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Abstract

Declassification occurs when the confidentiality of infor-
mation is weakened; erasure occurs when the confidentiality
of information is strengthened, perhaps to the point of com-
pletely removing the information from the system.

This paper shows how to enforce erasure and declassifi-
cation policies. A combination of a type system that controls
information flow and a simple runtime mechanism to over-
write data ensures end-to-end enforcement of policies. We
prove that well-typed programs satisfy the semantic security
condition noninterference according to policy.

We extend the Jif programming language with erasure
and declassification enforcement mechanisms and use the
resulting language in a large case study of a voting system.

1 Introduction

Enforcing information security is an important require-
ment of many systems. However, often information secu-
rity changes over time, complicating enforcement. Declas-
sification and erasure are two common ways in which the
security enforced on information changes. Declassification
occurs when the confidentiality enforced on information is
weakened, for example, by allowing more people to read
the information. Erasure [2] is the opposite phenomenon,
occurring when the confidentiality enforced on information
is strengthened, perhaps to the point of removing the infor-
mation from the system entirely.

Much work in recent years has considered how to pro-
vide end-to-end enforcement of declassification require-
ments. (See Sabelfeld and Sands [22] for a recent survey.)
Comparatively little work [12] has considered end-to-end
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enforcement of erasure requirements, and none has consid-
ered both declassification and erasure together. In this pa-
per, we enforce both erasure and declassification require-
ments end-to-end in a language-based setting. The erasure
policies we enforce are significantly more expressive than
any previously enforced.

Consider, as an example of erasure requirements, a med-
ical information website. The website offers (among other
functionality) a diagnostic application, where a user may
enter information about symptoms, and the application will
present information about possible diseases consistent with
the symptoms. The website’s privacy policy states that
symptoms the user enters are private, and no record of them
will be kept after the user has finished using the diagnos-
tic application. The provider of this website needs to en-
force an erasure requirement: when the user has finished
using the diagnostic application, the symptom data that the
user has entered must be erased. Note that the information
the user has entered may need to persist over several user
requests, but also might need to be erased before the ses-
sion has finished. Thus, the lifetime of the information does
not necessarily match that of any web server resource. An-
other subtlety is that the diagnoses the system has produced
must also be erased, as the diagnoses may reveal informa-
tion about the symptoms entered.

Information security is an end-to-end requirement: infor-
mation security policies must be enforced on information
no matter how it propagates through the system or where
it enters or leaves. These policies should also be enforced
on data derived from sensitive information, since derived
data may allow deductions about source information. In the
diagnostic application described above, learning diagnoses
may reveal symptoms, which are sensitive.

Information-flow control is an approach for achieving
end-to-end enforcement. Information-flow control tech-
niques enforce security by restricting the flow, or propaga-
tion, of information in a system. Conceptually, information-
flow control techniques label data with security levels; as
data are updated and created, the security labels are also
updated to reflect data dependencies. The security labels
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can be used to prevent confidential data from being output
on public channels. Static enforcement methods [21] can
control information flow without incurring the performance
overheads of representing security labels at runtime.

In this paper, we use static information-flow control to
enforce erasure and declassification requirements end-to-
end. Erasure and declassification requirements are specified
in a policy language that can express when information may
be declassified, and when information must be erased. Sec-
tion 2 reviews this policy language, which was introduced
in earlier work [2] but lacked any enforcement mechanism.

Section 3 presents a simple imperative language that has
a runtime mechanism for overwriting memory locations. A
type system controls information flow, ensuring that infor-
mation that needs to be erased is placed only in memory
locations that will be overwritten at appropriate times.

Noninterference [7] is an end-to-end semantic security
condition. It is well-known that noninterference is too
strong in the presence of declassification, which intention-
ally makes sensitive information public. However, nonin-
terference is too weak in the presence of erasure—it can-
not express erasure requirements, which restrict observa-
tion of public information. Section 4 proves that well-typed
programs satisfy noninterference according to policy [2],
a generalization of noninterference that precisely expresses
the information flows permitted by declassification and era-
sure.

Section 5 describes how we incorporated declassification
and erasure policies into the decentralized label model [17]
and extended the Jif programming language [18] with the
new label model. We have used this extended version of Jif
to implement a large, security-intensive system: Civitas [4],
a secure voting service. Section 6 describes how the policies
are useful in its implementation. Section 7 reviews related
work, and Section 8 concludes.

2 Policies

The declassification and erasure policy framework intro-
duced in previous work [2] assumes there is a lattice (L,v)
of confidentiality levels, and a language for specifying con-
ditions, which indicate when declassification may occur and
when erasure must occur. To instantiate the policy frame-
work, lattice L and the condition language must be speci-
fied. Appropriate security lattices include the two-point lat-
tice {L,H} where L v H and H 6v L, and the lattice
of security principals ordered by an acts-for relation [17].
(In Section 5 we use the lattice of security principals when
extending the decentralized label model [17].) We assume
there is a clear notion of enforcement of confidentiality level
` ∈ L on information. Many condition languages are possi-
ble; Section 3 uses program expressions as conditions.

a, b Conditions
p, q ::= Policies

` Lattice policy
p↘a q Declassification policy
p a↗q Erasure policy

Figure 1. Syntax of policies

2.1 Syntax

Security policies describe what confidentiality level is
currently enforced on information, and how this may and
must change in the future. Figure 1 shows the syntax of
policies. Lattice policy ` ∈ L means that the confiden-
tiality level ` (or a more restrictive confidentiality level)
must be enforced on information now and at all times in
the future. Declassification policy p↘a q means that pol-
icy p is currently enforced on information, and when con-
dition a is satisfied, information may be declassified, after
which policy q must be enforced (regardless of the subse-
quent satisfaction or non-satisfaction of a). Erasure policy
p a↗q means that policy p is currently enforced on informa-
tion, and when condition a is satisfied, information must be
made more restricted, by enforcing both policies p and q on
the information (regardless of the subsequent satisfaction or
non-satisfaction of a).

The satisfaction of conditions controls when declassifi-
cation may occur, and when erasure must occur. Condition
satisfaction is specific to the condition language used. We
assume condition satisfaction depends only on the current
system state s (which may include the history of the sys-
tem), and write s � a if condition a is satisfied in state s,
and s 2 a if a is not satisfied in state s.

For example, if we are enforcing policy H↘aL on infor-
mation, then we must enforce the confidentiality level H on
the information; however, when condition a is satisfied, we
are permitted to change the confidentiality level enforced
on the information to L. If we are enforcing erasure policy
L a↗H on information, then we must enforce the confiden-
tiality level L on the information, and if and when condi-
tion a is satisfied, we must change the confidentiality level
we are enforcing to be at least as restrictive as both L and
H—since L v H , it suffices to enforce the confidentiality
level H .

