

An Integrated Scheduling Mechanism for Fault-Tolerant
Modular Avionics Systems

Yann-Hang Lee

 Mohamed Younis Jeff Zhou

CISE Department
University of Florida

Gainesville, FL 32611
yhlee@cise.ufl.edu

Advanced System Technology Group
AlliedSignal Aerospace
Columbia, MD 21045

younis, zhou@batc.allied.com

Abstract— In this paper, we present an effective scheduling
approach for a fault-tolerant IMA (Integrated Modular
Avionics)-based system. The system architecture consists of
connected cabinets that are made of multiple line
replaceable modules, such as core processor and I/O
modules. To provide fault tolerance, the system is
incorporated with fault resilient capability and executes
replicated tasks on different cabinets. Thus application
output will be ready after a task processing stage and a
consistency checking stage. To schedule the two-stage
operations at task processing nodes and at the voter, we
adopt fixed priority executives and investigate two priority
assignment algorithms. Several experiments have been
conducted to measure the success ratios of finding feasible
schedules under various conditions. The evaluation results
reveal a proper design space in which feasible schedules can
be found easily.

 TABLE OF CONTENTS

 1. INTRODUCTION
 2. SYSTEM ARCHITECTURE AND SCHEDULING MODEL
 3. SCHEDULING ALGORITHMS
 4. SCHEDULING EVALUATION AND EXPERIMENTS
 5. CONCLUSION

 1. INTRODUCTION

Computer controllers are the core units used in real-time
embedded systems. Such controllers or embedded
processors may deviate from general-purpose computer
processors since they are designed for some special
applications and have substantially different performance
and implementation constraints. Various high-end 32-bit
processors have found a fast expansion in avionics,
telecommunication, military, aerospace, manufacture plants,
and medical monitoring applications where computation
power and safe operation are rigidly required. These systems
 not only must be fault tolerant, but also must meet task

execution deadlines as their applications are often mission-
and safety-critical.

Consider an example of the autolanding systems of wide-
bodied jumbo passage jets [10] which control critical
functions of aircraft's motion in each axis, i.e., roll, pitch,
and yaw. They are required to operate in all visibility
condition, including zero horizontal visibility and zero
ceiling, and become truly critical in a 15 second interval just
before touchdown. To certify the systems, a design must
demonstrate a probability failure less than 10-9 during this
critical interval. This high reliability requirement implies
that the systems must tolerate most cases of component
failures and must guarantee 100% timing correctness. A
cost-effective design to reach this strict requirement
becomes extremely important considering that a failure can
be catastrophic and that the avionics systems account for
some 30% of the total cost of a new airplane [5].

One approach to reduce the design and maintenance cost of
avionics system is to take a modular approach. Traditional
avionics systems are implemented with autonomous and
federated architectures [1]. They consist of a number of
interconnected but functionally independent (or loosely
coupled) subsystems. In order to improve performance,
flexibility, and availability of avionics systems, it is
necessary to avoid possible duplication of functions and to
allow resource sharing of system components and standard
modules. One significant approach for cost-effective
avionics systems is based on the integrated modular avionics
(IMA) approach in which hardware and software systems
are decomposed into modules and then integrated for
various avionics applications [1]. The IMA approach
suggests an architecture that consists of a set of
interconnected cabinets. Each cabinet, containing a standard
backplane interconnection and multiple line replaceable
modules (LRM), forms a common platform to house the
execution of software modules. With standard interfaces,
hardware and software modules become interchangeable and
can be reused. They can also be upgraded using new
technology to add new functions. Thus, it is expected that
the life-cycle cost of avionics systems can be reduced, and
the processes of system development, and maintenance can
be simplified.

As we gain the advantages of IMA approaches, it is
expected that the whole system as well as the interactions
between modules must be considered in the design and
integration process. Modules must be put together to
collectively perform application functions with a high
reliability. In addition, the performance requirements must
include a guarantee of responsiveness. A cabinet that cannot
schedule all critical tasks to meet their deadlines may cause
a timing error that can be catastrophic for time-critical tasks.
For instance, a miss of deadline in the control loop of the
autolanding system may cause a crash. Thus in order to
implement the IMA approach for avionics applications, we
require the hardware and software platforms to be able to:

1. allocate task modules of different applications into
several candidate processors in which tasks can be
scheduled according to their individual timing
constraints.

2. provide fault tolerance mechanisms such that
replicated task executions and checking operations can
be managed coherently.

