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ABSTRACT
Real-time systems must satisfy timing constraints. In our
previous work, we showed that a covert timing channel
cannot be completely closed in some system configura-
tions due to the timing constraints imposed by the Rate-
Monotonic (RM) real-time scheduling algorithm. In this
paper, we construct a probabilistic model to measure two
quantities of a covert timing channel in RM based systems:
channel capacity and quantity of specific information. We
show how these two metrics can be calculated from our
probabilistic model and why they are useful metrics in eval-
uation of a covert (timing) channel.

KEY WORDS
Covert timing channel capacity, quantity of specific infor-
mation, Rate-Monotonic scheduling.

1 Introduction

Many researchers formally define (real-time) information
flow via a communication path called a covert (timing)
channel in multi-level secure systems.A covert timing
channelis an illicit communication path in which one en-
tity (High) signals information to another entity (Low) in
violation of the security policy by modulating its use of
system resources in such a way that this manipulation af-
fects the response time observed byLow. One central idea
of the proposed definitions of information flow is the fol-
lowing: there is no information flow via a covert channel if
Low cannot deduce anything about the activities ofHigh.

Numerous papers [4, 8, 10, 11, 13] have presented
mathematical frameworks for measuring the amount of
possible information leakage through a covert timing
channel for various systems. We take as our area of interest
a real-time system. A real-time operating system employs
a scheduling algorithm to schedule multiple tasks so that
each task can meet its real-time constraints. Most real-time
scheduling algorithms are priority based. In priority-based
scheduling, control of the CPU is always given to the
highest priority task ready to run. How a scheduling
priority is assigned to a task and when the highest priority
task runs on the CPU, however, are determined by the type
of scheduling algorithms used.

In previous work [12], we analyzed how a covert

timing channel is created and exploited by aHigh task
(TH ) and aLow task (TL) while a third party task (TN )
is concurrently running with them under Rate Monotonic
scheduling [9]. The RM scheduling algorithm is one of
the most widely used scheduling strategies due to its rich
theoretical background and simplicity of implementation.
Our previous work [12] is based upon the possibilistic
approach, which assumes that the probability of a timed
action of a task is not known. Using the possibilistic
approach, we formally proved that in some system con-
figurations it will not be possible to completely close the
covert timing channel due to the timing constraint of the
RM scheduling algorithm. In this paper, we incorporate a
probabilistic model into our previous work and consider a
probabilistic covert channel under RM scheduling. Using a
probabilistic model, our goal is to measure two quantities:
the capacity of a covert channel via Shannon’s information
theory [5] and a quantity calledspecificinformation [6].
The channel capacity represents themaximumaverage
amount of information per symbol (bit/symbol) that can be
transmitted through a given noisy channel. The quantity
of specific information signifies the amount information
carried by a specific output symbol regarding the range of
input symbols transmitted. Although channel capacity is a
useful metric in assessing the overall severity of a covert
channel, the quantity of specific information is an effective
metric when one wants to know the amount of information
gained from a specific observation, rather than the average.

One important characteristic of a real-time op-
erating system is that it performs operations at fixed,
predetermined times (called preemption points) or within
predetermined intervals [14]. For the purpose of this paper
we define a unit of time as the interval between preemption
points, giving us a well-defined discrete time domain in
which to analyze covert timing channels.

2 Rate-Monotonic Scheduling Algorithm

2.1 Background, Notations, and Assumptions

Liu and Layland’s Rate-Monotonic (RM) scheduling algo-
rithm [9] has become one of the most widely used schedul-
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Ci: Worst case computation (execution) time
required by an invocation of taskTi.

Ti: Lower bound between successive ar-
rivals of a taskTi. This is the period of a
periodic taskTi.

Di: The deadline for each invocation of task
Ti, measured from its arrival time. Usu-
ally Di ≤ Ti.

Ri: Worst case response time for an invoca-
tion of taskTi, measured from its arrival
time to its termination time. A schedula-
ble task must haveRi ≤ Di.

Figure 1. Notations used to characterize a task

ing algorithms in real time systems. It provides:

• Tasks with shorter periods (higher request rates) will
have higher priorities.

• A priority assigned to a task is fixed.

• A currently executing task is preempted by a newly
arrived task with a higher priority (shorter period).

