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Abstract 
Integrated Modular Avionics (IMA) is driving 

computer systems to manage and protect 
increasingly high value and complex information 
and applications across the aircraft. Virtualization is 
a promising emerging technology in avionics 
systems as a mechanism for consolidating disparate 
operating environments and functions onto a single 
computer. However, from a security perspective, 
commercial virtualization solutions add to the 
already fertile attack surface of general-purpose 
operating systems. This paper will provide an 
overview of embedded hypervisor technology and 
propose a MILS- and IMA-compliant virtualization 
architecture that assures the safety and security of 
critical applications while incorporating highly 
functional general purpose virtualized 
environments. A practical avionics application of 
this architecture will be presented. 

Introduction 
Integrated Modular Avionics (IMA) is an 

architectural approach to building complex systems 
for avionics. IMA replaces the historical approach 
of federated systems, in which each function is 
assigned to its own computer. In the IMA approach, 
many applications can use the same computer. 

In the federated approach, applications (and 
computers) pass information to one another using 
physical wiring and an avionics-grade 
communication protocol, such as ARINC 429 [1, 
2]. ARINC 429 is a multidrop protocol that requires 
a wired connection from each transmitting 
processor to a set of receiving processors with a 
maximum of 20 receivers per transmitter. Data rates 
are relatively slow, with low speed ARINC 429 at 
12.5 Kbps and high-speed at 100 Kbps. This all 
made ARINC 429 costly and limiting.  

Modern avionics systems are increasingly 
adopting faster Aviation Full DulpeX (AFDX) 
Ethernet switches, routers, and end points [3] that 
meet ARINC 664 [4] as the defining standard. 
ARINC 664 requires connections from each 

endpoint to a router or switch that then allows 
communication to all other connected devices. In 
addition to reduced wiring, AFDX allows 
communications from 10Mbps to 100Mbps. 

In the IMA approach, applications on the same 
processor can communicate using intraprocessor 
communications mechanisms. This eliminates 
wired connections and reduces weight and power.  

In addition, all of the applications on a given 
processor can communicate to the AFDX network 
over a single set of wires. This results in further 
savings in wiring, weight, and power. 

To participate in an IMA architecture 
computers use an RTOS that manages their use of 
memory, processor time, cache, network 
bandwidth, and other resources according to the 
ARINC 653 “Avionics Application Software 
Standard Interface” [5]. The standard includes an 
application programming interface (API) for the 
ARINC 653 Application Executive (APEX), a 
portable operating system abstraction layer that 
defines required and optional services. 

Applications developed for IMA targets must 
then use the APEX API. This makes them more 
easily portable to other compliant operating 
systems. Some newer federated applications also 
use ARINC 653. This makes it possible to build an 
application to conform to the ARINC 653 standard 
and then configure it in either a federated or an 
IMA architecture. 

A key concept of ARINC 653 is partitioning of 
system resources. Partitions are assigned allocations 
of memory, processing bandwidth, network 
bandwidth, and file system storage. The system 
architects assign resources to a partition and the 
operating system enforces delivery of those 
resources. 

Legacy Applications 
When incorporating a legacy avionics 

application into a modern system, suppliers have 
had only two options: run the software as a 
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federated application using the legacy operating 
system on dedicated hardware; or port the 
application software (possibly requiring a complete 
API overhaul) to an IMA operating system. More 
complex applications—such as Electronic Flight 
Bag (EFB) and in-flight entertainment systems—
that were developed for non-IMA operating systems 
will often be prohibitively expensive to port.  

MILS- and IMA-compliant virtualization 
provides another answer to this consolidation 
challenge and creates new architectural 
opportunities as well. 

Virtualization, in the sense we use it in this 
paper, refers to the ability to create multiple virtual 
machines from a single physical machine. MILS, 
which stands for Multiple Independent Levels of 
Security, is a security system architecture based on 
software separation and controlled information 
flow. A MILS-and IMA-compliant virtualization 
solution would provide an ARINC 653 APEX API 
for safety-critical applications, would meet the 
demanding reliability requirements of DO-178B 
[6], and would meet the important separation and 
information flow requirements of the MILS 
architecture. A technology with all those 
characteristics would be extremely difficult to 
develop but would open a wealth of architectural 
options. 

