
MILS VIRTUALIZATION FOR INTEGRATED MODULAR AVIONICS
David Kleidermacher, Green Hills Software, Inc. Santa Barbara, CA

Mike Wolf, Green Hills Software, Inc. Santa Barbara, CA

Abstract
Integrated Modular Avionics (IMA) is driving

computer systems to manage and protect
increasingly high value and complex information
and applications across the aircraft. Virtualization is
a promising emerging technology in avionics
systems as a mechanism for consolidating disparate
operating environments and functions onto a single
computer. However, from a security perspective,
commercial virtualization solutions add to the
already fertile attack surface of general-purpose
operating systems. This paper will provide an
overview of embedded hypervisor technology and
propose a MILS- and IMA-compliant virtualization
architecture that assures the safety and security of
critical applications while incorporating highly
functional general purpose virtualized
environments. A practical avionics application of
this architecture will be presented.

Introduction
Integrated Modular Avionics (IMA) is an

architectural approach to building complex systems
for avionics. IMA replaces the historical approach
of federated systems, in which each function is
assigned to its own computer. In the IMA approach,
many applications can use the same computer.

In the federated approach, applications (and
computers) pass information to one another using
physical wiring and an avionics-grade
communication protocol, such as ARINC 429 [1,
2]. ARINC 429 is a multidrop protocol that requires
a wired connection from each transmitting
processor to a set of receiving processors with a
maximum of 20 receivers per transmitter. Data rates
are relatively slow, with low speed ARINC 429 at
12.5 Kbps and high-speed at 100 Kbps. This all
made ARINC 429 costly and limiting.

Modern avionics systems are increasingly
adopting faster Aviation Full DulpeX (AFDX)
Ethernet switches, routers, and end points [3] that
meet ARINC 664 [4] as the defining standard.
ARINC 664 requires connections from each

endpoint to a router or switch that then allows
communication to all other connected devices. In
addition to reduced wiring, AFDX allows
communications from 10Mbps to 100Mbps.

In the IMA approach, applications on the same
processor can communicate using intraprocessor
communications mechanisms. This eliminates
wired connections and reduces weight and power.

In addition, all of the applications on a given
processor can communicate to the AFDX network
over a single set of wires. This results in further
savings in wiring, weight, and power.

To participate in an IMA architecture
computers use an RTOS that manages their use of
memory, processor time, cache, network
bandwidth, and other resources according to the
ARINC 653 “Avionics Application Software
Standard Interface” [5]. The standard includes an
application programming interface (API) for the
ARINC 653 Application Executive (APEX), a
portable operating system abstraction layer that
defines required and optional services.

Applications developed for IMA targets must
then use the APEX API. This makes them more
easily portable to other compliant operating
systems. Some newer federated applications also
use ARINC 653. This makes it possible to build an
application to conform to the ARINC 653 standard
and then configure it in either a federated or an
IMA architecture.

A key concept of ARINC 653 is partitioning of
system resources. Partitions are assigned allocations
of memory, processing bandwidth, network
bandwidth, and file system storage. The system
architects assign resources to a partition and the
operating system enforces delivery of those
resources.

Legacy Applications
When incorporating a legacy avionics

application into a modern system, suppliers have
had only two options: run the software as a

978-1-4244-2208-1/08/$25.00 ©2008 IEEE.
 1.C.3-1

federated application using the legacy operating
system on dedicated hardware; or port the
application software (possibly requiring a complete
API overhaul) to an IMA operating system. More
complex applications—such as Electronic Flight
Bag (EFB) and in-flight entertainment systems—
that were developed for non-IMA operating systems
will often be prohibitively expensive to port.

MILS- and IMA-compliant virtualization
provides another answer to this consolidation
challenge and creates new architectural
opportunities as well.

Virtualization, in the sense we use it in this
paper, refers to the ability to create multiple virtual
machines from a single physical machine. MILS,
which stands for Multiple Independent Levels of
Security, is a security system architecture based on
software separation and controlled information
flow. A MILS-and IMA-compliant virtualization
solution would provide an ARINC 653 APEX API
for safety-critical applications, would meet the
demanding reliability requirements of DO-178B
[6], and would meet the important separation and
information flow requirements of the MILS
architecture. A technology with all those
characteristics would be extremely difficult to
develop but would open a wealth of architectural
options.