The design guidance report for IMA [1] lists several
example architectures that can utilize modular components
and install fault tolerance mechanisms at various levels. As
the application modules are integrated in one or more
cabinets, we may assume that operation executives can
dispatch ready tasks based on either cyclic or priority-driven
schedules [14]. On the other hand, the fault tolerance
capability at system and cabinet levels can be established by
incorporating redundant task execution at remote cabinets or
at redundant processors. For either of these fault tolerant
arrangements, the executions should be done before a
checking process can verify the correctness of the results,
and the accumulated response times must be bounded within
the task’s deadlines. This response time requirement clearly
indicates that the scheduling of task replications and the
result checking process must be addressed altogether.

The issues of scheduling tasks in fault tolerant systems have
been investigated in previous research work. For instance,
Krishna and Shin devised a ghost allocation mechanism in
order to generate backup tasks [9]. The algorithm assumes
that there exists a scheduling algorithm that checks the
schedulability. The optimal allocation of replicated tasks
under rate monotonic scheduling was studied in [16]. In
addition, a dynamic scheduling and redundancy management
approach was proposed in the Spring system in which
replications can be created during system operation stages
[6]. On the other hand, there are approaches to replicate
identical subsystems. Then, similar to the cyclic scheduling
executives, task executions and checking process are
scheduled at specific instances [8, 10]. In these studies, the
main focus is the scheduling of primary and backup tasks.
In this paper, we look into two design issues: how to embed
a scheduling mechanism into a fault tolerant IMA system,
and how to implement fixed-priority scheduling algorithms
for task execution and result checking. Building fault
resilience at system level can be an adequate approach for
avionics systems. This is due to the fault containment

introduced by the physically distributed cabinets that are
often equipped with independent power and clock sources.
The task execution in each cabinet should meet a target time
which is shorter than the task deadline. Thus, the
computation results can be released to the following
checking process in order to reach interactive consistency.
In fact, as the task processing is modeled by a two-stage
pipeline, we need to find feasible priority assignments such
that the sum of processing delays at the stages is bounded to
the given timing constraint. Through an extendible timing
analysis, the system behavior under the fixed priority
scheduling algorithm can be predicted [18]. Most
importantly, the approach does not have to examine every
execution instance, thus makes it easy to accommodate any
changes of system load.

In the following chapters, we first present the system
architecture and describe the fault tolerance implementation
with a Redundancy Management System (RMS) unit. Also,
we show the scheduling model for such a system. In Section
3, we focus on the proposed algorithms to determine suitable
priority assignments for a two-stage fixed priority schedule.
The performance of the priority assignment algorithms is
evaluated in several experiments. The success ratios of the
algorithms are reported in Section 4. Finally, a short
conclusion follows in Section 5.

2. SYSTEM ARCHITECTURE AND SCHEDULING

MODEL

Avionics systems typically consist of a number of cabinets
that contains various modules to perform application
processing, data communication, and local I/O operations to
sensors and actuators. Each cabinet is made of multiple line
replaceable modules (LRMs) of different types, such as
CPU module, standard I/O and communication module,
special I/O module, power supply module, etc. With the
consideration of I/O requirement, wire length,
maintainability, and payload areas, cabinets are physically
distributed throughout the airplane. For avionics
applications, this set of cabinets can be viewed as a
distributed multi-computer system where application tasks
and their redundant copies can be initiated in multiple
cabinets and/or multiple modules. Thus, a failure of a
cabinet or a LRM can be tolerated and the system functions
continuously with a proper fault management scheme.

In the following, we will present a fault tolerance design
based on AlliedSignal’s MAFT architecture to provide
system level fault resilience in a cabinet-based avionics
system. Then, we show a scheduling model suitable for this
architecture. We assume that the cabinets are organized
according to the example architecture “C” of the IMA report
[1]. Under the architecture “C”, signal I/O is handled by
remote data concentrators, thus the processing resources are
physically independent of their I/O data. At each CPU
module, the software structure includes a single executive
and multiple application tasks. Application tasks are
replicated across the redundant cabinets and a consistency

checking operation ensures that correct results are always
available given a limited degree of failure.

Architecture Model
The architecture model of our fault tolerant IMA system is
shown in Figure 1. In addition to typical LRMs, each cabinet
is equipped with a Redundancy Management System (RMS)
module which provides system executive functions such as
synchronization and data voting. With this quad-redundant
architecture, the system can tolerate a single Byzantine-type
failure. The approach can let a system developer concentrate
on system application design and rely on the RMS module
to achieve fault tolerance and redundancy management at
the system level. The design of RMS is originated from the
MAFT (Multi-computer Architecture for Fault Tolerance)
system [8, 19] and can be implemented by a mix of
hardware and software components.

The primary function of the RMS modules is to provide a
consistency checking and voting mechanism. With a fully
connected broadcast network, RMS performs voting on data
values collected from replicated applications that are
allocated throughout the redundant cabinets. Such data
voting maintains consistency between the cabinets. In
addition, it assists in recovering from transient and
intermittent faults by replacing any corrupted application
data with the voted values. Moreover, RMS votes on its
internal state and error reports to maintain a global
consistent system view of the system health status.