Consider enforcing policy (H↘aL) b↗H on informa-
tion. Initially policy H↘aL is enforced on information,
meaning that the confidentiality level H must be enforced,
and if condition a is satisfied (before b is satisfied) then con-
fidentiality level L can be enforced on information. How-
ever, once condition b is satisfied, we must enforce policy
H on information, meaning that confidentiality levelH will
be enforced then and at all times in the future.
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reqErase(p, s)
reqErase(p↘ap′, s)

reqErase(p, s) or s � a
reqErase(p a↗p′, s)

Figure 2. Definition of reqErase(p, s)

To see how these policies can capture the security re-
quirements of applications, let us revisit the medical in-
formation website example from the introduction. A suit-
able policy for symptoms entered by the user could be
session appEnd↗>, where session is a confidentiality level
allowing only the session client and server to read the infor-
mation, > is a confidentiality level so restrictive that it pre-
vents the server from storing the information, and appEnd
is a condition that is satisfied when the user has finished
using the diagnosis application. Thus, the data entered by
the user will initially have the confidentiality level session
enforced on it. Once condition appEnd is satisfied, the con-
fidentiality level>must be enforced, implying that the data
will be removed completely from the system. End-to-end
enforcement of the policies will ensure that information de-
rived from the user’s symptoms will have the same policy,
session appEnd↗> enforced on it, or something more re-
strictive. Thus, any diagnoses derived from the user’s symp-
toms must also have the confidentiality level > enforced on
them once appEnd is satisfied.

Condition satisfaction determines when policies man-
date erasure. Since condition satisfaction is determined
solely by the system state, we say that policy p requires
information erasure in state s (or simply, requires erasure
in state s), denoted reqErase(p, s), if there is a currently
enforced erasure policy whose condition is satisfied. Fig-
ure 2 gives inference rules defining reqErase(p, s). Lat-
tice policy ` never requires erasure. Declassification policy
p↘a q requires erasure if subpolicy p (the policy currently
enforced) requires erasure. Erasure policy p a↗q requires
erasure if subpolicy p requires erasure, or a is satisfied. If
policy p is enforced on information, then we must ensure
that in any state s such that p requires erasure in s, the infor-
mation either is removed from the system, or has a suitably
restrictive policy enforced on it.

2.2 Semantics

Intuitively, the policies describe how the confidentiality
of information may and must change as the system exe-
cutes. We formalize this intuition by providing a semantics
for policies.

The semantics of policy p in state s, denoted [[p]]s, is a set
of pairs of system states and confidentiality levels that de-
scribes what confidentiality levels may be enforced on in-
formation labeled p in state s as the system evolves from
state s. If policy p is enforced on information in state s, and

(s′, `′) ∈ [[p]]s, then by the time the system reaches state
s′ (in zero or more steps), confidentiality level `′ may be
enforced on the information.

[[`]]s = {(s′, `′) | s→∗ s′ and ` v `′}

[[p↘a q]]s = [[p]]s ∪
⋃
{[[q]]s′ | s→∗ s′ and s′ � a}

[[p a↗q]]s = [[p]]s ∩
(
{(s′, `) ∈ [[p]]s | [s, s′] 2 a} ∪⋃
{[[q]]s′′ | s→∗ s′′ and [s, s′′) 2 a}

)
Figure 3. Semantics for policies [[p]]s

Figure 3 defines the semantics [[p]]s. We assume that the
relation → over system states describes atomic transitions
of the system, and denote the reflexive transitive closure of
this relation as→∗.

The semantics for confidentiality level ` allow any con-
fidentiality level at least as restrictive as ` to be enforced at
all times in the future.

The semantics of declassification policy p↘a q is a super-
set of the semantics of policy p. The semantics capture the
intuition that when the condition is satisfied, the informa-
tion may be declassified, and after declassification, policy
q is enforced on the declassified information. If p permits
enforcing confidentiality ` in state s′, then p↘a q also per-
mits it, and in addition, permits policy q to be enforced on
information, starting in any state s′ such that s′ � a.

By contrast, the semantics of erasure policy p a↗q in state
s is a subset of the semantics of p in s. The intuition is
that policy p is enforced while condition a is not satisfied,
and once condition a is satisfied, the information is made
more restricted by enforcing both policies p and q. We write
[s, s′] 2 a, where s →∗ s′, to mean that condition a is not
satisfied in any state from s to s′ inclusive:

[s, s′] 2 a , ∀s′′. (s→∗ s′′ ∧ s′′ →∗ s′)⇒ s′′ 2 a.

Similarly, we use [s, s′) 2 a, to mean that condition a is not
satisfied in any state from s up to but not including, state s′:

[s, s′) 2 a ,
∀s′′. (s→∗ s′′ ∧ s′′ →∗ s′ ∧ s′′ 6= s′)⇒ s′′ 2 a.

2.3 Relabeling judgment

We can define a relabeling judgment a0, . . . , ak ` p ≤ q
such that if a0, . . . , ak ` p ≤ q then, assuming conditions
a0, . . . , ak are all satisfied, information labeled with policy
p can safely be relabeled with policy q. That is, enforcing
q on the information is consistent with policy p. Any such
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relabeling judgment should be sound with respect to the se-
mantics, and we require the following property to hold.

Property 1 (Soundness) If a0, . . . , ak ` p ≤ q then for all
states s, such that ∀i ∈ 0..k. s � ai, we have [[q]]s ⊆ [[p]]s.

A sound relabeling judgment serves as a syntactic ap-
proximation of the policy semantics. Inference rules for a
relabeling judgment, and a proof of soundness, are given in
the companion technical report [3]. In the following sec-
tion, we use the relabeling judgment in the type system to
enforce policies syntactically, without reference to policy
semantics.

Other sound syntactic approximations of the policy se-
mantics are possible. In earlier work [2] we introduced a
sound relabeling relation parameterized on the current state
of the system. This permits reasoning about the subsequent
execution of the system, in addition to the conditions satis-
fied in the current system state.

3 Language

In this section we present a simple imperative language,
IMPE , that incorporates declassification and erasure poli-
cies. The language has runtime mechanisms for erasure and
declassification, and a type system to control the flow of in-
formation. In Section 4, we show that these together suffice
to enforce declassification and erasure policies.

3.1 Syntax

e ::= Expressions
n Integer literal
x Variable
e0 ⊕ e1 Binary operation

c ::= Commands
skip No-op
x := e Assignment
c0; c1 Sequence
if e then c0 else c1 Selection
while e do c Iteration
x := declassify(e, pf to pt using e0, . . . , ek)

Guarded declassification

Figure 4. Syntax of IMPE

Figure 4 presents the syntax of IMPE . We assume there
is a countable set of variables Vars . Language expressions
include integer literals n ∈ Z, and variables x ∈ Vars .
The metavariable ⊕ ranges over total binary operations on
integers.

Conditions of policies in IMPE are simply expressions.
A condition is satisfied when it evaluates to a non-zero
value. For example, if policy H↘x+3L is enforced on in-
formation, that information may be declassified when ex-
pression x+ 3 is non-zero.

