assigned to a task is fixed.
0 4 6 10 122 8

0 4 6 10 122 8

0 4 6 10 122 8

1 3

Task
activation

Task
termination

Aperiodic

Periodi

TH

TN

TL

Server capacity o

2
Cap

a

b

c

Fig. 8 – Timing
– A currently executing task is preempted by a newly

arrived task with a higher priority (shorter period).

Example 23. Assume a set GRM of three independent periodic

tasks are concurrently running under RM scheduling in

a single processor real-time system, i.e. GRM¼ {TN(20,3),

TH(10,1),TL(5,2)}. Since the low-level task TL has the shorted

period 5, the highest scheduling priority is assigned to TL and

TL is never preempted during its execution. Thus, the finite

Timed Computation Tree constructed from this system

satisfies Non-preemption Timing Channel Free (NTCF) policy.

If tasks are scheduled by a fixed-priority preemptive algorithm

such as RM, the covert-timing channel can be eliminated by

assigning a higher scheduling priority to a lower security class

task than a higher security class task. Obviously, this covert-

timing channel free scheduling policy has performance

disadvantages, e.g. increased response time for a higher

security class task.

Many real-time systems require an integrated approach

suitable for scheduling hard deadline periodic tasks along

with aperiodic tasks with no firm deadline. In the next

example, a scheduling algorithm called the Polling Server (PS)

is used to service aperiodic tasks while RM is employed to

schedule periodic tasks. The PS algorithm is based upon the

following approach. When an aperiodic task arrives, it is

placed in an aperiodic job queue, waiting for execution. A

periodic task called a polling server is created to service

aperiodic requests. Like any periodic task, the periodic server

task Ts is characterized by the polling period Ts and the

maximum computation time Cs, i.e. Ts(Ts, Cs). In the PS algo-

rithm, the parameter Cap called the server capacity is moni-

tored to make sure that Ts cannot execute an aperiodic task

more than Cs units. At the beginning of each period Ts, Cap is
time

time

14 16 20
time

242218

14 16 20 242218

14 16 20 242218

2

requests

c task

TH TN TL

f polling server

diagram.

Fig. 9 – Example: finite Timed Computation Tree.

c o m p u t e r s & s e c u r i t y 2 8 (2 0 0 9) 4 2 1 – 4 3 2 431
set to Cs. In addition, the aperiodic job queue is examined and

the following actions are taken:

– If the queue is found not empty, the polling server executes

the aperiodic job(s) until there is no job left to execute in the

queue or it executes for Cs units of time, whichever occurs

sooner. When the server executes the aperiodic jobs in the

queue, it consumes its Cap at the rate of one per unit time.

When the queue becomes empty or the polling server has

consumed all of its server capacity (Cap becomes zero), it is

immediately suspended and wait for the next polling period

for execution.

– If the queue is found empty, the polling server suspends

immediately. The polling server will not be ready for

execution and is not able to examine the queue again until

the next polling period. An aperiodic task which arrives

after the aperiodic job queue is examined and found empty

must wait for the next polling period to be serviced.

In general, the polling server is scheduled with the same

algorithm used for the periodic task, and, once active, it

serves the aperiodic requests with the limit of its server

capacity.

Example 24. Assume a set Gpolling of three independent tasks

are concurrently running in a single processor real-time

system; two aperiodic tasks, TN and TH, with a finite

execution time e(1� e�N, N¼ 1,2,.) and a periodic task

TL(6,1), i.e. Gpolling¼ {TN,TH,TL}. The polling server Ts(3, 2) is

created to service both aperiodic tasks. The polling server

and the periodic task TL are scheduled by the RM scheduling

algorithm. Since Ts has the shorter period than TL, Ts has the

higher scheduling priority. In addition, we assume that the

periodic task TL always has the constant delay of one unit of

time between activation and release. Thus, after TL’s acti-

vation, one unit of time elapses before the periodic task TL is

released (starts to execute) if the aperiodic tasks are not

ready to run. TL is delayed more than one unit of time if the

aperiodic tasks are ready to run at the time of its release.

Fig. 8 illustrates a few instances of RM-based execution of

the polling server and the periodic task, while aperiodic

requests are serviced by the polling server. The finite Timed

Computation Tree uM in Fig. 9 shows all the possible timed

behaviors of the set Gpolling of tasks during the transmission
period. For better readability, we omit the states with zero

duration except the initial state (where act(TL) holds) and the

terminal states. In addition, the state sd with the duration

d are labeled by only important atomic propositions (either

run(Tid) or ready(Tid)). The terminal states sf are labeled by

only term(TL) to indicate that TL terminates at sf. Since the

response time specific timed behavior set RTH
uM
ðtÞ includes

<>run for every response time t˛RuM ¼ f2;3g, the finite Timed

Computation Tree uM satisfies the WTCF policy. However,

uM does not satisfy the STCF policy because RTH
uM
ðtÞsRTH

uM

for every response time t.
r e f e r e n c e s

John Agat. Transforming out timing leaks in practice. In: Proc.
27th ACM SIGPLAN-SIGACT symposium on principles of
programming languages; 2000, p. 40–53.

Alpern B, Schneider F. Defining liveness. Information Processing
Letters 1985;21(4):181–5.

