

Deos™ Slack Scheduling

 Time partitioned real-time operating systems guarantee that a specific computation will have access to
the CPU for a specific amount of time (i.e., budget) at a bounded, deterministic location within the
scheduling timeline (i.e., the hyper-period). This guarantee is a key enabler towards the development of
highly integrated systems that allow software of varying degrees of criticality to coexist on the same
platform. High criticality computations are guaranteed access to the CPU even in the face of misbehaving
lower criticality software. In other words, one can always ensure their high criticality applications have
the CPU time they demand by budgeting for their worst case execution. This approach works well for
periodic computations that have a small deviation between their worst case execution and their nominal
case
execution.

However, this guarantee comes at a price. By setting aside worst case execution times, the scheduler
ensures worst case performance, every time. In other words, from a CPU bandwidth perspective, it is as if
every time the hyper-period is executed, every computation experiences it worst case execution, every
time. This leads to the all too common occurrence of being out of CPU budget time (i.e., no more time to
allocate in the hyper-period), while profiling shows actually average CPU utilization of 50% (or less in
some scenarios). The cause of this situation is the fact that, in the vast majority of cases, computations
experiencing their worst case executions are rare. Even more improbable is the occurrence of multiple
computations experiencing their worst case executions during the same period. Thus, for the vast
majority of executions, unused CPU budget shows up as useless CPU idle time.

Further exacerbating the problem are the following common scenarios:

1) Aperiodic activities must be performed (e.g., interrupts to service, aperiodic client-server
exchanges, etc.).

2) The CPU budget required in order to guarantee safe execution is insufficient to meet customer
delight performance needs.

3) The deviation between nominal case and worst case execution times is significant.

Partition
A

P1

Partition
A

P1

Partition
B

P1

P2

Partition
A

P1

P2

P3

Partition
B

P1

Partition
C

P1

P2

Major Frame (hyperperiod)

Lightly Loaded ARINC‐653 Timeline

Minor Frame
()

Minor Frame
()

Minor Frame
()

Pn Represents the scheduling of a process within a partition

 Represents unused CPU resulting from nominal execution

Deos’™ patented slack scheduling technology addresses these all too common problems and enables
designs to utilize 100% of the CPU.

What is slack? When considering slack, it is often helpful to think of a bank account. Deposits of time
are made into the slack account from which threads (i.e., computations) can withdrawal until the account
balance reaches zero. Where do these deposits come from (i.e., what are the sources of slack time)?
There are two sources of slack time: 1) Budgeted CPU time that goes unused during a thread’s execution;
and 2) Unallocated CPU time (i.e., when adding up the total budgeted CPU time, the sum – for the hyper-
period – is less than 100%). Thus, at the beginning of each hyper-period, the slack account has a balance
equal to the total unallocated CPU time. As threads execute and complete early (with respect to their
worst case budget) they donate their remaining unused budgeted time to the slack account (i.e., they make
implicit deposits). Conversely, as threads execute and wish to use slack time, they make explicit
withdrawals. The Deos™ scheduler manages the deposits and withdrawals to ensure time partitioning
and system schedule-ability.

How does one use slack? Threads are explicitly identified, at design time1, as slack requesters. All
threads participate in generating slack (i.e., making deposits of time into the account), but only slack
requesters are allowed to consume slack (i.e., make withdrawals from the slack account). A slack
requester must first use all of its budgeted CPU time2. Once a slack requester has depleted all of its

1 This is defined in the Deos Registry (see the “Deos™Integration Tool” Whitepaper).

2 In Deos, each thread must have at least enough fixed budget for one context switch.

budgeted CPU time, it will be given immediate access to all available slack time (i.e., all of the time in the
slack account). It can use all, or a portion, of the available slack time (at its discretion). If the slack
requester uses all of the available slack time, and a subsequent thread generates slack (i.e. deposits into
the slack account), the slack requester could be scheduled again and given access to the recently generate
slack time. Since the Deos™ scheduler always schedules the highest priority thread that is ready-to-run;
slack will be consumed by the highest priority slack requester first. In this way, slack is a form of load
shedding.

Therefore, with Deos’™ patented slack scheduling technology all available CPU time can be used as
threads with nominal execution times less than their worst case execution times will be generating time to
be used by slack requesting threads.

One of the most common uses of slack is to remove the lowest criticality applications from the high
criticality, fixed budget time line. In other words, run your low criticality applications purely2 on slack.
The Deos™ development environment provides a classic example of this. All of the Ethernet based
applications (e.g., the network stack, FTP server, Telnet server, etc.) execute purely2 on slack; even the
network’s interrupt service routine. Before slack scheduling, these applications demanded over 50% of
budgeted CPU time in order to achieve the customer’s expected performance. With the advent of slack,
budgeted CPU time for these applications dropped 80% ,with a 300% increase in performance; definitely
a win/win.

Deos’™ patented slack scheduling technology provides another key advantage particularly useful in the
client-server arena, namely: the ability for threads to execute multiple times within the same period3.
This nuance of slack scheduling allows a client thread and its server thread to exchange data, perhaps
multiple times, back-to-back, within the same period, in order to complete a transaction. By contrast, in
time partitioning schemes described at the top of this paper, clients must wait for their server thread to be
scheduled. When a transaction takes multiple interactions, the delay can be significant. To reduce the
delay, non-Deos™ users are forced to ‘play scheduler’, in order to craft a hyper-period timeline that
balances the needs of time critical applications with (perhaps multiple) less time critical client-server
application’s performance needs. However, Deos™ users can use slack and let the Deos™ scheduler take
care of this balance for them.

Another common use of slack is the ability to budget in order to meet your safety requirement, but enable
slack in order to get the most out of your processor. For example, let’s say you have a safety requirement
that indicates your display should update at least ten times a second. While this update rate is deemed
safe, it falls short of meeting customer expectations. In this case, you could chose to budget for your 10hz
update rate (i.e., ensure you have enough fixed budgeted CPU time to meet your 10hz rate) while
enabling slack in order to meet your customer delight requirement. Thus, instead of your display
performing in worst case mode all the time, it is guaranteed to meet its minimum safety requirements, but
will perform in its best case mode as often as possible (i.e., you’ll get all the performance your hardware
has to offer).

3 This capability is also possible when using thread budget transfer (see “Deos’™ Thread Budget Transfer Feature”
Whitepaper).

Additionally, slack can allow you to address your software requirements in a way commonly used before
time partitioned operating systems. Namely, by assigning a requirement, which must be accomplished, to
a low priority thread and guaranteeing that it is accomplished by monitoring its activity from a high
priority thread. For example, one could meet their continuous built-in test (CBIT) requirement by
assigning that activity to a low priority, pure2 slack thread and then monitoring the CBIT thread’s
adequate completion rate from the high priority, fixed CPU budget thread. Once again, the Deos™
scheduler helps spread the CPU load across the timeline (vs. the user/designer having to ‘play scheduler’)
and the high priority, fixed budget thread guarantees that the activity is occurring per the specification.

By giving software designers the capability to factor computations into slack scheduling and/or the high
criticality timeline, Deos’™ patented slack scheduling technology enables software designers to leverage
all the power of today’s modern processors, without sacrificing the safety of space & time partitioning.

For Additional Information

©2008 -- For details about DDC-I, Inc. or DDC-I product offerings, contact DDC-I at 1825 E. Northern
Ave., Suite #125, Phoenix, AZ 85020; phone 602-275-7172, fax 602-252-6054, email sales@ddci.com or
visit http://www.ddci.com