The commands are standard, with the exception of de-
classification. The guarded declassification command x :=
declassify(e, pf to pt using e0, . . . , ek) evaluates ex-
pression e, and assigns the result to variable x, provided
that expression ei evaluates to a non-zero value, for all
0 ≤ i ≤ k. If there is some ei that evaluates to zero, declas-
sification fails. The expressions ei are conditions that must
be satisfied for the declassification to occur. The guarded
declassification command allows the type system to check
that, assuming all conditions ei are satisfied, information
labeled pf can safely be relabeled pt , and allows the op-
erational semantics to ensure that conditions ei are indeed
satisfied when declassification occurs. The type system and
runtime mechanisms for enforcing declassification are dis-
cussed further in Sections 3.2 and 3.3.

3.2 Operational semantics

A memory σ is a map from variables to integers, and
is thus a function from Vars to Z. We write σ(e) for the
result of evaluating expression e using memory σ, that is,
using σ(x) as the value of each variable x that occurs in e.
We write σ[x 7→ v] for the memory that maps variable x to
integer v, and otherwise behaves exactly as σ does.

A configuration is a pair of a command c and mem-
ory σ, written 〈c, σ〉. A configuration fully describes the
system state. Since policy conditions are expressions, the
satisfaction of a condition depends only on the memory
of the current configuration. For brevity, we thus write
reqErase(p, σ) instead of reqErase(p, 〈c, σ〉).

We assume there is a typing context that indicates what
policy should be enforced on information stored in each
variable. A typing context Γ is a function from Vars to
policies, and Γ(x) is the policy that must be enforced on in-
formation stored in variable x. The typing context does not
change during execution: a variable x always has the same
policy Γ(x) enforced on it.

Figure 5 presents the operational semantics for IMPE ,
showing how configurations are updated as commands ex-
ecute. The enforcement of policies relies on two runtime
mechanisms, embodied in the operational semantics. The
first is runtime overwriting of variables to enforce erasure;
the second is runtime checking of conditions for declassi-
fication. Except for these two mechanisms, the operational
semantics of the language are standard.

Overwriting variables. IMPE enforces erasure by set-
ting the contents of a variable to zero whenever the pol-
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OS-SKIP

〈skip; c, σ〉 → 〈c, σ〉

OS-ASSIGN
σ′ = update(σ, x, σ(e))

〈x := e, σ〉 → 〈skip, σ′〉

OS-SEQUENCE
〈c0, σ〉 → 〈c′0, σ′〉

〈c0; c1, σ〉 → 〈c′0; c1, σ′〉

OS-IF

i =

{
0 if σ(e) 6= 0
1 if σ(e) = 0

〈if e then c0 else c1, σ〉 → 〈ci, σ〉

OS-WHILE

〈while e do c, σ〉 → 〈if e then c; while e do c else skip, σ〉

OS-DECLASSIFY

v =

{
σ(e) if ∀i ∈ 0..k. σ(ei) 6= 0
0 if ∃i ∈ 0..k. σ(ei) = 0

σ′ = update(σ, x, v)

〈x := declassify(e, pf to pt using e0, . . . , ek), σ〉 → 〈skip, σ′〉

Figure 5. Operational semantics of IMPE

update(σ, x, v) ={
erasure(σ) if reqErase(Γ(x), σ)
erasure(σ[x 7→ v]) otherwise

and
erasure(σ) =

⊔
i∈ω

σi

where σ0 = σ, and

σi+1 = λx ∈ Vars.

{
0 if reqErase(Γ(x), σi)
σi(x) otherwise

and
⊔
i∈ω σi denotes the least upper bound of the chain

σ0σ1σ2 . . . under the ordering v, where
σ′ v σ′′ , ∀x ∈ Vars. σ′(x) = σ′′(x) ∨ σ′′(x) = 0

Figure 6. update(σ, x, v) and erasure(σ)

icy for the variable requires information erasure. Policy p
requires information erasure when reqErase(p, σ) holds,
where σ is the current memory. For example, policies
L x≥0↗H and (L x=3↗H)↘yL both require information
erasure if σ(x) = 3. Since conditions are expressions, a
condition may become satisfied when the memory is up-
dated. The operational semantics for commands that up-
date memory (assignment and declassification) use the util-
ity function update(σ, x, v) to overwrite variables, defined
in Figure 6. The function update(σ, x, v) takes memory σ,
variable x, and integer v, and, provided policy Γ(x) does
not require erasure, returns erasure(σ[x 7→ v]). The util-
ity function erasure(σ) checks for each variable y if policy
Γ(y) requires erasure given the memory σ; if so, it over-
writes variable y with the value zero. Overwriting y changes
the memory, and thus may trigger the overwriting of other
variables.

The function erasure(σ) is defined for all memories σ,
and it provably overwrites variables as required: if σ′ =
erasure(σ) then for all variables x, reqErase(Γ(x), σ′)
implies σ′(x) = 0.

Runtime mechanism for declassification. Declassifica-
tion of information can occur only when appropriate condi-
tions are satisfied. For example, policy H↘x>0L allows
information to be declassified to L when the expression
x > 0 is non-zero, that is, when x is positive. The oper-
ational semantics for a guarded declassification command,
x := declassify(e, pf to pt using e0, . . . , ek), evaluates
e and assigns the result to variable x provided the expres-
sions e0, . . . , ek all evaluate to non-zero values. If one or
more expressions ei evaluate to zero, then declassification
fails, and variable x is updated with the constant value zero.
(Other reasonable semantics include leaving the value of x
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unchanged, or stopping execution.)
For example, if the policy H↘bar>0L is enforced on

variable foo, then the command

quux := declassify(foo, H↘bar>0L to L using bar > 0)

will successfully declassify the contents of foo only if the
expression bar > 0 evaluates to a non-zero value.

The use of runtime mechanisms to aid in the enforce-
ment of declassification and erasure policies allows sim-
pler static enforcement mechanisms. The policies can be
enforced without these runtime mechanisms, but would re-
quire either more complex static enforcement, or less ex-
pressive conditions. See Section 7 for more discussion on
this tradeoff.

3.3 Type system

The runtime mechanisms of IMPE ensure that declas-
sification only occurs if appropriate conditions are satis-
fied, and that variables are overwritten when their policies
require erasure. However, the runtime mechanisms alone
are not sufficient to ensure that erasure and declassification
policies are enforced. What prevents information with era-
sure policy L a↗H from being stored in a variable x that
has policy L enforced on it? Information in variable x has
low security enforced on it, and is not necessarily overwrit-
ten when condition a is satisfied. Similarly, what prevents
information with policy H from being stored in a variable
with policy H↘aL enforced on it, and then subsequently
(and incorrectly) being declassified?

The type system of IMPE restricts information flow
within a program, ensuring that appropriate policies are en-
forced on information at all times. The type system restricts
both explicit flows, where information flows from direct as-
signments to variables, and implicit flows [5], where infor-
mation flows via the program’s control structure. The type
system does not restrict timing or termination channels.