MILS Systems 
The MILS security architecture is gaining wide 

acceptance in high robustness environments. High 
robustness is one of three robustness levels defined 
by the United States National Security Agency 
(NSA). The other two are basic and medium 
robustness. NSA has published guidance documents 
for establishing consistent requirements for basic 
robustness [7] and medium robustness [8]. It has 
not published guidance documents for high 
robustness, but a paper [9] by Nguyen, Levin, and 
Irvine of the Naval Postgraduate School describes 
requirements for high robustness. 

Advocates of MILS describe the architecture’s 
principal properties with the acronym NEAT. A 
MILS system is  

! Non-bypassable, meaning that there is no 
way to cause information to flow through 

the system other than through the defined 
flow paths;  

! Evaluatable, meaning that components 
can be independently assessed to a high 
level of assurance that they are complete, 
consistent, and correct. For high 
robustness evaluation, experts agree that 
a component must be small, on the order 
of 5,000 lines of code; 

! Always-on, meaning that every 
operation that requires permissions is 
checked every time the operation is 
carried out by the appropriate “reference 
monitor” and; 

! Tamperproof meaning the ability to 
modify the system’s security properties 
is under control of the system. The 
requirement to be tamperproof also levies 
requirements on the development and 
delivery process as well as the system’s 
operating characteristics. 

A complete system based on a MILS 
architecture would include an operating system, 
middleware, and application code. The operating 
system kernel is at the heart of a MILS-architected 
solution, and a MILS system relies on the properties 
of the kernel. A MILS kernel, sometimes called a 
“Separation Kernel”, must be designed so that the 
other components of the solution are isolated. 
Separation is necessary to ensure that the evaluation 
of one component is largely independent of other 
components. Many of the NEAT characteristics of 
other components can be derived by reference to the 
properties of the separation kernel. 

The INTEGRITY operating system family 
from Green Hills Software was designed ten years 
ago with these principles in mind. Engineers have 
used it successfully in applications ranging from 
consumer products, to networking, to avionics. 
INTEGRITY-178B, the high-assurance 
implementation of the architecture, is in final stages 
of certification based on a kernel specification 
called the “Protection Profile for Separation Kernels 
in Systems Requiring High Robustness” or SKPP. 
[10]  
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Protection Profiles 
A Protection Profile, such as SKPP, is an 

implementation-independent requirements 
specification for a class of products meeting a 
particular need. Unlike the typical requirement 
specification, a Protection Profile is written 
according to a rigorous methodology established in 
an international standard, the Common Criteria for 
Information Technology Security Evaluation, 
(IEC/ISO standard 15408)[11,12,13]. The 
Protection Profile itself must also be evaluated 
using another, related international standard, the 
Common Methodology for Information Technology 
Security Evaluation (ISO/IEC 18045) [14]. 

Every Protection Profile contains two sets of 
requirements: functional requirements and 
assurance requirements. Functional requirements 
answer the question “What does the product do?” 
Assurance requirements answer the question “What 
information can you provide that will demonstrate 
that it does what you say?”  

SKPP’s Protection Profile requirements 
include separation and information flow control. 
Meeting the separation requirement ensures that 
MILS components are isolated from each other, 
except for policy-defined information flows. These 
properties go a long way towards ensuring that any 
MILS component satisfies the N, A, and T 
properties of a NEAT system. Evaluation is still 
required, but the Separation Kernel ensures that 
independent components can be evaluated 
independently, which vastly simplifies the process. 

Evaluation 
Evaluation is the process of testing and 

verifying claims for a Protection Profile or for an 
implementation of a product matching a Protection 
Profile. Evaluation is performed by third parties, 
not the product’s developers, and provides 
independent validation that the product meets its 
requirements and claims. The Common Criteria 
defines Evaluation Assurance Levels (EAL) 
numbered EAL 1 through EAL 7 with rigor 
increasing at each level. Products like INTEGRITY 
that are evaluated against SKPP must meet 
requirements that substantially exceed EAL 6 and 
include many important requirements from EAL 7 
including the use of formal methods (mathematical 

proofs of the security properties of the kernel.) The 
protection profile also includes requirements that go 
beyond what is required for EAL 7. An evaluation 
to SKPP represents the world’s highest Common 
Criteria security level for a commercial operating 
system. 