MILS Systems
The MILS security architecture is gaining wide

acceptance in high robustness environments. High
robustness is one of three robustness levels defined
by the United States National Security Agency
(NSA). The other two are basic and medium
robustness. NSA has published guidance documents
for establishing consistent requirements for basic
robustness [7] and medium robustness [8]. It has
not published guidance documents for high
robustness, but a paper [9] by Nguyen, Levin, and
Irvine of the Naval Postgraduate School describes
requirements for high robustness.

Advocates of MILS describe the architecture’s
principal properties with the acronym NEAT. A
MILS system is

! Non-bypassable, meaning that there is no
way to cause information to flow through

the system other than through the defined
flow paths;

! Evaluatable, meaning that components
can be independently assessed to a high
level of assurance that they are complete,
consistent, and correct. For high
robustness evaluation, experts agree that
a component must be small, on the order
of 5,000 lines of code;

! Always-on, meaning that every
operation that requires permissions is
checked every time the operation is
carried out by the appropriate “reference
monitor” and;

! Tamperproof meaning the ability to
modify the system’s security properties
is under control of the system. The
requirement to be tamperproof also levies
requirements on the development and
delivery process as well as the system’s
operating characteristics.

A complete system based on a MILS
architecture would include an operating system,
middleware, and application code. The operating
system kernel is at the heart of a MILS-architected
solution, and a MILS system relies on the properties
of the kernel. A MILS kernel, sometimes called a
“Separation Kernel”, must be designed so that the
other components of the solution are isolated.
Separation is necessary to ensure that the evaluation
of one component is largely independent of other
components. Many of the NEAT characteristics of
other components can be derived by reference to the
properties of the separation kernel.

The INTEGRITY operating system family
from Green Hills Software was designed ten years
ago with these principles in mind. Engineers have
used it successfully in applications ranging from
consumer products, to networking, to avionics.
INTEGRITY-178B, the high-assurance
implementation of the architecture, is in final stages
of certification based on a kernel specification
called the “Protection Profile for Separation Kernels
in Systems Requiring High Robustness” or SKPP.
[10]

 1.C.3-2

Protection Profiles
A Protection Profile, such as SKPP, is an

implementation-independent requirements
specification for a class of products meeting a
particular need. Unlike the typical requirement
specification, a Protection Profile is written
according to a rigorous methodology established in
an international standard, the Common Criteria for
Information Technology Security Evaluation,
(IEC/ISO standard 15408)[11,12,13]. The
Protection Profile itself must also be evaluated
using another, related international standard, the
Common Methodology for Information Technology
Security Evaluation (ISO/IEC 18045) [14].

Every Protection Profile contains two sets of
requirements: functional requirements and
assurance requirements. Functional requirements
answer the question “What does the product do?”
Assurance requirements answer the question “What
information can you provide that will demonstrate
that it does what you say?”

SKPP’s Protection Profile requirements
include separation and information flow control.
Meeting the separation requirement ensures that
MILS components are isolated from each other,
except for policy-defined information flows. These
properties go a long way towards ensuring that any
MILS component satisfies the N, A, and T
properties of a NEAT system. Evaluation is still
required, but the Separation Kernel ensures that
independent components can be evaluated
independently, which vastly simplifies the process.

Evaluation
Evaluation is the process of testing and

verifying claims for a Protection Profile or for an
implementation of a product matching a Protection
Profile. Evaluation is performed by third parties,
not the product’s developers, and provides
independent validation that the product meets its
requirements and claims. The Common Criteria
defines Evaluation Assurance Levels (EAL)
numbered EAL 1 through EAL 7 with rigor
increasing at each level. Products like INTEGRITY
that are evaluated against SKPP must meet
requirements that substantially exceed EAL 6 and
include many important requirements from EAL 7
including the use of formal methods (mathematical

proofs of the security properties of the kernel.) The
protection profile also includes requirements that go
beyond what is required for EAL 7. An evaluation
to SKPP represents the world’s highest Common
Criteria security level for a commercial operating
system.

A governmental body oversees each
evaluation, and that body is responsible for
approving third party evaluators that operate within
its borders. Certifications at and below EAL 4 are
recognized by all countries who are signatories to
the Common Criteria Recognition Agreement
(CCRA).