In order to perform checking and voting operations, the
RMS modules of multiple cabinets must be synchronized
and a global clock must be maintained in this loosely
coupled distributed system. Each RMS has its own clock
and the system synchronization is achieved by exchanging
the local time among all RMS modules and correcting the
local clock according to the cardinality of clocks from all
healthy RMS units. A distributed agreement mechanism is
used to prevent any single point of failure and a fault-
tolerant voting algorithm is used to protect the global system
clock from failure by any type of faults including Byzantine

faults. This synchronization will be invoked periodically so
the system can limit the clock skew and detect a failing
cabinet immediately.

The ultimate goal of RMS is to prevent a system failure
during the duration of a critical mission as a result of some
error manifested by a fault on one node. After voting, RMS
can detect, contain and recover from errors. By comparing
the voted data values with the data submitted by the cabinet,
RMS detects errors and penalizes the faulty one. Since all
modules will be using the voted data values, errors can be
tolerated and the faulty module will get a chance to recover
by using the voted data. In addition, RMS supports dynamic
system configuration by excluding faulty modules and
readmission of recovered modules.

From an application’s point of view, a task is replicated and
statically allocated to CPU modules of different cabinets.
The replicated instances of a task are executed
synchronously, i.e. they must execute with the similar input
data and produce results before a scheduled voting instance.
When a result is generated by the task, it is passed from a
host CPU module to the RMS module. When the RMS
modules agree on the voting process on and completes the
voting operation, the result is verified and become available
for further computations or I/O operations. Thus, a set of
CPU modules of different cabinets can be regarded as a
logical processing node if they are running the same set of
tasks. The RMS modules maintain the consistency between
the replicated executions automatically as long as enough
execution and voting times are scheduled.

Scheduling Model

To build the scheduling algorithms in the proposed system,
we may investigate the task processing model depicted in
the following figure. The system consists of m processing
nodes and each node has a proper degree of redundancy.
Also included in the system is a voter (implemented by the
RMS units) which verifies computation results before they
are put out. We assume that there are ni tasks allocated to

Global Data Bus

RMS

CPU2
CPU1

Bus Interface

RMS

CPU2
CPU1

Bus Interface

RMS

CPU2
CPU1

Bus Interface

RMS

CPU2
CPU1

Bus Interface

Broadcast Network

Cabinet
 Bus

Figure 1. The fault-tolerant cabinets for IMA systems

processing node i, where 1≤i≤m. A task TSj
i will be invoked

periodically with a period Tj
i. For each invocation, it takes a

worst-case execution time (WCET) Cj
i at processing node i

and produces at most kj
i data items in the voting queue. The

voting process of these items must be completed before the
task’s deadline Dj

i, where Cj
i≤ Dj

i ≤Tj
i.

To model the operations in the RMS, we assume that voting
cycles are initiated every VT seconds as shown in Figure 3.
During each voting cycle, the voter takes the ready items
from the voting queue and makes the verified data available
at the end of cycle. Given b as the base overhead to perform
the synchronization and to initiate voting actions, and τ as
the voting time for each data item, the voter can verify at
most (VT−b)/τ data items in one cycle. The remaining
items in the queue and the newly arrived items will be voted
in the subsequent cycles. Note that the voting queue is
divided into two parts: an on-time arrival queue and an early
arrival queue, where the data items in the on-time arrival
queue has a higher priority to join the voting process than
the data items in the early arrival queue. For each task TSj

i,
let VRTj

i be the target voting ready time that its output data
items enter the voting queue. This target voting ready time
can be viewed as the execution deadline at the processing
node and Dj

i - VRTj
i becomes the deadline of the voting

processing for task TSj. If the task is completed earlier than
VRTj

i, the data items can wait in the early arrival queue. On
the other hand, if its data items have not been voted before
the target voting ready time, the items are waiting in the on-
time arrival queue. With this two-queue scheme, we can
avoid the impact of arrival jitters1 to the scheduling process
at the voter [13]. The worst-case arrival sequence to the
voter occurs when all tasks release their data items at their
target voting ready times, thus forming periodic requests to
the voter.