A governmental body oversees each 
evaluation, and that body is responsible for 
approving third party evaluators that operate within 
its borders. Certifications at and below EAL 4 are 
recognized by all countries who are signatories to 
the Common Criteria Recognition Agreement 
(CCRA).  

For certifications above EAL 5, the 
governmental body is more heavily involved and 
certifications are not automatically recognized by 
other nations. For a high assurance evaluation in the 
United States, the National Security Agency (NSA) 
is responsible for oversight and penetration testing. 

Evaluation is a time consuming process with a 
high benefit to consumers concerned with security. 
It is possible for anyone to make a security claim, 
but hard for a buyer to know what it true and what 
is hype. Continued progress through the evaluation 
process increases certainty that claims made are 
reliable. Completion raises certainty still further. 
INTEGRITY is the first operating system to be 
accepted for evaluation by the responsible U.S. 
Government agencies for a high assurance SKPP 
evaluation. [15] 

Virtualization 
Virtualization is a broadly used term for the 

abstraction of computer resources. Some 
applications of the virtualization concept-—virtual 
memory for example—are so pervasive that we do 
not even think of them as virtualization anymore. 
Today when people think about virtualization they 
usually refer to the use of one physical computer to 
create one or more logical environments, each of 
which acts like a real computer. The real machine is 
called the host machine. The machines in the 
created environments are called virtual machines. In 
the late 1990’s VMware proved the commercial 
practicality of full system virtualization on 
commodity PC hardware, hosting unmodified, 
general purpose, “guest” operating systems such as 
Windows and Linux. 
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This sort of computer virtualization is not new; 
IBM pioneered the concept in its mainframes of the 
60s and 70s. Computer scientists have long 
understood many of the applications of 
virtualization, including the ability to run distinct 
and legacy operating systems on a single hardware 
platform, sandboxing untrusted software, server 
provisioning and consolidation, and enhanced 
portability of legacy software.  

Modern data centers are filled with x86 class 
servers fitted with virtualization software that can 
host several x86 class virtual machines. This has 
made virtual IT into a big business with dozens of 
players, with VMware the largest and best known. 
Virtual IT, powered by virtual machines, lets 
multiple operating environments (e.g. Windows, 
Linux) run on a single hardware platform with the 
goal of improving the flexibility and availability of 
IT resources.  

With high-powered server computers, multiple 
server functions running on common server 
operating systems, such as Windows Server and 
UNIX, can be consolidated onto a single platform 
using virtual machine technology that turns the 
server operating system into a guest of the 
underlying virtual machine software (Figure 1). 
Failures in a server may be handled by restarting or 
migrating a guest instance to another computer with 
minimal impact to downtime. 

 

Figure 1. Server Consolidation 

Outside of server applications, virtual IT 
provides consumers with increasingly popular 
options for flexibility. One example is the use of the 
Parallels virtual machine technology that runs 
Windows along side of the native Mac OSX 
environment on Intel-based Apple desktops and 
laptops. This lets Apple fans use (when necessary) 
the Windows environment without requiring a 
separate PC or a reboot.  

Hardware-Assisted Virtualization 
On contemporary PC platforms, another use of 

the virtualization moniker may add to the 
confusion: Intel’s Virtualization Technology (VT). 
Given the name, one may erroneously assume that 
PCs containing Intel VT provide built-in virtual 
machines of the VMware ilk. That is not the case. 
VT (which includes constituent technologies VT-x 
and VT-d for virtualized execution and virtualized 
directed I/O) is a set of hardware acceleration 
capabilities added to Intel Architecture chips and 
chipsets. VT makes it easier for virtual machine 
software—such as Green Hills Software’s 
INTEGRITY Padded Cell, VMware, and 
Parallels—to provide a fully virtualized PC 
platform in which one or more unmodified guest 
operating systems, such as Windows, Linux, and 
Solaris, can execute with very good performance. 
Although the concept of hardware-assisted 
virtualization is not unique to Intel (IBM and 
Freescale have hardware assisted virtualization 
support in Power Architecture-based computers), 
the ubiquitous availability of this technology on 
standard PCs made possible by Intel (and AMD 
with its similar Pacifica technology) is helping the 
world to realize a much wider range of 
virtualization applications. 

With the advent of hardware-assisted 
virtualization, the virtual machine software has 
become simpler. The term hypervisor is often used 
to refer to trimmed down virtualization 
applications. 