For certifications above EAL 5, the
governmental body is more heavily involved and
certifications are not automatically recognized by
other nations. For a high assurance evaluation in the
United States, the National Security Agency (NSA)
is responsible for oversight and penetration testing.

Evaluation is a time consuming process with a
high benefit to consumers concerned with security.
It is possible for anyone to make a security claim,
but hard for a buyer to know what it true and what
is hype. Continued progress through the evaluation
process increases certainty that claims made are
reliable. Completion raises certainty still further.
INTEGRITY is the first operating system to be
accepted for evaluation by the responsible U.S.
Government agencies for a high assurance SKPP
evaluation. [15]

Virtualization
Virtualization is a broadly used term for the

abstraction of computer resources. Some
applications of the virtualization concept-—virtual
memory for example—are so pervasive that we do
not even think of them as virtualization anymore.
Today when people think about virtualization they
usually refer to the use of one physical computer to
create one or more logical environments, each of
which acts like a real computer. The real machine is
called the host machine. The machines in the
created environments are called virtual machines. In
the late 1990’s VMware proved the commercial
practicality of full system virtualization on
commodity PC hardware, hosting unmodified,
general purpose, “guest” operating systems such as
Windows and Linux.

 1.C.3-3

This sort of computer virtualization is not new;
IBM pioneered the concept in its mainframes of the
60s and 70s. Computer scientists have long
understood many of the applications of
virtualization, including the ability to run distinct
and legacy operating systems on a single hardware
platform, sandboxing untrusted software, server
provisioning and consolidation, and enhanced
portability of legacy software.

Modern data centers are filled with x86 class
servers fitted with virtualization software that can
host several x86 class virtual machines. This has
made virtual IT into a big business with dozens of
players, with VMware the largest and best known.
Virtual IT, powered by virtual machines, lets
multiple operating environments (e.g. Windows,
Linux) run on a single hardware platform with the
goal of improving the flexibility and availability of
IT resources.

With high-powered server computers, multiple
server functions running on common server
operating systems, such as Windows Server and
UNIX, can be consolidated onto a single platform
using virtual machine technology that turns the
server operating system into a guest of the
underlying virtual machine software (Figure 1).
Failures in a server may be handled by restarting or
migrating a guest instance to another computer with
minimal impact to downtime.

Figure 1. Server Consolidation

Outside of server applications, virtual IT
provides consumers with increasingly popular
options for flexibility. One example is the use of the
Parallels virtual machine technology that runs
Windows along side of the native Mac OSX
environment on Intel-based Apple desktops and
laptops. This lets Apple fans use (when necessary)
the Windows environment without requiring a
separate PC or a reboot.

Hardware-Assisted Virtualization
On contemporary PC platforms, another use of

the virtualization moniker may add to the
confusion: Intel’s Virtualization Technology (VT).
Given the name, one may erroneously assume that
PCs containing Intel VT provide built-in virtual
machines of the VMware ilk. That is not the case.
VT (which includes constituent technologies VT-x
and VT-d for virtualized execution and virtualized
directed I/O) is a set of hardware acceleration
capabilities added to Intel Architecture chips and
chipsets. VT makes it easier for virtual machine
software—such as Green Hills Software’s
INTEGRITY Padded Cell, VMware, and
Parallels—to provide a fully virtualized PC
platform in which one or more unmodified guest
operating systems, such as Windows, Linux, and
Solaris, can execute with very good performance.
Although the concept of hardware-assisted
virtualization is not unique to Intel (IBM and
Freescale have hardware assisted virtualization
support in Power Architecture-based computers),
the ubiquitous availability of this technology on
standard PCs made possible by Intel (and AMD
with its similar Pacifica technology) is helping the
world to realize a much wider range of
virtualization applications.

With the advent of hardware-assisted
virtualization, the virtual machine software has
become simpler. The term hypervisor is often used
to refer to trimmed down virtualization
applications.

Hypervisor Attacks
Some people tout virtualization as another

technique in a “layered defense” for system
security. The theory proposes that since only the
Guest Operating System is exposed to external

 1.C.3-4

threats, an attacker who penetrates the Guest will be
unable to subvert the rest of the system including
the other Guests. Obviously, if a hacker can subvert
the hypervisor itself, then a “guest escape” may be
possible, placing all of the guests at risk. An IMA
and/or MILS-compliant virtualization solution must
ensure that inter-VM intrusions, whether malicious
or accidental, cannot occur even if the system is
attacked by the most determined, well-funded
attackers.