The mathematical symbols used are defined in Fig-
ure 1. In order to simplify our analysis, the following as-
sumptions are applied to a periodic task:

A1. The periodic tasks running on a single processor are
independent(no shared resources among tasks other
than the processor).

A2. The time between successive arrivals of a task is fixed
asTi (a task is activated at a constant rateTi).

A3. The deadline for each invocation of a task is equal to
the period (Di = Ti).

A4. A task is released as soon as it arrives.

A5. The initial release time of all tasks is zero.

From the above assumptions, a periodic taskTi can be
completely characterized asTi(Ti, Ci). Thus, we can de-
note a set of periodic tasks running under the RM schedul-
ing algorithm as:

ΓRM = {Ti(Ti, Ci), i = 1 . . . n}

2.2 Worst Case Response Time Analysis

Let ΓRM = {Ti(Ti, Ci), i = 1 . . . n}. Let π(Ti) repre-
sent a scheduling priority assigned to a taskTi. Assume
thatπ(T1) > π(T2) · · · > π(Tn). Joseph and Pandya [7]
showed that a task setΓRM will meet all its deadlines if:

∀Ti ∈ ΓRM Ri ≤ Di,

where Ri = Ci + Ii (1)

and Ii =
i−1∑
j=1

⌈
Ri

Tj

⌉
Cj

The definition ofRi in Eq. (1) is recursive. If a set of
tasks is not schedulable, one cannot find a solution forRi

of the lowest priority task which satisfiesRi ≤ Di [1].

3 Covert Timing Channel Analysis

In this section, we introduce a model which describes a
covert timing channel between a high-level taskTH and
a low-level taskTL, while a third party (system) task
TN (noise) is running concurrently with them under RM
scheduling. We make the following assumptions in build-
ing our model:

• Periodic tasks: Three tasks are running under RM
scheduling, i.e.,ΓRM = {Ti(Ti, Ci), i = N,H, L}.

• Schedulability: ΓRM is schedulable.

• Scheduling priority: We assumeTN < TH < TL,
i.e.,π(TN ) > π(TH) > π(TL). The outcome of analy-
sis will be very similar whenTH < TN < TL, i.e.,
π(TH) > π(TN ) > π(TL). What is important here is
that a low level taskTL is assumed to be a task with the
longest period. There will be no covert timing channel
if TL has the shortest period; however, this may not be
a viable solution for some real-time applications.

• Ability of High: High is given as much opportunity
as possible for creating a covert timing channel. At
every release time, the computation of a taskTH may
vary from one unit toCH units of time.

• Ability of Low: Low cannot measure the time be-
tween any two occurrences of context switch. How-
ever, for each period,Low is able to assess the re-
sponse time of its own task (the time between the sub-
mission of its task to a scheduler and the notification
that it is completed). We assume there is no overhead
associated with task submission and notification.

• Timing behavior of TN : At every release time, the
computation time of taskTN may vary from one unit
to CN units of time. However, its timing behavior
is nondeterministic in a sense that neitherLow nor
High can reliably predict the computation time per-
formed byTN at each release.

• Periods ofTN , TH , and TL: To simplify our analy-
sis, we assume thatTN dividesTL andTH dividesTL.
With this assumption,Low can obtain a single output
sample (the response time of its own task) by monitor-
ing at mostTL units of time. In addition, the number
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Figure 2. Covert channel model

of periods ofTN andTH which affect the response
time of Low can be well defined. This assumption is
not necessary, but without the assumption,Low has to
wait for the maximum ofl.c.m. (TN , TH , TL) 1 units
of time in each period to sample the output.

• Sampling factor of Low: In order to detect (sample)
a response time of it own task,Low submits a task
with known computation time to a real-time sched-
uler. This fixed computation time is called the sam-
pling factor ofTL. We useCL to denote the sampling
factor.

• Pre-agreement:High has some pre-agreement with
Low that it begins to transmit a new symbol everyTL

units of time (Low receives (samples) an output every
TL units of time).

3.1 Extending Response Time Analysis

We extend Eq. (1) to calculate all possible response times
(not just the worst response time) of a taskTL. Assume that
ΓRM = {Ti(Ti, Ci), i = N,H, L} passes the schedulabil-
ity test of Eq. (1).