The typing judgment pc,Γ ` c com means that com-
mand c is well-typed under typing context Γ and program
counter policy pc. The program counter policy is used to re-
strict implicit flows. It is an upper bound on the policies of
information that may have influenced the value of the pro-
gram counter, and so is an upper bound on the information
that may be gained by knowing that command c is executed.
The typing judgment Γ ` e : p exp means that under typ-
ing context Γ, policy p is an upper bound on the policies of
information that may be gained by evaluating expression e.

Figure 7 presents inference rules for these typing judg-
ments. The rules track and restrict the flow of information
within a program. For example, the rule T-ASSIGN for an
assignment x := e ensures that information that may be
revealed by evaluating expression e is allowed to flow to
variable x (` pe ≤ Γ(x)), and that information that may

be revealed by learning the assignment is executed is also
allowed to flow to variable x (` pc ≤ Γ(x)).

All the inference rules for the judgments pc,Γ ` c com
and Γ ` e : p exp are standard for information-flow
security type systems, with the exception of the rule for
guarded declassification, T-DECLASSIFY. A guarded de-
classification command x := declassify(e, pf to pt using
e0, . . . , ek) declassifies information with policy pf to policy
pt . Rule T-DECLASSIFY requires that pf can be relabeled
pt assuming conditions conditions e0, . . . , ek are satisfied
(e0, . . . , ek ` pf ≤ pt ). Rule T-DECLASSIFY also requires
that the declassified information is allowed to be stored in
x (` pt ≤ Γ(x)), that the information gained by knowing
the declassification occurred can flow to x (` pc ≤ Γ(x)),
and that the information gained by evaluating e is bounded
above by policy pf (Γ ` e : pf exp).

There is a flow of information from the conditions
e0, . . . , ek to the variable x. The operational semantics for
a guarded declassification will assign the result of evalu-
ating e into x only if all conditions e0, . . . , ek evaluate to
non-zero values. Thus, the value of the variable x after
the declassification command may reveal information about
the value of the conditions. The typing rule for declassi-
fication, T-DECLASSIFY, tracks this information flow by
requiring Γ(x) to be an upper bound on the information
that may be gained by knowing if condition ei was satis-
fied (Γ ` ei : Γ(x) exp).

3.3.1 Well-formed contexts

A variable x is overwritten when Γ(x), the policy enforced
on x, requires erasure. Thus, if satisfaction of condition e
can cause policy Γ(x) to require erasure, there is informa-
tion flow from e to x. To track and control this information
flow, we restrict the typing contexts that may be used.

For all variables x, we require that policy Γ(x) is well-
typed, written Γ ` Γ(x) pol. Any policy that is used as a
program counter policy in the proof of a typing judgment
pc,Γ ` c com must also be well-typed. The inference rule
for well-typed policies is given in Figure 7. It requires that
if condition e may cause policy p to require erasure, then p
is an upper bound on the information that may be obtained
by evaluating e (Γ ` e : p exp).

The recursively defined function eraseConds(p) re-
turns the set of expressions that may cause policy p to re-
quire erasure. That is, reqErase(p, σ) if and only if there
is some condition e ∈ eraseConds(p) such that σ(e) 6= 0.

In addition, typing contexts are restricted to prevent infi-
nite chains of variables x0, x1, . . . , such that the overwrit-
ing of variable xi depends on the value of variable xi+1. For
example, this restriction prevents a variable x having policy
L x=0↗H . This restriction makes it easier to track informa-
tion flows that occur due to overwriting, and simplifies both
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T-SKIP
Γ ` pc pol

pc,Γ ` skip com

T-ASSIGN
Γ ` e : Γ(x) exp ` pc ≤ Γ(x) Γ ` pc pol

pc,Γ ` x := e com

T-SEQUENCE
pc,Γ ` c0 com pc,Γ ` c1 com

pc,Γ ` c0; c1 com

T-IF
Γ ` e : pe exp pc′,Γ ` c0 com pc′,Γ ` c1 com

` pc ≤ pc′ ` pe ≤ pc′ Γ ` pc pol
pc,Γ ` if e then c0 else c1 com

T-WHILE
Γ ` e : pe exp pc′,Γ ` c com

Γ ` pc pol ` pc ≤ pc′ ` pe ≤ pc′

pc,Γ ` while e do c com

T-DECLASSIFY
Γ ` e : pf exp ` pc ≤ Γ(x) ` pt ≤ Γ(x) Γ ` pc pol
∀i ∈ 0..k. Γ ` ei : Γ(x) exp e0, . . . , ek ` pf ≤ pt
pc,Γ ` x := declassify(e, pf to pt using e0, . . . , ek) com

T-VAL

Γ ` n : p exp

T-VAR

` Γ(x) ≤ p
Γ ` x : p exp

T-OP
Γ ` e0 : p0 exp Γ ` e1 : p1 exp

` p0 ≤ p ` p1 ≤ p
Γ ` e0 ⊕ e1 : p exp

T-POL
∀e ∈ eraseConds(p). Γ ` e : p exp

Γ ` p pol

eraseConds(`) , ∅
eraseConds(p↘a q) , eraseConds(p)

eraseConds(p a↗q) , {a} ∪ eraseConds(p)

Figure 7. Inference rules for typing judgments pc,Γ ` c com, Γ ` e : p exp, and Γ ` p pol

security proofs and implementation of variable overwriting.
We define the overwrite dependency relation ≺Γ over vari-
ables such that x ≺Γ y if changing the value of xmay cause
policy Γ(y) to require erasure. More formally, x ≺Γ y if
there is an expression e such that e ∈ eraseConds(Γ(y))
and x appears in e.

Definition 1 (Well-formed typing context) Typing con-
text Γ is well-formed if the overwrite dependency relation
≺Γ is well-founded and for all x ∈ Vars , Γ ` Γ(x) pol.

3.4 Example

Figure 8 shows a fragment of IMPE code that could be
used to process a client request to the medical information
website described in the introduction. For ease of presenta-
tion, we assume the existence of functions and strings.

The code first checks if the user has requested to exit the
diagnosis application, and if so, sets variable appEnd and
exits. Otherwise, the code gets the user’s symptoms and
uses them to produce a diagnosis, which would then be dis-
played to the user. Modulo the use of strings and functions,
the code is well-typed, and the relevant parts of the typing
context Γ are also shown in Figure 8.

The policy enforced on the user symptoms, Γ(symp), is
session appEnd↗>. As described in Section 2, session is

1 if ( userReqExit ) then
2 appEnd = 1; exit()
3 else
4 // get user’s symptoms
5 symp := getUserSymptoms();
6 ...
7 // diagnosis
8 if (contains(symp, ‘malaise’) &&
9 contains(symp, ‘fever’) && ...)
10 then diag := ‘Influenza’
11 else if ...

Γ(symp) = session appEnd↗> Γ(appEnd) = session

Γ(diag) = session appEnd↗> Γ(userReqExit) = session

Figure 8. Medical information website exam-
ple
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a confidentiality level allowing only the session client and
server to read the information, and > is a confidentiality
level so restrictive that it prevents the server from storing
the information. There is an implicit flow of information
from symp to diag, as symp is used in the conditional test
on lines 8–9, and diag is assigned to in the body of the
conditional. By typing rule T-IF, the program counter pol-
icy for the conditional’s body must be at least as restrictive
as Γ(symp). Similarly, by rule T-ASSIGN, Γ(diag) must
be as restrictive as that program counter policy. These con-
straints are satisfied by using policy Γ(symp) as the pro-
gram counter policy for the body of the conditional, since
Γ(symp) = Γ(diag).