In fact, such escapes are possible with standard
commercial virtualization solutions. Commercial
virtualization solutions have not met high
robustness security requirements and were never
designed or intended to meet these levels. A
number of studies of virtualization security and
successful subversions of hypervisors have been
published, including [16] and [17] and more are
being published as researchers focus more attention
on virtualization. The risk of an “escape” from the
virtual machine layer, exposing all the guests is
very real and unacceptable for IMA. As one analyst
has said, “Virtualization is essentially a new
operating system …, and it enables an intimate
interaction between underlying hardware and the
environment. The potential for messing things up is
significant.” [18]

At the 2008 Black Hat conference, security
researcher Joanna Rutkowska and her team
presented three different ways to exploit
vulnerabilities in Xen (a widely-used commercial
virtualization solution) that could allow the entire
computer to be commandeered. [19-22] One of
these attacks took advantage of a buffer overflow
defect in Xen’s (optional) Flask layer. Flask is
intended to increase security, not decrease it. This
further underscores an important general principle:
the more code, the more vulnerability. Software that
has not been evaluated to high levels of assurance
must be assumed to be hackable by determined and
well-resourced entities.

IMA-Compliant Virtualization
An article in the Intel Technology Journal [23]

describes three different virtualization architectures.
The first and best-known architecture is “OS
hosted” (Figure 2). This is the architecture used by
VMware’s Workstation product. An OS-hosted
architecture adds a large body of virtual machine

management code to the privileged region of the
host operating system kernel--Windows or Linux,
for example. Within each virtual machine an
instance of the same or different operating system
can run. An OS-hosted virtualization solution will
not only be exposed to the safety and security
vulnerabilities of the underlying host operating
system, but also to new vulnerabilities and exploits
against. the virtualization code.

Figure 2. Large Computing Base for Typical
Hypervisor

The second approach is a stand-alone or “bare-
metal” hypervisor. VMware ESX server is an
example of this technology. Instead of an operating
system running in privileged space, the hypervisor
itself controls the hardware. Some stand-alone
hypervisors result in a smaller trusted computing
base than OS-hosted systems but still usually
consist of millions of bytes of privileged code. The
Xen hypervisor is another well-known example of
the bare-metal hypervisor. A special, privileged
guest, referred to as dom0 or domain 0, handles
guest I/O and administrative tasks on behalf of the
hypervisor. This adds a lot more code to the trusted
computing base and yet more safety and security
vulnerabilities (Figure 3).

Figure 3. Bare-Metal Hypervisor with

Administrative Guest

 1.C.3-5

Enter a third architecture (Figure 4): one that
uses a microkernel-based real-time operating
system, designed for high assurance applications
and capable of meeting IMA and MILS
requirements and adapted to virtualization.

Figure 4. Microkernel-Based Hypervisor

This is the approach taken with Green Hills
Software’s INTEGRITY PC technology. The
microkernel provides an IMA-compliant
environment that can host multiple, partitioned
ARINC 653 applications as well as virtual
machines that execute completely within their own
partitions. The Guest OS and its applications can
run unmodified in the partition, referred to as a
“Padded Cell”. The Padded Cell ensures that
nothing that happens in the guest environment can
escape its confines and affect, much less bring
down, a critical partition. The microkernel-based
approach enables powerful hybrid systems that
combine the most critical applications with general
purpose guest environments (Figure 5).

Figure 5. Hybrid Virtualization Environment

MILS-Compliant Virtualization
Building a highly secure system is far harder

than building a highly reliable system. To build a
reliable system it’s necessary to show that the
system will do, in every case, exactly what it is
supposed to do, despite erroneous data, I/O errors

and other unpredictable but not unexpected
problems. A secure system must perform correctly
in the face of those same problems and in the face
of malevolent actions during operation, during
deployment, during delivery, and even during
development. To build a secure system it’s not only
necessary to show that not only will the system do
what it is supposed to do in all these cases, it’s also
necessary to show that it will do nothing else.