Let ĈH [k] denote the computation time of a taskTH

at thekth release (during thekth period), 1≤ ĈH [k] ≤
CH . We call ĈH [k] a timed action (computation time)of
a taskTH at thekth release. LetĈH be a vector (tuple)
which represents a sequence of timed actions of a taskTH

from the first up to the
l

TL
TH

mth release:

ĈH = (ĈH [1], ĈH [2], . . . , ĈH [k], . . . , ĈH [
⌈

TL

TH

⌉
])

Let Vh be a set with all possible combinations ofĈH :

Vh = {ĈH | ĈH [k] ∈ {1, . . . , CH}, k ∈ {1, . . . ,

�
TL

TH

�
}}

For instance, if 1≤ ĈH [k] ≤ CH , then
Vh = {(1, 1, . . . , 1), (1, 1, . . . , 2), . . . , (CH , CH , . . . , CH)}

Similarly, assuming1 ≤ ĈN [l] ≤ CN , we denote a se-
quence of timed actions of a taskTN from the first up to
the

l
TL
TN

mth release as:

ĈN = (ĈN [1], ĈN [2], . . . , ĈN [l], . . . , ĈN [
⌈

TL

TN

⌉
])

1l.c.m. (TN , TH , TL) represents the least common multiple of the
periods of tasks specified in the argument. It is often called the hyper-
period.

1 2 3 4 5 6 7 8 9 20

Task(Noise)

Task(High)

Task(Low)

Response time = 8

Figure 3. Timing diagram - Example 1

Let Vn be a set with all possible combinations ofĈN :

Vn = {ĈN | ĈN [l] ∈ {1, . . . , CN}, l ∈ {1, . . . ,

�
TL

TN

�
}}

Given thatĈH ∈ Vh, ĈN ∈ Vn, the response time
of a taskTL is computed by adding up the sampling factor
CL, interference time caused byTH and interference time
caused byTN :

RL = CL +

l
RL
TH

m∑
k=1

ĈH [k] +

l
RL
TN

m∑
l=1

ĈN [l] (2)

We solve Eq. (2) for the response timeRL using a recurrent
relationship [12].

As Eq. (2) indicates, not all the timed actions in̂CN

andĈH affect the response timeRL except whenRL = TL.
Let ∗[i] or ∗ be a timed action (computation time) ofTH or
TN occurring afterRL, wherei indicates theith period.
Then, we letĈN (RL) andĈH(RL) be the notations which
incorporate the notation∗[i] or ∗ into ĈH andĈN .

ĈH(RL) = (ĈH [1], ĈH [2], . . . , ĈH [

�
RL

TH

�
], ∗[k], . . . , ∗[

�
TL

TH

�
])

(3)

ĈN (RL) = (ĈN [1], ĈN [2], . . . , ĈN [

�
RL

TN

�
], ∗[l], . . . , ∗[

�
TL

TN

�
])

(4)

Finally, we can express the response time of a taskTL

as a functionf of ĈH(RL) ĈN (RL) andCL (Figure 2):

RL = f(ĈH(RL), ĈN (RL), CL), ĈH(RL) ∈ Vh, ĈN (RL) ∈ Vn

(5)

Example 1. Let ΓRM = {TN (5, 2), TH(10, 2), TL(20, 2)}
andCL = 2. If ĈH = (2, 2) andĈN=(2, 2, 2, 2), thenRL =
8 (Eq. (2)). This can be represented via Eq. (5) asRL = 8
= f((2, ∗), (2, 2, ∗, ∗), 2). The timing diagram (also known
as Gantt diagram) of this result is shown in Figure 3.

4 Communication Channel Model

Mathematically, one can view a channel as a probabilistic
function that transforms a sequence of input symbols,x ∈
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X={x1, . . ., xk, . . ., xK , }, into a sequence of channel out-
put symbols,y ∈ Y ={y1, . . ., yj , . . ., yJ}. We assume that
the number of inputs and outputs of a channel are finite and
the current output depends on only the current input. Such
a channel is called a discrete memoryless channel (DMC).