The value of variable appEnd can cause policy
session appEnd↗> to require erasure. Indeed, when vari-
able appEnd is set (line 2), variables symp and diag are
overwritten. There is thus information flow from appEnd to
symp and diag. The requirement for a well-formed typing
context tracks this flow, and requires that ` Γ(appEnd) ≤
Γ(symp) and ` Γ(appEnd) ≤ Γ(diag), which are satisfied,
as

Γ(appEnd) = session,
Γ(symp) = Γ(diag) = session appEnd↗>,

and
` session ≤ session appEnd↗>.

4 Security

The type system and runtime mechanisms of IMPE cor-
rectly enforce the security policies of Section 2.

4.1 Noninterference

Noninterference [7] is a well-known end-to-end seman-
tic security condition which requires that secret inputs do
not influence public outputs. A formal statement of non-
interference depends on the definitions of secret input and
public output. In this paper, we consider the secret input
to be the contents of a single variable at the start of pro-
gram execution, and the public output to be the values of
some subset of variables during execution. To state non-
interference formally, we define notions of observational
equivalence of configurations, execution traces, and corre-
spondences between traces.

The observation level of variable x is determined by the
policy Γ(x) enforced on information stored in x. For policy
p, obs(p) ∈ L is the confidentiality level that is currently
enforced on information labeled p, defined in Figure 9. The
observation level of variable x is obs(Γ(x)). Note that the

observation level of a variable does not change during exe-
cution. The intuition is that a user with security clearance `
is only able to see the contents of variables with an obser-
vation level bounded above by `. For example, if variable
x has policy (H↘aL) b↗H enforced on it, the observation
level of x is H , and a user with clearance L could not ob-
serve the contents of x. The policy (H↘aL) b↗H describes
how the confidentiality of information stored in x may and
must change as conditions are satisfied, but does not change
the observability of the variable itself.

obs(`) , `

obs(p↘a q) , obs(p)

obs(p a↗q) , obs(p)

Figure 9. Observation level

Two configurations 〈c, σ〉 and 〈c′, σ′〉 are observation-
ally equivalent at level `, written 〈c, σ〉 ≈` 〈c′, σ′〉, if
all variables that are observable at level ` have the same
value in both memories. Observational equivalence is im-
plicitly parameterized on the typing context Γ. More for-
mally, 〈c, σ〉 ≈` 〈c′, σ′〉 if and only if for all x ∈ Vars ,
if obs(Γ(x)) v ` then σ(x) = σ′(x). Intuitively, if
〈c, σ〉 ≈` 〈c′, σ′〉, then a user with security clearance ` is
unable to distinguish these two configurations by examining
the contents of the memory. However, a user may be able
to distinguish two executions of the program starting from
〈c, σ〉 and 〈c′, σ′〉, by observing the sequences of config-
urations that each execution produces. This motivates the
definition of traces, and correspondences between traces.

A trace τ is a (finite or infinite) sequence of configura-
tions τ = 〈c0, σ0〉〈c1, σ1〉 . . . such that 〈ci−1, σi−1〉 →
〈ci, σi〉 for all i ∈ N such that 0 < i < |τ |, where |τ | de-
notes the length of trace τ . We write τ [i] to refer to the ith
configuration in the trace τ .

We use correspondences [1] between traces to indicate
which states appear equivalent to an observer that sees first
one trace, then the other. A correspondence R is a rela-
tion over the natural numbers. If R is a correspondence for
traces τ1 and τ2, and (i, j) ∈ R, we will use it to mean that
τ1[i] and τ2[j] look the same to a given observer. Formally,
a correspondence R between traces τ1 and τ2 is a subset of
N× N such that

1. (Completeness) either {i | (i, j) ∈ R} = {i ∈ N | i <
|τ |} or {j | (i, j) ∈ R} = {j ∈ N | j < |τ ′|}; and

2. (Initial configurations) if |R| > 0 then (0, 0) ∈ R; and

3. (Monotonicity) for all (i, j) ∈ R and (i′, j′) ∈ R, if
i < i′ then j ≤ j′; and, symmetrically, if j < j′ then
i ≤ i′.
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This definition ensures that a correspondence covers all
configurations in at least one of τ or τ ′, and if both traces
are non-empty, then the initial configurations in the traces
correspond to each other. The monotonicity requirement
implies that the observer observes each trace as it executes,
and time moves only forward.

Correspondences are both timing and termination insen-
sitive, implicitly assuming that an observer cannot directly
observe atomic transitions, and cannot detect if an execution
has terminated. The definition can be refined to provide tim-
ing and/or termination sensitivity. Termination sensitivity is
achieved by strengthening completeness to require that the
correspondence covers all configurations in both τ and τ ′,
and that no configuration in τ or τ ′ corresponds to an infi-
nite set of configurations. Timing sensitivity is achieved by
strengthening the definition so that every configuration in τ
and τ ′ corresponds to exactly one other configuration. Tim-
ing sensitivity implies an observer is able to observe each
time step, and entails termination sensitivity.

Having defined traces, correspondences, and observa-
tional equivalence of configurations, we can now state non-
interference. A command is noninterfering at level ` for
variable x, if input supplied in the variable x at the begin-
ning of the program has no observable effect for a user with
security clearance `, watching the execution of the system:

Definition 2 (Noninterference) A command c with typing
context Γ is noninterfering at level ` for variable x if for all
integers v1, v2 ∈ Z, all memories σ, and all traces τ1 and
τ2 such that τi[0] = 〈c, update(σ, x, vi)〉 for i ∈ {1, 2},
there exists a correspondence R for τ1 and τ2 such that for
all (i, j) ∈ R, τ1[i] ≈` τ2[j].

The definition of noninterference relies on a typing con-
text Γ, used in the definition of observational equivalence.
For brevity, we omit mention of Γ when clear from context.

Noninterference is too strong in the presence of declassi-
fication, which intentionally makes secret information pub-
lic. Noninterference cannot express erasure requirements,
which make publicly observable information less observ-
able. Motivated by these shortcomings of noninterference,
we defined noninterference according to policy.

4.2 Noninterference according to policy

Noninterference according to policy [2] is a semantic
security condition that generalizes noninterference, and al-
lows precise reasoning about the observability of informa-
tion as it undergoes declassification and erasure.

Noninterference according to policy is defined in terms
of the policy semantics, presented in Section 2. The in-
tuition behind the policy semantics is that if information
in state s has policy p enforced on it, then when the sys-
tem enters state s′, the information (or anything derived

or influenced by it) should be observable at level ` only if
(s′, `) ∈ [[p]]s. Noninterference according to policy makes
this intuition precise. Here, we specialize the definition of
noninterference according to policy for IMPE programs.