In this paper, we explore the feasibility of using fixed
priority preemptive scheduling [13] at the processing nodes
and the voter. With static priority assignments at the
processing nodes and at the voter, the task dispatchers can
be easily implemented and the choice of data items to be
voted in each cycle can be readily determined. Also, we can

1 Note that an arrival jitter caused by the variation of execution time can
make the voting arrival process irregular.

compute the worst-case response times for each task at the
processing nodes and at the voter in order to check the
schedulability. Given the execution priority pi(j) for each
task TSj

i, the worst-case response time RSj
i at processing

node i can be computed by the following recursive equation
[18]:

RS C
RS

T
Cj

i
j
i j

i

l
i

l hp j
l
i

i
= +

∈

∑
()

where hpi(j) is the set of tasks of higher priority than task
TSj

i at processing node i. Similarly, with the voting priority
pv(i,j) for task TSj

i, the maximum voting delay VDj
i can be

calculated as the sum of two parts: the initial waiting for the
beginning of a voting cycle and the voting response time,
VRSj

i:

VD VT
VRS

VT
VTj

i j
i

= +

 VRS k
VRS

VT
b

VRS VT VT

T
kj

i
j
i j

i
j
i

l
i

l hp i j
l
i

v
= +

+

∈
∑τ τ

/

(,)

where hpv(i,j) is the set of tasks of higher voting priority
than task TSj

i. The equation for VRSj
i assumes that the data

items from each task TSj
i
 arrive periodically with a period

Tj
i. This case occurs when all task computations are done at

the target voting ready times.

3. SCHEDULING ALGORITHMS

As the task processing is decomposed into two stages at the
processing nodes and the voter, a scheduling algorithm must
provide the priority assignments pi(j) and pv(i,j). In addition,
it must supply the target voting ready time VRTj

i to begin the
voting process. A feasible schedule is a set of (pi(j), pv(i,j),
VRTj

i) for all tasks TSj
i under which RSj

i + VDj
i ≤ Dj

i 2.
Among all static priority schemes, we adopt a deadline-
monotonic approach at each stage. Note that under a
deadline-monotonic priority assignment, task priorities are
assigned inversely proportional to the length of the deadlines

2 An unnecessary stringent definition of schedulability is to have RSj

i ≤
RLj

i and VDj
i ≤ Dj

i - RLj
i.

b

VT

deadline Dj
i

Voting ready time VRTj
i

Task TSj
i

arrives
Data items
 are ready
 (join early
arrival queue)

(join on-time
arrivel queue)

data items are
 verified

voting cycle

 voting
overhead

Figure 3. The timing diagram of voting operations

voter

processing nodes

tasks
voting
 queue

Figure 2 Scheduling model for task processing and voting

and such an assignment is an optimal station priority scheme
[3,12]. In fact, with deadline-monotonic approach, we only
need to determine one of the three parameters, pi(j), pv(i,j),
and RLj

i, and solve the other two based on their dependency.
Thus, if VRTj

i is known, we can use VRTj
i and Dj

i -VRTj
i as

the deadlines at the processing node and the voter to assign
pi(j) and pv(i,j) according to a deadline monotonic approach.
Similarly, if pi(j) is known, we can compute the response
time RSj

i and assign it to VRTj
i. Then, pv(i,j) can be

determined.

The scheduling approach of determining VRTj

i is similar to
solving a 2-stage deadline distribution problem in which Dj

i
is partitioned into two parts in order to meet the end-to-end
deadline [7]. For a general deadline distribution problem,
several heuristic approaches have been proposed for
distributed real-time systems and dependent task sets. For
instance, the deadline of a task can be evenly partitioned and
used as the deadlines of its subtasks [4]. Search algorithms
have also been applied for the problems, e.g., an iterative
deadline assignment approach to improve the schedulability
[17]. Recently, Di Natale and Stankovic suggested a slicing
technique, which allocates slack time3 to the subtasks in the
critical path of a task graph according to normalized laxity
and pure laxity metrics [15]. Under the normalized laxity
metric, slack time is distributed in proportional to subtask
execution times, whereas, under the pure laxity metric, each
subtask receives an equal share of slack time.

Consider the computation and voting pipeline in our system.
The voting processing time is expected to be much smaller
than the task execution time at a processing node when the
system has only one voter shared by all tasks. The pure
laxity metric cannot be effective since, with an equal share
of slack time, the computation deadlines become tight and
the scheduling at each processing node can be feasible only
if the processor utilization is low. On the other hand, the
approach with normalized laxity metric assigns a bigger
slice of slack time to the computation stage than to the
voting stage. This can be a reasonable approach since the
scheduling of short voting processes is easier than the
scheduling of long task executions. The approach uses

 VRT C
D C VT k VT b VT

Cj
i

j
i j

i
j
i

j
i

j
i= +

− − − −
(

/ ()
)1

τ

to set the deadline of task computation. Thus the priorities at
the processing nodes and the voter, pi(j) and pv(i,j), can be
assigned based on deadline-monotonic assignment. The
schedulability can then be determined once we compute RSj

i
and VDj

i, and check that RSj
i + VDj

i ≤ Dj
i.