Because of noise in a communication system, this
transformation is typically not a one-to-one mapping from
the set of input symbolsX to the set of output symbols
Y . Instead, any particular input symbolxk ∈ X may have
some probabilityP (yj | xk) of being transformed to the
output symbolyj ∈ Y . P (yj | xk) is called a (forward)
transition probability. Given a DMC, the probability distri-
bution of the output setY , denoted byQY , can be calcu-
lated in matrix form as:

QY =

0
BBB@

P (y1)
P (y2)

...
P (yJ )

1
CCCA =

0
BBB@

P (y1 | x1) . . . P (y1 | xK)
P (y2 | x1) . . .

...
...

...
P (yJ | x1) . . . P (yJ | xK )

1
CCCA

0
BBB@

P (x1)
P (x2)

...
P (xK )

1
CCCA

(6)

Let QY |X be a matrix which has the transition probabili-
ties of a noisy channel as its entities andQX represent the
probability distribution of the input setX. Then, Eq. (6) is
abbreviated as:

QY = QY |XQX

For notational convenience,QY (j) andQX(k) represent
thejth andkth entries of the column vectorsQY andQX .
QY |X(j, k) or Qj|k represents the entry that lies in thejth

row and thekth column of the matrixQY |X .
According to Shannon’s information theory, the en-

tropyH(X) is a measure of the information per symbol in
a channel input setX and is defined as:H(X) =

∑K
k=1

QX(k)log2 (1/QX(k)). The average amount of the infor-
mation transmitted overt a channel is defined in informa-
tion theory as the mutual informationI(X;Y ):

I(X : Y ) =
K∑

k=1

J∑
j=1

QX(k)Qj|k log
Qj|k∑K

i=1 QX(i)Qj|k

For a fixed transition probability matrixQY |X , the mutual
informationI(X;Y ) is a function of the probability distri-
butionQX of the set of input symbolsX. The maximum
mutual information achieved for a given transition proba-
bility matrix is the channel capacityC:

C = max
QX

I(X;Y ) (7)

Note that channel capacity (bits/symbol) is found by max-
imizing I(X;Y ) with respect toQX for a given transition
probability matrix. We denote theQX which maximizes
I(X;Y ) asQmax

X . Generally, it is non-trivial to findQmax
X .

However, the Arimoto-Blahut algorithm [3] can be used to
efficiently calculateQmax

X and the channel capacity of a
noisy channel if a transition probability matrixQY |X of the
channel is provided to the algorithm. Thus, findingQY |X
of a noisy channel is the most important step in evaluating
the channel capacity.

In order to build a model for a covert timing path be-
tweenHigh andLow in RM based real-time systems, it
is crucial to identify all possible input symbols available
to High and corresponding output symbols observed by
Low. After this step, one must find a transition probabil-
ity matrix of a covert timing channel to evaluate channel
capacity. The following definition identifies the input and
output symbols for our RM-based covert timing channel:

Definition 1. A setchannelΓRM
is defined to be a binary

relation between an input symbol being a sequence of timed
actionsĈH(RL) of TH and an output symbol being a cor-
responding response timeRL. Formally,

channelΓRM
= {(ĈH(RL), RL) | RL = f(ĈH(RL), ĈN (RL), CL)

, ĈH(RL) ∈ Vh, ĈN (RL) ∈ Vn}

Two assumptions are needed to determine a transition
probability of channelΓRM

: a statistical relationship be-
tween two real-time tasksTH andTN , and a probability
distribution of timed actions ofTN . First, we assume that
two tasksTH andTN are statisticallyindependent, e.g., the
timed actions ofTN are not known toHigh nor under the
control ofHigh (the timed actions ofTN are nondetermin-
istic). This view is not the worst case assumption: our main
interest is in the vulnerability of RM scheduling itself, not
the correlation betweenTH andTL.