Hypervisor Attacks 
Some people tout virtualization as another 

technique in a “layered defense” for system 
security. The theory proposes that since only the 
Guest Operating System is exposed to external 
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threats, an attacker who penetrates the Guest will be 
unable to subvert the rest of the system including 
the other Guests. Obviously, if a hacker can subvert 
the hypervisor itself, then a “guest escape” may be 
possible, placing all of the guests at risk. An IMA 
and/or MILS-compliant virtualization solution must 
ensure that inter-VM intrusions, whether malicious 
or accidental, cannot occur even if the system is 
attacked by the most determined, well-funded 
attackers. 

In fact, such escapes are possible with standard 
commercial virtualization solutions. Commercial 
virtualization solutions have not met high 
robustness security requirements and were never 
designed or intended to meet these levels. A 
number of studies of virtualization security and 
successful subversions of hypervisors have been 
published, including [16] and [17] and more are 
being published as researchers focus more attention 
on virtualization. The risk of an “escape” from the 
virtual machine layer, exposing all the guests is 
very real and unacceptable for IMA. As one analyst 
has said, “Virtualization is essentially a new 
operating system …, and it enables an intimate 
interaction between underlying hardware and the 
environment. The potential for messing things up is 
significant.” [18] 

At the 2008 Black Hat conference, security 
researcher Joanna Rutkowska and her team 
presented three different ways to exploit 
vulnerabilities in Xen (a widely-used commercial 
virtualization solution) that could allow the entire 
computer to be commandeered. [19-22] One of 
these attacks took advantage of a buffer overflow 
defect in Xen’s (optional) Flask layer. Flask is 
intended to increase security, not decrease it. This 
further underscores an important general principle: 
the more code, the more vulnerability. Software that 
has not been evaluated to high levels of assurance 
must be assumed to be hackable by determined and 
well-resourced entities. 

IMA-Compliant Virtualization 
An article in the Intel Technology Journal [23] 

describes three different virtualization architectures. 
The first and best-known architecture is “OS 
hosted” (Figure 2). This is the architecture used by 
VMware’s Workstation product. An OS-hosted 
architecture adds a large body of virtual machine 

management code to the privileged region of the 
host operating system kernel--Windows or Linux, 
for example. Within each virtual machine an 
instance of the same or different operating system 
can run. An OS-hosted virtualization solution will 
not only be exposed to the safety and security 
vulnerabilities of the underlying host operating 
system, but also to new vulnerabilities and exploits 
against. the virtualization code. 

 

Figure 2. Large Computing Base for Typical 
Hypervisor 

The second approach is a stand-alone or “bare-
metal” hypervisor. VMware ESX server is an 
example of this technology. Instead of an operating 
system running in privileged space, the hypervisor 
itself controls the hardware. Some stand-alone 
hypervisors result in a smaller trusted computing 
base than OS-hosted systems but still usually 
consist of millions of bytes of privileged code. The 
Xen hypervisor is another well-known example of 
the bare-metal hypervisor. A special, privileged 
guest, referred to as dom0 or domain 0, handles 
guest I/O and administrative tasks on behalf of the 
hypervisor. This adds a lot more code to the trusted 
computing base and yet more safety and security 
vulnerabilities (Figure 3). 

 
Figure 3. Bare-Metal Hypervisor with 

Administrative Guest 
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Enter a third architecture (Figure 4): one that 
uses a microkernel-based real-time operating 
system, designed for high assurance applications 
and capable of meeting IMA and MILS 
requirements and adapted to virtualization.  

 

Figure 4. Microkernel-Based Hypervisor 

This is the approach taken with Green Hills 
Software’s INTEGRITY PC technology. The 
microkernel provides an IMA-compliant 
environment that can host multiple, partitioned 
ARINC 653 applications as well as virtual 
machines that execute completely within their own 
partitions. The Guest OS and its applications can 
run unmodified in the partition, referred to as a 
“Padded Cell”. The Padded Cell ensures that 
nothing that happens in the guest environment can 
escape its confines and affect, much less bring 
down, a critical partition. The microkernel-based 
approach enables powerful hybrid systems that 
combine the most critical applications with general 
purpose guest environments (Figure 5). 