Definition 3 (Noninterference according to policy) A
command c with typing context Γ is noninterfering accord-
ing to policy for variable x if for all integers v1, v2 ∈ Z,
all memories σ, memories σ1 = update(σ, x, v1) and
σ2 = update(σ, x, v2), and all traces τ1 and τ2 such that
τi[0] = 〈c, σi〉 for i ∈ {1, 2}, there exists a correspondence
R for τ1 and τ2 such that for all (i, j) ∈ R, for all ` ∈ L, if
(τ1[i], `) 6∈ [[Γ(x)]]〈c, σ1〉 and (τ2[j], `) 6∈ [[Γ(x)]]〈c, σ2〉, then
τ1[i] ≈` τ2[j].

Like noninterference, noninterference according to pol-
icy places restrictions on whether information input in vari-
able x is observable by a user during the execution of the
program. However, whereas noninterference required all
corresponding configurations to be observationally equiva-
lent at a fixed level `, noninterference according to policy is
more precise, and requires corresponding configurations to
be observationally equivalent at confidentiality levels deter-
mined by the semantics of the policy enforced on the input.
Thus, noninterference according to policy reflects how the
observability of input may change during the execution of
the system, as declassifications and erasures occur.

Noninterference according to policy generalizes nonin-
terference. In particular, if the policy enforced on a vari-
able x indicates that information will never be observable at
a confidentiality level `, then noninterference according to
policy for variable x implies noninterference at level ` for
variable x. For example, a program that is noninterfering
according to policy and takes input in variable x with pol-
icy H enforced on it, will never declassify the input to level
L, and thus is noninterfering at level L for x. The following
theorem states this formally.

Theorem 1 For all commands c, typing contexts Γ, and
variables x, if c is noninterfering according to policy for
variable x, then for all confidentiality levels ` such that for
all memories σ, ` 6∈ {`′ | (s, `′) ∈ [[Γ(x)]]〈c, σ〉}, c is nonin-
terfering at level ` for variable x.

The central result of this paper is that the type system
and runtime mechanisms of IMPE suffice to enforce erasure
and declassification policies. Thus, any well-typed IMPE

program is noninterfering according to policy.

Theorem 2 For all typing contexts Γ and commands c, if Γ
is well-formed, and pc,Γ ` c com for some policy pc, then
for all variables x ∈ Vars , c is noninterfering according to
policy for variable x.

The proof of Theorem 2 is given in the companion te-
chinical report [3]. It uses Pottier and Simonet’s noninter-
ference proof technique [20].
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5 To Jif and beyond

The Jif programming language [18] extends Java [8] with
information-flow control, allowing security policy annota-
tions on program variables and method signatures. In this
section, we describe how we extended Jif with declassifica-
tion and erasure policies, and mechanisms to enforce these
policies. The resulting language is called JifE .

5.1 Decentralized label model

Security policies in Jif are from the decentralized label
model (DLM) [17]. In DLM labels, security principals de-
clare confidentiality and integrity restrictions on informa-
tion. The reader policy o � r means that the principal o
owns the policy, and allows principal r to learn, or read,
information; the writer policy o�w is also owned by prin-
cipal o, who allows principal w to influence, or write, infor-
mation.1 A label consists of conjunctions (t) and disjunc-
tions (u) of reader and writer policies. Within a label, dif-
ferent principals may declare different restrictions, making
the DLM suitable for reasoning about security in the pres-
ence of mutual distrust between principals. Variable types
and method signatures in Jif may be annotated with labels.
A labeled type is a pair of a base type (a primitive type or
class) and a label.

We extended the DLM to allow principals to specify con-
fidentiality restrictions using declassification and erasure
policies. That is, declassification and erasure policies may
now appear in reader policies on the right of the arrow.

The base lattice of confidentiality levels is the set of
security principals, which is closed under conjunction (∧)
and disjunction (∨) [14, 24], and so forms the necessary
lattice structure. For example, the reader policy Alice �
(Bob ∨Chuck) a↗Bob is owned by Alice, who requires the
erasure policy (Bob ∨ Chuck) a↗Bob to be enforced. The
erasure policy initially allows Bob or Chuck to read infor-
mation, but once a is satisfied, only Bob may read it.

Instead of security principals, we could have used the de-
centralized labels as the base lattice. This would allow la-
bels such as (Alice�Bob)↘a (Chuck�Dave). However,
this approach runs counter to the philosophy of decentral-
ization, because it prevents different principals from declar-
ing their own declassification and erasure requirements.

For the condition language, we allow a restricted class of
expressions: access path expressions of type condition,
and negations of these access path expressions. The type
condition is a new primitive type with two values:
true and false. Expressions of type condition may

1The mnemonic for arrow direction in reader and writer policies is that
in a reader policy o�r, information may flow to principal r, whereas in a
writer policy o�w, information may flow from principal w.

be cast to boolean, and vice versa. An access path ex-
pression is an expression of the form r.f1. . . . .fn, where
r is a local variable, the special variable this, or a class
name; each fi is a field; and all path elements other than
the last are declared final. Immutability of path elements
is needed for sound reasoning about conditions within the
type system.

5.2 Syntax and semantics

JifE extends Jif’s syntax and runtime system to incorpo-
rate the guarded declassification syntax and runtime erasure
mechanisms of Section 3.

JifE contains the new guarded declassification ex-
pression declassify(e, Lf to Lt using e0, . . . , ek),
where Lf and Lt are labels, and each expression ei
is of type condition. The expression is evaluated
by first evaluating e to a value v, then evaluating each
ei in turn; if any ei evaluates to false, then an
UnsatisfiedConditionException is thrown; oth-
erwise, the expression evaluates to v. If the evaluation of
e or any ei results in an exception, the declassification ex-
pression also results in the exception. As in the typing rule
for declassification in Figure 7, type checking ensures that
Lf may be relabeled Lt under the assumption that all con-
ditions ei are satisfied.

Note that Jif already provides a mechanism for selective
declassification [16, 15, 19], whereby a declassification that
weakens or removes a policy owned by principal o requires
o’s authority. By contrast, guarded declassification does not
require the authority of any principal, since given a reader
policy o�(p↘a q), the principal o has already stated that in-
formation may be declassified when condition a is satisfied.
In JifE , selective declassification and guarded declassifica-
tion coexist as separate and independent mechanisms.

To enforce erasure policies, JifE ensures that a variable
or location that has label L enforced on it is overwritten
whenever any erasure policy in L requires it. For example,
if a location has the label {Alice � (Bob this.f↗Chuck) u
Dave � (Alice this.o.d↗>)} enforced on it, then the loca-
tion is overwritten whenever either this.f or this.o.d
evaluates to true. When a location or variable is overwrit-
ten, its contents are replaced with an appropriate default
value. Thus, numeric locations are overwritten with zero,
and reference locations are overwritten with null. Sec-
tion 5.4 describes the runtime mechanisms used to achieve
this. This erasure mechanism is analogous to the erasure
mechanism of IMPE , which overwrites variables if the pol-
icy enforced on the variable requires erasure.