Let R and ~X be the random variables representing the
response timeRL and a sequence of timed actionsĈH(RL)
of TH , respectively. Let~N be a random variable represent-
ing a sequence of timed actionŝCN (RL) of TN . Provided
that two tasksTH andTN are independent, we can compute
a transition probability ofchannelΓRM

as:

P (R = RL | ~X = ĈH(RL)) = (8)

P ( ~N = ĈN (RL) | RL = f(ĈH(RL), ĈN (RL), CL))

A channel capacity is a (sensitive) function of a tran-
sition probability of a noisy channel (Eq. (7)) and the tran-
sition probability of channelΓRM

depends on a proba-
bilistic distribution of ĈN (RL) (Eq. (8)). Therefore, a
choice of a probabilistic distribution for a timed action per-
formed byTN could (significantly) affect the capacity of
channelΓRM

. In this paper, we assume that a timed action
performed byTN during each period follows the discrete
uniform distribution and any two timed actions ofTN are
statistically independent. This view may be most appropri-
ate to our assumption that the timing behaviors ofTN are
nondeterministic. LetN be a random variable indicating
the computation time performed byTN during each period.
Assuming that1 ≤ ĈN [l] ≤ Cmax

N and the random vari-
ableN follows a discrete uniform distribution, we have the
following probabilistic equation:

P (N = 1) = P (N = 2) . . . = P (N = CN ) =
1

CN
(9)

Under our discrete uniform distribution and indepen-
dence assumptions,P ( ~N=(n1, n2, · · · , nk, ∗, ∗, · · · , ∗))
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can be evaluated, assuming that1 ≤ nk ≤ CN :

P ( ~N = (n1, n2, · · · , nk, ∗, ∗, · · · , ∗)) (10)

= P (N = n1)P (N = n2) · · ·P (N = nk)P (N = ∗)
P (N = ∗) · · ·P (N = ∗)

=
(

1
CN

)k

Note thatP (N = ∗) = 1 sinceP (N = ∗) = P (N =
1) + P (N = 2) + · · · P (N = CN ). After the transition
probability matrixQY |X of channelΓRM

is constructed via
Eq. (8), (9), and (10), the channel capacity can be found by
using Eq. (7) or the Arimoto-Blahut algorithm.

(2,*)

4

5

7

8

N

(1,*)
(1,*,*,*)

(2,*,*,*)

(2,1,*,*)

(2,2,*,*)

(1,*,*,*)

LRCH C

Figure 4. Covert communication channel

Example 2. Given that ΓRM = { TN (5, 2),
TH(10, 2), TL(20, 2) } and CL = 2, entering all pos-
sible combinations ofĈH ∈ Vh and ĈN ∈ Vn

into Eq. (2), one can constructchannelΓRM
=

{((1, ∗), 4), ((1, ∗), 5), ((2, ∗), 5), ((2, ∗), 7), ((2, ∗), 8)}
as shown in Figure 4. Using Eq. (8), (9), and (10), the
transition probability of the channel can be calculated. For
example,P (RL = 7 | ~X = (2, ∗)) = P ( ~N = (2, 1, ∗, ∗))
=

(
1
2

)2
. The transition probability matrixQY |X of the

channel shown in Figure 4 is evaluated as:

QY |X =

0
BB@

1/2 0
1/2 1/2
0 1/4
0 1/4

1
CCA

For the givenQY |X , the capacity ofchannelΓRM

is 0.5 (bit/symbol) andQmax
X = (1/2 1/2)T . Thus,

channelΓRM
achieves the maximum transmission rate

whenP ( ~X = (1, ∗)) = P ( ~X = (2, ∗)) = 1
2 .

4.1 Quantity of Specific Information

The channel capacity represents the maximum amount of
information per symbol (bits/symbol) that can be transmit-
ted through the given noisy channel on average. Security
researchers commonly use the channel capacity or mutual
information (if the probabilistic behavior of an input sym-
bol is known and fixed) as a security metric to access the
severities of a covert channel. These two quantities indicate
the average amount information one obtains about the input
symbols transmitted from observing output symbols. Thus,

the channel capacity and mutual information are good indi-
cators of overall performance of a communication channel.

However, in some cases, it is useful to know the
amount of information gained from observing a specific
output symbol received, rather than the average. For in-
stance, an observer (Low) may deduce more about the state
of a sender or the range of input symbols transmitted by ob-
serving some output symbols than others, i.e., some output
symbols may be more informative about the range of input
symbols transmitted than others.