 Instead of partitioning the deadlines, an alternate scheduling
approach is to determine pi(j) and pv(i,j) directly. Let Φ and
Θ be optimal priority assignments at the processing nodes
and the voter. Denote RSj

i(Φ) and VDj
i(Θ) as the task

response times at processing nodes and the voting delays at
the voter for task TSj

i under the priority assignments Φ and

3 A task’s slack time is defined as the difference between its deadline
period and its total execution time.

Θ, respectively. Given that deadline-monotonic is an optimal
static schedule [3,12], we can easily observe that Φ and Θ
must be deadline-monotonic priority assignments based on
the deadlines {Dj

i - VDj
i(Θ)} and {Dj

i - RSj
i(Φ)},

respectively. This dependence suggests an iterative approach
which begins with a priority assignment at the processing
nodes Φ1. After RSj

i(Φ1) is computed, a deadline-monotonic
priority assignment for the voter Θ1 can be obtained. Then, a
deadline-monotonic priority assignment for the processing
nodes Φ2 can be defined based on VDj

i(Θ1). The iteration
can continue until either the priority assignments are feasible
or there is no more improvement in schedulability. This
scheduling algorithm, called DMA2, is given in the Figure
4.

Algorithm DMA2:

VDj
i = τkj

i / (VT - b) VT;
 old_tradiness=0; no_tries=0;
 repeat
 for each processing node i {
 for each task TSj

i (1≤j≤ni) {
assign pi(j) inversely proportional to

 Dj
i - VDj

i;
 }
 compute RSj

i for each task TSj
i (1≤j≤ni);

 }
 for each task TSj

i (1"j"ni and 1"i"m) {

 assign pv(i,j) inversely proportional to
Dj

i - RSj
i ;

 }
 compute VDj

i for each task TSj
i

(1≤j≤ni and 1≤i≤m);
 tardiness = max { RSj

i + VDj
i - Dj

i };
 if (tardiness >= old_tardiness)
 no_tries++; old_tardines s= tardiness;

 until { tardiness < 0, # schedulable
 or no_trial = a maximal threshold }

too many unsuccessful trials

Figure 4. The DMA2 algorithm for priority assignments

Note that, in DMA2 algorithm, the computation starts with a
zero voting delay initially. This initial setting leads to a
deadline-monotonic assignment of pi(j) almost similar to the
one based on the deadline Dj

i. In fact, as the voting delay is
much smaller than the task computation time, this
initialization selects an assignment that focuses on the task
delay caused in the processing nodes. Also, DMA2
algorithm search for the priority assignments that are
mutually deadline-monotonic. It may not be able to find
such a pair of assignment or fail to find a feasible one. In
these cases, the algorithm will terminate after the number of
trials reaches a threshold.

 4. SCHEDULING EVALUATION AND EXPERIMENTS
We performed several experiments to determine the
performance of the slicing approach based on the
normalized laxity metric and DMA2 priority assignment
algorithm. Since the performance of the scheduling
algorithms is likely affected by various parameters, we
intend to set the values of the parameters in various ranges.
The experimental environment has 4 processing nodes and
each node has 6 tasks. Thus, data items generated by a total
of 24 tasks will be voted. For each experiment, we collect
the success ratios of the scheduling algorithms among 5000
random cases.

To define various parameters in the experiments, we first
assume the voting overhead per each voting cycle, i.e., b, is
a constant and is equal to one unit of time. The voting cycle
is set to a period of 20, except the experiment that the period
is a control parameter. The task periods are distributed
uniformly in the range of [50, 500]. Then, for a given
utilization at each processing node, we assign the task
execution times such that the fraction of processor time
spent in executing each task is randomly distributed in the
range of [5%, 25%]. To determine voting processing times,
we first assign the voting processing time for task TSj

i to be
uniformly distributed between [15%, 45%] of the task’s
execution time at the processing node. Then, all voting
processing times are adjusted proportionally such that the
overall utilization of the voter (including the voting
initialization overhead) is in the range of 0.45 to 0.90.