5.2.1 Interaction with Java and Jif features

Jif is intended for practical information-flow control. It sup-
ports a large subset of Java’s language features, and pro-
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vides additional features such as dynamic labels, constant
arrays, and class and method polymorphism, needed for
building real applications. The erasure enforcement mech-
anism of IMPE needs careful adaptation for these language
features.

Final fields and variables. In Java, fields, local variables,
and formal arguments can be marked final, meaning their
value will not change after initialization. To respect the
finality of variables and locations, JifE requires that final
variables and fields cannot be overwritten. The label L en-
forced on a final field or variable must not contain any era-
sure policies, and if L contains a dynamic label (see below),
then the dynamic label must not contain any erasure poli-
cies. This ensures that label L never requires erasure.

Arrays. Jif allows different labels to be enforced on the
elements of an array and the array itself. If the label en-
forced on the elements of an array requires erasure, the array
is overwritten with appropriate default values; the length of
the array is not altered. Jif supports constant arrays, whose
elements cannot be modified after initialization. As with
final fields, labels on elements of constant arrays must
never require erasure.

Dynamic labels. Jif can represent labels at runtime and
treat labels as first-class values. The primitive type label
is the type of runtime labels, and Jif permits runtime com-
parisons of dynamic labels. JifE extends the runtime rep-
resentation of labels to permit declassification and erasure
policies to also be represented at runtime. We introduce a
new kind of label, to reason about runtime labels that may
require erasure. The primitive type elabel is used for dy-
namic labels that may require erasure. Only dynamic la-
bels of type elabel may contain erasure policies; a dy-
namic label of type label cannot contain erasure poli-
cies. Thus, the labels of final fields, final variables, and
elements of constant arrays, may refer to dynamic labels of
type label, but may not refer to dynamic labels of type
elabel. The type label can be cast to elabel, but not
vice versa. The restriction that only elabels may contain
erasure policies also simplifies backwards compatibility of
JifE with Jif.

Polymorphism. Jif provides polymorphism for the labels
of method arguments. For example, the method signature
double{a} sine(double{Alice � Bob} a) states that the
label on the value returned is the same as the label of the
actual argument a, which can be no more restrictive than
{Alice � Bob}. In Jif method bodies, the label of a for-
mal argument is a polymorphic label, representing the la-
bel of actual argument, and bounded above by the argument

label specified in the signature. However, because actual
arguments may require erasure during the method body ex-
ecution, we need to know what label to enforce on formal
arguments in the method body. Thus, in JifE , method bod-
ies assume that the label of a formal argument is simply
the argument label bound specified in the signature. This is
sound, but not as permissive as Jif, and effectively removes
argument label polymorphism. However, it is not overly re-
strictive: we successfully implemented a remote voting sys-
tem in 14,000 lines of JifE code, as discussed in Section 6.

Jif also supports polymorphic classes, permitting classes
to be parameterized on labels and principals.2 JifE extends
the class parameters to allow parameters of type elabel.

5.3 Information flow

Jif’s existing type-system tracks information flow. As
discussed in Section 3, condition satisfaction can itself be
used as a covert storage channel. JifE extends Jif’s type
system to soundly track this potential information flow.

Condition satisfaction affects whether the expression
declassify(e, Lf to Lt using e0, . . . , ek) declassifies e or
throws an UnsatisfiedConditionException. JifE
requires that the label of each ei is no more restrictive than
label Lt .

Condition satisfaction may also cause variables and loca-
tions to be overwritten. JifE tracks these information flows
analogously to the IMPE policy typing judgment Γ ` p pol.
JifE requires that whenever a label L is declared in a pro-
gram, for any erasure policy p e↗q that occurring in L, the
label of expression e must be no more restrictive than L.
JifE also requires that if lbl is a dynamic label that occurs
in L, then the value lbl must be no more restrictive than
L. So, if e is a condition that appears in lbl, then the la-
bel of e is no more restrictive than lbl, and thus no more
restrictive than L.

5.4 Translation

The Jif compiler [18] is a source-to-source compiler,
producing Java code as output. Jif programs rely on a small
trusted runtime library, implemented in Java, that provides
functionality such as runtime comparisons of labels. We
extended the runtime library, and modified the source-to-
source translation, to provide runtime support for erasure.

The key idea is that if a variable or location may need to
be overwritten depending on the satisfaction of a condition
a, then a listener is registered with condition a; the listener
is notified whenever the value of a changes, and the listener
will overwrite the variable or location if necessary.

2Jif as of version 3.1 does not support Java generics, another form of
class parameterization for polymorphism.
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If a local variable may need to be overwritten, then the
translation moves the local variable to the heap, to allow a
condition listener to access it, and overwrite it as needed.

Assignments to fields and local variables are translated
to check that the variable or field does not currently require
erasure. The combination of condition listeners and assign-
ment checks ensures that whenever the label enforced on the
variable or location requires erasure, the variable or location
will be zero or null as appropriate.

Overwriting a variable or location of type condition
may trigger the overwriting of other variables and locations.
To ensure that updating a condition does not cause an infi-
nite cascade of listener invocations, the type system of JifE
requires that for all conditions a, the value of a cannot (di-
rectly or indirectly) control whether a needs to be overwrit-
ten. This is analogous to ensuring that the overwrite depen-
dency relation ≺Γ of Section 3 is well-founded.

6 Case study: Civitas

Using JifE , we implemented Civitas [4], a practical, se-
cure, remote voting system. The use of declassification and
erasure policies in the implementation of Civitas help en-
sure that the system’s security requirements are satisfied.
This section discusses the experience of using JifE to im-
plement Civitas.

Civitas guarantees strong security properties in the pres-
ence of a strong adversary. The design of Civitas refines a
cryptographic voting scheme by Juels, Catalano, and Jakob-
sson [13]. The entities involved in a Civitas election in-
clude an election supervisor, voters, and election authori-
ties, which are mutually distrusting entities that collaborate
to run an election. A Civitas election has several phases.

1. Setup. The electoral roll is established and shared keys
are generated.

2. Registration. Voters retrieve credentials from election
authorities.

3. Voting. Voters vote using their credentials.
4. Tabulation. Election authorities tabulate the election

results.

More details of the design and security assurances of Civitas
are available in a recent publication [4].

Civitas is implemented in 14,000 lines of JifE code, with
about 8,000 additional lines of Java code to perform I/O and
implement cryptographic operations. Declassification and
erasure policies are used in four distinct places.

• Generation of a shared key by authorities. During
setup, authorities engage in a protocol to generate a
shared El Gamal key pair. Each authority generates a
share of the key pair, and publishes a commitment to
it. Each authority publishes its share of the public key,
but only after all commitments are published.