Alur R, Courcoubetis C, Dill D. Model-checking in dense real-time
information and computation. Software Engineering Journal
1993;104(1):2–34.

Alur R, �Cerný P, Zdancewic S. Preserving secrecy under
refinement. In: 33rd international colloquium on automata,
languages and programming, ICALP, July 2006.

Barbuti R, Tesei L. Decidable notion of timed non-interference.
Concurrency Specification and Programming 2003;54(2–3):
137–50.

Cabuk S, Brodley C, Shields C. IP covert timing channels: design
and detection. In: Proc. ACM conference on computer and
communications security; 2004.

Cover T, Thomas J. Elements of information theory. Wiley-
Interscience; 1991.

Fidge C, Zic J. A simple, expressive real-time CCS. In: Proc.
2nd Australasian conf. on parallel & real-time systems;
1995, p. 365–372.

Focardi R, Gorrieri R, Martinelli F. Real-time information flow
analysis. IEEE Journal on Selected Areas in Communications
2003;21(1).

Gray J. On introducing noise into the bus-contentiion channel.
IEEE Symposium on Research in Security and Privacy 1993.

Hu W. Reducing timing channels with fuzzy time. IEEE
Symposium on Research in Security and Privacy 1991.

Janeri J, Darby D, Schnackenberg D. Building higher resolution
synthetic clocks for signaling in covert timing channels. In: The
eighth IEEE computer security foundations workshop; 1995.

Laroussinie F, Markey N, Schnoebelen Ph. On model checking
durational Kripke structures. In: International Conference on
Foundations of Software Science and Computation
Structures. Lecture Notes in Computer Science, vol. 2303;
2002. p. 264–79.

Laroussinie F, Markey N, Schnoebelen Ph. Efficient timed model
checking for discrete-time systems. Theoretical Computer
Science in Lecture Notes in Computer Science 2006;353(1):
249–71.

Liu C, Layland J. Scheduling algorithms for multiprogramming in
a hard-real-time environment. Journal of the ACM 1973;20(1).

Liu J. Real-time systems. Prentice Hall; 2000.
Logothetis G, Schneider K. A new approach to the specification

and verification of real-time systems. In: Euromicro
conference on real-time systems; 2001a, p. 171–180.

Logothetis G, Schneider K. Symbolic model checking of real-time
systems. In: Eighth international symposium on temporal
representation and reasoning; 2001b, p. 214–223.

c o m p u t e r s & s e c u r i t y 2 8 (2 0 0 9) 4 2 1 – 4 3 2432
Lowe Gavin. Defining information flow quantity. Journal of
Computer Security 2004;12(3–4):619–53.

Mantel H. Possibilistic definitions of security – an assembly kit. In:
13th IEEE computer security foudnations workshop; 2000, p.
235–243.

McCullough Daryl. Foundations of ulysses: the theory of security.
Rome Air Development Center; 1988. Technical Report RADC-
TR-87–222.

McLean J. A general theory of composition for a class of
‘‘possibilistic’’ properties. IEEE Transaction on Software
Engineering 1996;22(1):53–67.

Moskowitz I, Kang MH. Covert channels – here to stay. In Proc.
COMPASS 94; 1994, p. 235–243.

Schneider FB. Enforceable security policies. ACM Transactions on
Information and Systems Security 2000;3(1):30–50.

Shah G, Molina A, Blaze M. Keyboards and covert channels. In:
Proc. 15th USENIX security symposium; 2006, p. 59–75.

Son J, Alves-Foss J. Covert timing channel analysis of rate
monotonic real-time scheduling algorithm in MLS systems.
In: Proc. IEEE workshop on information assurance; 2006a,
p. 361–368.

Son J, Alves-Foss J. Covert timing channel capacity of rate
monotonic scheduling algorithm in MLS systems. In: The
IASTED international conference on communication,
network, and information security; 2006b.

Weaver W, Shannon CE. The mathematical theory of
communication. University of Illionois Press; 1963.

Zakinthinos A, Lee ES. A general theory of security properties.
Proc. of the IEEE Symposium on Security and Privacy 1997:
94–102.

Joon Son is a senior professional staff at Johns Hopkins

University Applied Physics Lab. He received his Ph.D in

Computer Science from the University of Idaho in 2008. His

research interests include Multi-Level Security, formal

methods, security policy refinement and network security.

Dr. Jim Alves-Foss is a professor of computer science and is

the Director of the Center for Secure and Dependable Systems

(est. 1998) at the University of Idaho. He received his PhD in

Computer Science from the University of California at Davis in

1991. His primary research interests focus on the design,

implementation and verification of high assurance computing

systems.

	A formal framework for real-time information flow analysis
	Introduction
	Our approach to a formal framework
	Real-time systems
	Abstract model of real-time systems
	Lifecycle of a real-time task

	Timed Kripke Structures (TKS)
	Timed computation tree

	A system model
	Labeling states to model timed behaviors of a task
	Real-time trace

	Real-time information flow security policies
	Finite Timed Computation Tree (TCT)
	Notation
	Timing channel free policies
	Weak timing channel free policy
	Strong timing channel free policy
	Rigid timing channel free policy
	Non-preemptive timing channel free policy

	Comparing real-time information flow policies
	Relative strength of real-time information flow policies
	Specifying security policies

	Discussion and conclusion
	Acknowledgements
	Appendix
	References