Let us denote a set of input symbols asX = {x1, . . .,
xk, . . ., xK ,}. Let yj be an output symbol observed by a
receiver. We writeI(X; yj) to denote the amount of in-
formation carried by a particular output symbolyj about
the range of input symbols transmitted. We callI(X; yj) a
quantity of specific information or a degree of deducibility
associated withyj . The formula2 for the quantity of spe-
cific information [6] is:

I(X; yj) = −
KX

i=1

P (xi) log p(xi) +
KX

i=1

P (xi | yj) log p(xi | yj)

(11)

If a transition probability matrixQY |X and a prob-
ability distribution3 of input symbolsQX are known,
I(X; yj) can be calculated sinceP (xi | yj) = P (xi)P (yj |xi)

P (yj)

andP (yj) is found via Eq (6).
The metricI(X; yj) may be very useful in identify-

ing a system component which causes an output symbol
with a higher degree of deducibility. Then one can effec-
tively reduce a channel capacity by first working on a com-
ponent which generates an output with the higher value of
I(X; yj) rather than introducing arbitrary noise to a sys-
tem.

Example 3. Assume that we havechannelΓRM
as shown

in Figure 4. LetX be{x1, x2} = {(1, ∗), (2, ∗)}, and let
y1 and y2 represent the response times with values of4
and5, respectively. Also assume that an input probabilistic
distribution is chosen to achieve the maximum transmis-
sion rate, which meansQX = (1/2 1/2)T = Qmax

X . Then,
we can compareI(X; y1) andI(X; y2) to determine which
output symbol carries more information about the range of
input symbols. Using Eq. (11),I(X; y1 = 4) = 1 and
I(X; y2 = 5) = 1

2 . This result indicates that the output
symboly1 carries 1 bit of information about the range of the
input symbols transmitted andy2 carries 0 bits. Thus, upon
receivingy1, a receiver can deduce with a higher degree of
certainty the range of input symbols transmitted than when
receivingy2.

Let us explain the previous example from an
information-theoretical point of view. The value of
I(X; y1) indicates that the amount of information gener-
ated at a sender side is transferred to a receiver side without

2There are also other formulas [2] forI(X; yj) but only Eq. (11) has
an additive property [6]:I(X; {yj , zk}) = I(X; yj) + I(X; zk | yj),
whereyj andzk are two observations.

3When a probability of distributionQX of input symbols is not known,
it is reasonable to assumeQX = Qmax

X .

17



any loss since the quantity of specific information associ-
ated withyj is equal to the entropy of the input symbol
set X, i.e., I(X; y1) = H(X) = 1. On the other hand,
I(X; y2) = 0 indicates the amount of information gener-
ated at a sender side is all lost during the transmission. The
output symbol likey1 is most informative and the output
symbol likey2 is least informative to a receiver. We can
generalize our observation:

Proposition 1. If I(X; yj) = H(X), upon receivingyj , an
observer (Low) can deduce exactly which input symbol has
been transmitted by a sender (High). On the other hand,
if I(X; yj) = 0, upon receivingyj , an observer cannot de-
duce anything about the range of input symbols transmit-
ted.

Proof. Let X = {x1, · · · , xK} be a set of input symbols.
I(X; yj) = H(X) implies that

∑K
i=1 P (xi | yj) log p(xi |

yj) = 0. LetE(yj) =
∑K

i=1 P (xi | yj) log p(xi | yj) (E(yj)
stands for the equivocation associated withyj). In order for
E(yj) to be0, there must exist a one-to-one mapping from
an input symbol to the output symbolyj . Because of the ex-
istence of the one-to-one mapping,Low can pin-point the
input symbol transmitted which results inyj . If I(X; yj) =
0, thenE(yj) = H(X). This indicates the statistical inde-
pendence between the input symbols and the output symbol
yj sinceP (xi | yj) = P (xi) for all input symbolsxi ∈ X.
Thus, an observer cannot deduce anything about the range
of input symbols transmitted.

5 Conclusion

Under the assumption thatTL is a task with the longest pe-
riod, we provide a mathematical framework for computing
the capacity of a covert timing channel betweenTL andTH

while a third party task is running concurrently with them
under RM scheduling. Another metric called the quantity
of specific information is used to quantify the amount of
information carried by a specific output symbol. The two
quantities are both useful for different reasons: channel ca-
pacity can serve as a metric to measure the overall severity
of a covert channel. Meanwhile, the quantity of specific in-
formation can be used to find out which output symbol is
more informative toLow.
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