Example
Electronic Flight Bags (EFBs) are computer-

based replacements for the carry-on flight bags
traditionally used by pilots. Flight bags (electronic
or otherwise) contain reference material such as
aeronautical maps and charts, operations and
aircraft manuals, forms for fault reporting,
minimum equipment lists, and logbooks. Using data
in the flight bag, pilots and crew can perform
calculations and carry out other activities needed
for takeoff and flight. [24]

The idea of an EFB first took shape in the
1990s when some pilots used personal computer
and general-purpose software to help them with
these activities. Since then, EFBs have become
more common and some airlines have entirely
replaced the unwieldy paper-based flight bags that
sometimes as much as 40 lbs, with EFBs that weigh
less and do more. Pilots still use general-purpose
software as well as special-purpose software to
carry out some activities.

Three hardware classes and three application
types are now defined for EFBs. Class 1 devices are
standard COTS laptops and handheld computers.
Class 2 devices range from modified COTS to
special-purpose devices and can be connected to
onboard power and data sources. Class 3 devices
are considered “installed equipment” and are
subject to airworthiness requirements. In some
cases, DO-178B requirements are levied on the
devices.

Type A applications include those that display
documents, replacing heavy paper manuals. Type A
can also include software that carries out
performance calculations. Type B software contains
interactive map software, including real-time
weather maps. Type C applications have broader
scope and require a Class 3 EFB.

 1.C.3-6

Virtualized EFBs
Virtualization creates an opportunity to add

new functionality to EFBs without compromising
safety or imposing certification costs on non-critical
components. Using an IMA- and MILS-compliant
virtualization architecture, general purpose non-
critical applications can run under an operating
system such as Windows that does not need
certification while applications that are more critical
can run in safe and secure partitions on the same
platform. The architecture can also support a safe,
controlled information flow across partitions to
make some jobs easier.

For example, pre-flight calculations, carried
out using general-purpose software such as a
spreadsheet, are transferred manually to flight
equipment. A virtualized, IMA-compliant EFB can
drastically improve this. First, a pilot would carry
out the calculations using commercial grade
software on a general-purpose operating system as
in the current generation of EFB applications. The
software and operating system would run in a
Padded Cell partition that protects the rest of the
EFB from any problems in these components. Next,
the certified IMA operating system transfers the
data from that environment to a second partition. A
small, safety-certified software component in that
partition displays the data and lets the pilot or
crewmember confirm that the data displayed
matches the data that was calculated. The partition
only allows these data values to pass; no malicious
content can. Finally, the system moves the data to
another safety-certified partition that safely and
securely transfers the appropriate information to the
on-board avionics.

With this kind of architecture, the only
partition (and application) that requires Level A
safety certification is the one that communicates
with the aircraft systems. The data display partition
needs medium to high robustness, but it is a very
simple application so this will not be difficult or
costly. The general purpose Windows environment
need not be certified at all. Yet its powerful
software environment is fully utilized by the pilots.
The pilots could even send e-mail over the Internet
without adding flight risk.

Conclusions
As aircraft systems grow in complexity, IMA

must manage and protect increasingly high value
and complex information and applications across
the aircraft while maintaining system reliability and
system safety.

Common commercial virtualization solutions
increase the attack surface and cannot be used for
safety-rated separation in an IMA system. A new
virtualization architecture that is both MILS and
IMA-compliant assures the safety and security of
critical applications and provides a general-purpose
virtualized environment that can support legacy
applications or applications designed to use a
different operating environment.

References
[1] ARINC Specification 429P1-16, “Mark 33
Digital Information Transfer System (DITS), Part 1,
Functional Description, Electrical Interface, Label
Assignments and Word Formats” Sept 2001

[2] ARINC Specification 429P2-15, 429P2-15
Mark 33 Digital Information Transfer System
(DITS), Part 2 - Discrete Data Standards, March,
1996

[3] ARINC Reports ARINC Report 664P7 Aircraft
Data Network, Part 7, Avionics Full Duplex
Switched Ethernet (AFDX) Network 06/2005

[4] ARINC Reports ARINC Report 664P1-7
Aircraft Data Network, Parts 1-7, 06/2005.

[5] RTCA, Incorporated, “Airlines Electronic
Engineering Committee, Aviation Application
Software Standard Interface,” Parts 1 and 2,
December 1, 2005, Annapolis, MD, Aeronautical
Radio, Inc.