Our first experiment is to examine the performance of
slicing technique and DMA2 algorithm under different
utilization. As shown in Figure 5, two sets of curves are
plotted in which the utilization of each processing node is
set to 0.45 and 0.65, respectively. The cases with a
utilization of 0.65 probably have the highest utilization we
need to consider since it is slightly less than the theoretical
utilization bound (i.e. ≅ ln 2) of rate monotonic algorithm in
a single server [13]. The experiments assume that the task
deadlines are equal to their periods, and the voting period is
20. The utilization at the voter varies from 0.45 to 0.90. The
figure reveals several interesting properties of the two
scheduling algorithms. When the utilization at the voter is
less than 50%, both algorithms can reach a success ratio of
100% even if the utilization of each processing node reaches
0.65. Caused by the small voting processing times, the voter
is likely to complete the voting process for any output data
in one cycle and impose at most two cycle delay in verifying
the correctness of output data. This delay doesn’t make
many disturbances in selecting a good scheduling at the
processing nodes. However, when the utilization of the voter
increases, the success ratios of the algorithms begin to
diverge. A significant difference can be observed when the
utilization of the voter is 0.75 and the utilization of the
processing nodes is 0.65. The DMA2 algorithm has a
success ratio of 0.98 whereas the slicing approach can make
only 2% of the cases feasible

Figure 5 also shows substantial differences in the change of
success ratios for each algorithm when the utilization of the

processing node varies from 0.45 to 0.65. With a voter
utilization larger than 0.55, the success ratio under the
slicing approach drops drastically with an increase of
processor utilization. It suggests the setting of voting ready
times does not weigh the increased delays at both the
processing node and the voter. Conversely, DMA2
algorithm can adjust the priorities properly, thus avoid the
adverse effort caused by the increase of utilization at the
processing nodes. This scheduling implication can be
explained in a simple example. Consider two tasks with
slightly different deadlines. If their ratios of the execution
time at the processing node to that at the voter are similar,
the deadlines are distributed to each stage with the same
proportion. Then, the task with a shorter deadline will be
assigned a higher priority at both the processing node and
the voter. It can be completed much earlier in the expense of
the task with a longer deadline that may miss its deadline.
On the other hand, under DMA2 algorithm, the task
receiving a higher priority at the processing node is likely
assigned with a lower priority at the voter. Thus, the total
delays of these two tasks are limited due to the shuffle of
priorities, and can meet the deadlines as long as the
utilization is not high.

To reassess the priority shuffling under DMA2 algorithm,
we conduct the second experiment that compares the success
ratios of two cases. The utilization at the processing nodes
and the voting cycle are fixed at 0.45 and 20, respectively.
In the first case, we set task deadlines randomly in the range
of 60% to 100% of the task periods, whereas the second
case assumes task deadlines are identical to the task periods.
As the deadline shrinks, we expect that the tasks with long
response time and voting delay will miss their deadlines.
Thus, by examining the success ratios, we can detect the
existence of long task delays. The results of the experiment

0

0.2

0.4

0.6

0.8

1

0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9

voter utilization

su
cc

es
s

ra
tio

0.45, DMA2 0.45, slicing
0.65, DMA2 0.65, slicing

Figure 5. The success ratios of slicing and DMA2

algorithms measured in Experiment 1

are shown in Figure 6. The reduction of deadlines leads to a
bigger decrease of success ratio for the slicing approach than
for DMA2 algorithm. This difference implies that the slicing
approach may result in a delay distribution that has a long
percentile. Also, the effect of priority shuffling under DMA2
algorithm can eliminate the long percentile and allow
individual tasks to meet their deadlines.

As the first two experiments assume that all processing
nodes have the similar utilization, we look into the cases that
the loads in processing nodes are not balanced in our third
experiment. We set the average utilization of processing
node to 0.55. Under the balanced case, each node has an
equal utilization, whereas, in the unbalanced case, the
utilization is set to 0.45 and 0.65 for two pairs of nodes. The
success ratios with the slicing approach and DMA2
algorithm are shown in Figure 7. The success ratios under
DMA2 algorithm are almost identical in both balanced and
unbalanced cases. Apparently, the priority assignment at the
voter adapts to the utilization of each processing node by
comparing Dj

i - RSj
i. Thus, the task which experiences a long

computation delay in a heavily loaded processing node can
still meet its deadline by holding a high priority at the voter.
On the contrary, the slicing approach fails to make any
compensation to the variation of node utilization as it does
not check the loading situation at all in the determination of
the target voting ready times.

Our next experiment is to investigate the effect of various
periods of voting cycles. To make the synchronization
between RMS units easy, the voting is initiated periodically
by a hardware clock. This results in a periodic voting server
and an initiation overhead per each cycle. Consider the
impact of voting cycle times to the schedulability. We can
conjecture that a short period may increase the utilization of

the voter, and a long period may bring up additional waiting
time to the voting requests. These suppositions are
illustrated in Figure 8 that plots the success ratios with the
periods vary from 5 to 50. Note that, in all cases, the
utilization due to voting process (excluding the
synchronization overhead) is set to 0.55. By adding the
synchronization overhead per cycle, the net utilization at the
voter varies from 0.75 to 0.57. In addition, the figure also
confirms the stability of the DMA2 algorithm against any
change of processing load and voting cycle.