 

Figure 5. Hybrid Virtualization Environment 

MILS-Compliant Virtualization  
Building a highly secure system is far harder 

than building a highly reliable system. To build a 
reliable system it’s necessary to show that the 
system will do, in every case, exactly what it is 
supposed to do, despite erroneous data, I/O errors 

and other unpredictable but not unexpected 
problems. A secure system must perform correctly 
in the face of those same problems and in the face 
of malevolent actions during operation, during 
deployment, during delivery, and even during 
development. To build a secure system it’s not only 
necessary to show that not only will the system do 
what it is supposed to do in all these cases, it’s also 
necessary to show that it will do nothing else. 

Example 
Electronic Flight Bags (EFBs) are computer-

based replacements for the carry-on flight bags 
traditionally used by pilots. Flight bags (electronic 
or otherwise) contain reference material such as 
aeronautical maps and charts, operations and 
aircraft manuals, forms for fault reporting, 
minimum equipment lists, and logbooks. Using data 
in the flight bag, pilots and crew can perform 
calculations and carry out other activities needed 
for takeoff and flight. [24] 

The idea of an EFB first took shape in the 
1990s when some pilots used personal computer 
and general-purpose software to help them with 
these activities. Since then, EFBs have become 
more common and some airlines have entirely 
replaced the unwieldy paper-based flight bags that 
sometimes as much as 40 lbs, with EFBs that weigh 
less and do more. Pilots still use general-purpose 
software as well as special-purpose software to 
carry out some activities.  

Three hardware classes and three application 
types are now defined for EFBs. Class 1 devices are 
standard COTS laptops and handheld computers. 
Class 2 devices range from modified COTS to 
special-purpose devices and can be connected to 
onboard power and data sources. Class 3 devices 
are considered “installed equipment” and are 
subject to airworthiness requirements. In some 
cases, DO-178B requirements are levied on the 
devices. 

Type A applications include those that display 
documents, replacing heavy paper manuals. Type A 
can also include software that carries out 
performance calculations. Type B software contains 
interactive map software, including real-time 
weather maps. Type C applications have broader 
scope and require a Class 3 EFB. 
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Virtualized EFBs 
Virtualization creates an opportunity to add 

new functionality to EFBs without compromising 
safety or imposing certification costs on non-critical 
components. Using an IMA- and MILS-compliant 
virtualization architecture, general purpose non-
critical applications can run under an operating 
system such as Windows that does not need 
certification while applications that are more critical 
can run in safe and secure partitions on the same 
platform. The architecture can also support a safe, 
controlled information flow across partitions to 
make some jobs easier. 

For example, pre-flight calculations, carried 
out using general-purpose software such as a 
spreadsheet, are transferred manually to flight 
equipment. A virtualized, IMA-compliant EFB can 
drastically improve this. First, a pilot would carry 
out the calculations using commercial grade 
software on a general-purpose operating system as 
in the current generation of EFB applications. The 
software and operating system would run in a 
Padded Cell partition that protects the rest of the 
EFB from any problems in these components. Next, 
the certified IMA operating system transfers the 
data from that environment to a second partition. A 
small, safety-certified software component in that 
partition displays the data and lets the pilot or 
crewmember confirm that the data displayed 
matches the data that was calculated. The partition 
only allows these data values to pass; no malicious 
content can. Finally, the system moves the data to 
another safety-certified partition that safely and 
securely transfers the appropriate information to the 
on-board avionics. 

With this kind of architecture, the only 
partition (and application) that requires Level A 
safety certification is the one that communicates 
with the aircraft systems. The data display partition 
needs medium to high robustness, but it is a very 
simple application so this will not be difficult or 
costly. The general purpose Windows environment 
need not be certified at all. Yet its powerful 
software environment is fully utilized by the pilots. 
The pilots could even send e-mail over the Internet 
without adding flight risk. 

Conclusions 
As aircraft systems grow in complexity, IMA 

must manage and protect increasingly high value 
and complex information and applications across 
the aircraft while maintaining system reliability and 
system safety. 

Common commercial virtualization solutions 
increase the attack surface and cannot be used for 
safety-rated separation in an IMA system. A new 
virtualization architecture that is both MILS and 
IMA-compliant assures the safety and security of 
critical applications and provides a general-purpose 
virtualized environment that can support legacy 
applications or applications designed to use a 
different operating environment. 
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