[6] RTCA, Incorporated, document RTCA/DO-
178B, “Software Considerations in Airborne
Systems and Equipment Certification,” December
1, 1992.

 [7] Information Assurance Directorate, Feb 1,
2005, Consistency Instruction Manual For
Development of US Government Protection
Profiles in Basic Robustness Environments, Release
3.0, http://www.niap-
ccevs.org/pp/basic_rob_manual-3.0.pdf

 1.C.3-7

 1.C.3-8

[8] Information Assurance Directorate, Feb 1, 2005,
Consistency Instruction Manual For Development
of US Government Protection Profiles in Medium
Robustness Environments, Release 3.0,
http://www.niap-ccevs.org/pp/med_rob_manual-
3.0.pdf.

[9] Nguyen, Thuy D., Timothy E. Levin, Cynthia E.
Irvine, High Robustness Requirements in a
Common Criteria Protection Profile, Monterey,
California, Naval Postgraduate School,
http://cisr.nps.navy.mil/downloads/06paper_highro
bust.pdf

[10] Information Assurance Directorate, “U.S.
Government Protection Profile for Separation
Kernels in Environments Requiring High
Robustness,” Version 1.03, 29 June 2007,

[11] The Common Criteria for Information
Technology Security Evaluation Part 1:
Introduction and general model Revision 3.1,
September 2007,
http://www.commoncriteriaportal.org/files/ccfiles/C
CPART1V3.1R1.pdf

[12] The Common Criteria for Information
Technology Security Evaluation Part 2:
Introduction and general model Revision 3.1,
September 2007,
http://www.commoncriteriaportal.org/files/ccfiles/C
CPART2V3.1R2.pdf

[13] The Common Criteria for Information
Technology Security Evaluation Part 3: Security
assurance components, Revision 3.1, September
2007,
http://www.commoncriteriaportal.org/files/ccfiles/C
CPART3V3.1R3.pdf

[14] The Common Criteria for Information
Technology Security Evaluation, Evaluation
methodology, Version 3.1 Revision 2, September
2007,
http://www.commoncriteriaportal.org/files/ccfiles/C
CPART3V3.1R2.pdf

[15] INTEGRITY-178B - NIAP products in
evaluation, http://www.niap-ccevs.org/cc-
scheme/in_evaluation/

[16] Samuel King, et al., “SubVirt: Implementing
malware with virtual machines”,
http://www.eecs.umich.edu/virtual/papers/king06.p
df, 2006

[17] Tavis Ormandy, “An Empirical Study into the
Security Exposure to Hosts of Hostile Virtualized
Environments,”
http://taviso.decsystem.org/virtsec.pdf, 2007

[18] Rich Ptak quoted by Denise Dubie, “Security
concerns cloud virtualization deployments,”
http://www.networkworld.com/news/2007/112107-
security-virtualization.html, Network World,
November 21, 2007

[19] Rutkowska, Joanna, “Our Xen 0wning Trilogy
Highlights,” invisiblethings blog, August 08, 2008,
http://theinvisiblethings.blogspot.com/2008/08/our-
xen-0wning-trilogy-highlights.html

[20] Wojtczuk, Rafa!, “Subverting the Xen
Hypervisor”, Black Hat USA 2008, August 7th, Las
Vegas, NV,
http://invisiblethingslab.com/bh08/part1.pdf

[21] Rutkowska, Joanna Rutkowska and Wojtczu
Rafa!, “Preventing and Detecting Xen Hypervisor
Subversions” Black Hat USA 2008, August 7th,
Las Vegas, NV,
http://invisiblethingslab.com/bh08/part2.pdf

[22] Rutkowska, Joanna and Tereshkin, Alexander,
“Bluepilling the Xen Hypervisor,” Black Hat USA
2008, August 7th, Las Vegas, NV,
http://invisiblethingslab.com/bh08/part3.pdf

 [23] Abamson, Darren, et al, “Intel®
Virtualization Technology for Directed I/O”, Intel
Technology Journal, Vol 10, Issue 3, August 10,
2006,
http://download.intel.com/technology/itj/2006/v10i
3/v10-i3-art02.pdf

[24] Wikipedia, “Electronic flight bag,”
http://en.wikipedia.org/wiki/Electronic_flight_bag

27th Digital Avionics Systems Conference

October 26-30, 2008