Comparing the cases of experiments 1 and 4, we may
observe that feasible schedules can be found easily when the
voting period is short. In experiment 1, we have a case that
the utilization of the voter is 0.75 and the voting period
equals to 20. With the same utilization, we have a case in
experiment 4 in which the voting period equals to 5. The
resulting success ratios are quite different, i.e., much higher
for the cases in the experiment 4 than that in the experiment
1. As our voter begins a voting process periodically, the
voting delay increases linearly as we prolong the voting
period. A good design of the voter should maintain a
utilization less that 65% while choosing a small voting
period.

Our last experiment is to investigate the effect of task
periods to the schedulability of these two algorithms. In the
previous experiments, the task periods are uniformly
distributed between 50 to 500. Thus, the maximal period is
likely several times more than the minimal period. If we
change the range in which the task periods are distributed, it
may get difficult to find a feasible schedule as that the most
difficult scheduling condition occurs when all periods are
less than the twice of the minimal period [13]. We assume
that the mean of task periods is 275. The range is set to 275-
task_period_range to 275+task_period_range, where

0

0.2

0.4

0.6

0.8

1

0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9

voter utilization

su
cc

es
s

ra
tio

D=[0.6,1]T, DMA2 D=[0.6,1]T, slicing
D=T, DMA2 D=T, slicing

Figure 6. The success ratios of slicing and DMA2

 algorithms measured in Experiment 2

0

0.2

0.4

0.6

0.8

1

0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9
voter utilization

su
cc

es
s

ra
tio

balanced, DMA2 balanced, slicing
unbalanced, DMA2 unbalanced, slicing

Figure 7. The success ratios of slicing and DMA2

 algorithms measured in Experiment 3

task_period_range varies from 90 to 225. The experiment
also assumes that the utilization of the processing node is
equal to 0.45. Two sets of curves are plotted in Figure 9 to
represent the cases that the voter utilization is equal to 0.70
and 0.75, respectively. They illustrate the property that the
scheduling algorithms result in different success ratios as the
range of task periods changes. For instance, with a voter
utilization of 0.75, the success ratios of various period
distributions may drop more than 50% and 40% under the
slicing approach and DMA2 algorithm, respectively.

The results from the 5 experiments clearly indicate that
DMA2 algorithm outperforms the slicing approach in
determining feasible schedules, and is robust under various
conditions. In fact, the experiments show that feasible
schedules can be found even if the utilization at the
processing node and the voter closes to the theoretical
bound of rate-monotonic algorithm. This finding is
interesting since, in order to make a schedule feasible, we
expect there is a need to limit the utilization at the two
processing stages such that the sum of the experienced
delays at both processing stages is less than the task
deadline. However, when DMA2 algorithm is able to shuffle
the priorities at the two stages, no task needs to undergo
long delays at both stages and feasible schedules can be
obtained when the utilization is not high.

5. CONCLUSION
In this paper, we have proposed an effective scheduling
mechanism that can be incorporated in fault-tolerant IMA
systems. The emphases are placed in the issues of designing
fault resilience at system level and scheduling consistency
checking operations along with task execution. To find
feasible solutions for fixed priority scheduling, we have
examines two priority assignment schemes and evaluated

their corresponding performance through a set of
experiments. In addition, the measured data indicates a
suitable design space in terms of the utilization at each
processing node and the RMS unit. This result will be
extremely useful in preparing system requirements in the
early stage of the design process.

To continue the research work in the integrated mechanisms
for scheduling and fault tolerance, we plan to investigate the
scheduling algorithms in the APEX (application/executive
interface) environment. The APEX environment calls for a
partitioning approach to set up fault containment [2]. The
temporal partition limits the execution of a task set to
specific partition windows of a major time frame.
Apparently, this deterministic approach favors a cyclic task
scheduling which in turn results in a deterministic checking
process. In this context, we need to look into efficient
approaches of sharing the checking mechanisms among
partitions, and to schedule partitions, the task set within each
partition, and consistency checking operations.

REFERENCES

[1] “Design guidance for integrated modular avionics,”
ARINC Report 651, Aeronautical Radio Inc., Annapolis,
Maryland, Oct. 1991.

[2] “Avionics application software standard interface,”
ARINC Specification 653, Aeronautical Radio Inc.,
Annapolis, Maryland, Jan. 1997.

[3] N. Audsley, A. Burns, M. Richardson, and A. Wellings,
“Hard real-time scheduling: the deadline-monotonic
approach,” Eighth IEEE Workshop on Real-time
Operating Systems and Software, 1991, pp. 133-137.