The label {Ai � Ai↘allCommPosted⊥;Ai � Ai}
is used for authority Ai’s public key share. The
declassification policy requires that initially the in-
formation is readable only by election authority Ai,
and may be declassified to be readable by every-
one (represented by the bottom principal ⊥) when
condition allCommPosted is satisfied. Condition
allCommPosted is a field of type condition. It
is easy to check that this field is only updated once Ai
has successfully retrieved all key commitments. The
writer policy Ai�Ai indicates that the key share was
influenced only by Ai.
• Commit-reveal protocol by authorities. During tabula-

tion, the authorities jointly generate random bits, and
each authority must believe that the bits are random.
Each authority selects random bits, and publishes a
commitment to these bits. Once all commitments are
published, each authority reveals its bits, which can be
combined to form a sequence of bits that all authorities
agree are random.
Similar to the key shares, the label {Ai �
Ai↘allBitsPosted⊥;Ai�Ai} is used for authorityAi’s
random bits. Condition allBitsPosted is a field of type
condition, and it is easy to check that this field is
only updated once Ai has been able to successfully re-
trieve all bit commitments.

• Management of credential shares by authorities. Dur-
ing registration, each authority generates a credential
share for each voter. Each voter contacts each authority
to retrieve his shares, combining them into a credential
that can be used to vote. After delivering the share
to the voter, the authority removes the share from the
system. This helps ensure that the voter’s anonymity is
not violated should Ai be subsequently compromised.
Authority Ai enforces the label {Ai �
(Ai delivered↗>)↘deliveryReq⊥;Ai � Ai} on each
voter credential share. Condition deliveryReq is satis-
fied when the voter has requested his credential share,
and has authenticated himself to the authority. The
satisfaction of this condition allows the declassifica-
tion of the share.3 Any copies of the information that
were not declassified must be erased when condition
delivered is satisfied upon successful retrieval by the
voter.

• Management of voter credential shares by voting
clients. After voter Vj has retrieved all credential

3Ideally, the declassification policy should allow the share to be read-
able only by the voter Vj it is intended for. In the protocol between au-
thority Ai and Vj , each authenticates to the other, and they establish a
shared key k; the credential share is sent to Vj encrypted with k. The rea-
soning supported by the DLM is not powerful enough to determine that
information encrypted with k is readable only by Ai and Vj . Extending it
to reason about the subtleties of cryptography would allow a more precise
declassification policy, but is largely orthogonal to this work.
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shares from the authorities, he combines them into a
single credential, which he then uses to vote, publish-
ing it together with his ballot. After combining the
shares, the voter deletes them, to remove any record of
which authority provided which share.
The voter enforces on each credential share the label
{Vj � (Vj postCombined↗>)↘combined⊥}. Upon com-
bining the shares into a credential, condition combined
is satisfied, and the voter can declassify the creden-
tial to allow it to be published with his ballot. After
combining shares, condition postCombined is satis-
fied, and undeclassified copies of the shares (or of in-
formation derived from them) are erased.

JifE allows complex declassification and erasure security
requirements to be clearly and unambiguously declared on
the data. In addition to stating what security must currently
be enforced on the data, the policies limit how the data may
be used in the future. The information flow analysis en-
sures that uses of the data conform to the declared security
policies. This provides additional assurance that the Civi-
tas implementation is correct. The policy annotations serve
as a form of documentation, making complex information
security requirements visible in the code itself.

7 Related work

The most closely related work is that of Hunt and
Sands [12]. Concurrently with this work, they consider the
enforcement of simple erasure policies of the form `↗`′,
where erasure is required at the end of a lexical scope.
These policies are a restricted instantiation of the policy
framework used here, where policies cannot be nested and
the condition language is limited to specifying the end of
lexical scopes. Using flow-sensitive typing contexts [11],
Hunt and Sands present an elegant type system to enforce
erasure policies; their system requires no runtime erasure
mechanism.

Comparing our work to Hunt and Sands’ highlights a
tension between expressiveness of erasure conditions and
ease of enforcement. Simpler condition languages are eas-
ier to reason about statically, and thus easier to enforce stati-
cally. Hunt and Sands’ conditions are tied to lexical scopes,
and it is straightforward to reason statically about when con-
ditions are satisfied. By contrast, the condition language
used in this work is program expressions: flexible, but dif-
ficult to reason about statically. Because it is difficult or
impossible to know the value of an arbitrary expression at
a given program point prior to execution, it is difficult to
determine statically whether a policy will require erasure
at that program point, and thus difficult to enforce erasure
statically. Instead, we use a simple runtime mechanism to
enforce erasure, an approach similar in spirit to hybrid type
checking [6].

Although runtime mechanisms are used to help enforce
erasure and declassification, information flow control in
IMPE is static, using a type system to track and restrict
the flow of information. Starting with Volpano, Smith and
Irvine [25], type systems have proven successful in provid-
ing information flow control without the overhead of rep-
resenting security labels at runtime; many of these type
systems are surveyed by Sabelfeld and Myers [21], and
Sabelfeld and Sands [22] discuss some of the recent type
systems that consider declassification.

Hansen and Probst [10] consider information flow secu-
rity in Java Card bytecode, and identify the utility of era-
sure policies in providing security assurance. They consider
“simple erasure policies” of the form L end↗H , where end
is a condition indicating the end of execution of the current
program. They define a corresponding simple erasure se-
curity condition. They conjecture, but do not demonstrate,
that simple erasure is straightforward to enforce.

Hansen and Probst [9] have also used erasure policies
in secure dynamic program repartitioning. Secure program
partitioning [26] is a technique to split data and code across
a set of mutually distrusting hosts while guaranteeing secu-
rity. Hansen and Probst consider repartitioning a program
when the set of hosts changes dynamically, and use era-
sure policies to ensure that old copies of data are removed
from the system when repartitioning occurs. Hansen and
Probst do not describe how to enforce the erasure policies.
Søndergaard’s subsequent master’s thesis [23] discusses the
trusted runtime components required to enforce these era-
sure policies, but does not implement them.

Sabelfeld and Sands [22] consider different aspects
of declassification, and propose four semantic principles
for declassification, three of which are applicable to era-
sure. Noninterference according to policy satisfies seman-
tic consistency and conservativity, but does not satisfy non-
occlusion precisely because, as Hunt and Sands [12] point
out, the policies address when, but not what, information is
erased and declassified.

8 Conclusion

In this paper we have shown how to enforce erasure re-
quirements end-to-end in language-based settings. Erasure
requirements are specified in a flexible and powerful pol-
icy framework [2] that can also express declassification re-
quirements. The policies express when information may be
declassified, and when information must be erased.

We have proved that an information-flow control type
system, in conjunction with a runtime mechanism for era-
sure, can enforce the erasure and declassification policies
in IMPE , a simple imperative language. Well-typed IMPE

programs satisfy noninterference according to policy [2].
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The end-to-end enforcement of erasure and declassifica-
tion policies is also practical: we have extended the Jif pro-
gramming language [18] with erasure and declassification
policies and enforcement mechanisms, and used the result-
ing language to implement a secure remote voting system.

The ultimate goal of this work is to make it easy for pro-
grammers to write secure programs, and to have assurance
that these programs are secure. This work, by providing
provably secure enforcement of expressive erasure and de-
classification policies, brings us closer to that goal.
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