0

0.2

0.4

0.6

0.8

1

90 105 120 135 150 165 180 195 210 225

task_period_range

su
cc

es
s

ra
tio

0.70, DMA2 0.70, slicing
0.75, DMA2 0.75, slicing

Figure 9. The success ratios of slicing and DMA2

 algorithms measured in Experiment 5

0

0.2

0.4

0.6

0.8

1

5 10 15 20 25 30 35 40 45 50

voting cycle

su
cc

es
s

ra
tio

0.45, DMA2 0.45, slicing
0.65, DMA2 0.65, slicing

Figure 8. The success ratios of slicing and DMA2

 algorithms measured in Experiment 4

[4] R. Bettati and J. W.-S. Liu, “End-to-end scheduling to
meet deadlines in distributed systems,” Proc. Of the
IEEE Int’l Conf. on Distributed Computing Systems,
1992, pp. 452-459.

[5] R. P. G. Collinson, Introduction to Avionics, Chapman
& Hall Publisher, 1996.

[6] O. Gonzalez, H. Shrikumar, K. Ramamritham, and J. A.
 Stankovic, “Adaptive fault tolerance and graceful
degradation under dynamic hard real-time scheduling,”
To appear in Proc. IEEE Real-Time Systems
Symposium, Dec. 1997.

[7] J. Jonsson and K. Shin, “Deadline assignment in
distributed hard real-time systems with relaxed locality
constraints,” Proc. Of the IEEE Int’l Conf. on
Distributed Computing Systems, 1997, pp. 432-440.

[8] R. Kieckhafer, C. Walter, A. Finn, and P. Thambidurai,
“The MAFT architecture for distributed fault tolerance,”
IEEE Trans. on Computers, Vol. 37, No. 4, 1988,
pp.398-405.

[9] C. M. Krishna and G. Shin, “On scheduling tasks with a
quick recovery from failure,” IEEE Trans. on
Computers, Vol. 35, No. 5, 1986, pp.448-455.

[10] J. H. Lala and R. E. Harper, “Architectural principles for
safety-critical real-time applications,” Proceedings of the
IEEE, Vol. 82, No. 1, Jan. 1994, pp. 25-40.

[11] L. Lamport, R. Shostak, and M. Pease, “The Byzantine
Generals Algorithm,” ACM Trans. `Programming
Languages and Systems, No. 4, 1982, pp. 382-401.

[12] J. Leung and J. Whitehead, “On the complexity of fixed-
priority scheduling of periodic real-time tasks,”
Performance Evaluation, Vol. 2, No. 4, 1982, pp. 237-
250.

[13] C. L. Liu and J. W. Layland, “Scheduling algorithms for
multiprogramming in hard real time environment,” J.
Assoc. Comput. Mach., Vol. 20, No. 1, 1973, pp.46-61.

[14] C. D. Locke, “Software architecture for hard real-time
applications: Cyclic executives vs. Fixed priority
executives,” The Journal of Real-Time Systems, Vol. 4,
No. 1, 1992, pp. 37-53.

[15] M. Di Natale and J. Stankovic, “Dynamic end-to-end
guarantees in distributed real-time systems,” Proc. IEEE
Real-Time Systems Symposium, Dec. 1994, pp. 216-227.

[16] Y. Oh and S. Son, “Enhancing fault-tolerance in rate-
monotonic scheduling,” Real-time Systems, Vol. 7,
1994, pp. 315-329.

[17] M Saksena and S. Hong, “An engineering approach to
decomposing end-to-end delays on a distributed real-
time system,” Proc. of the IEEE Workshop on Parallel
and Distributed Real-time Systems, 1996, pp. 244-251.

[18] K. Tindell, A. Burns, and A. Wellings, “An extendible
approach for analyzing fixed priority hard real-time
tasks,” Real-time Systems, Vol. 6, 1994, pp. 133-151.

[19] C. J. Walter, “Evaluation and design of an ultra-reliable
distributed architecture for fault tolerance,” IEEE Trans.
on Reliability, Vol. 39, No. 4, 1990, pp. 492-499.

Yann-Hang Lee is an associate professor with the
Computer and Information Science and Engineering
Department, University of Florida. His research interests
include real-time systems, fault-tolerant computing,
communication networks, computer architecture, and
performance evaluation. He co-edited two special issues in
Real-Time Systems in IEEE Computer (May 1992) and
IEEE Proceedings (Jan. 1994), and co-chaired the Real-
Time system Symposium, 1996. He received his Ph.D.
degree in Computer, Information, and Control Engineering
from the University of Michigan, Ann Arbor, MI, in 1984.

Mohamed F. Younis received the B.S. degree in computer
science and the M.S. in engineering mathematics from
Alexandria University in Egypt in 1987 and 1992,
respectively. In 1996, he received his Ph.D. in computer
science from New Jersey Institute of Technology. Dr. Younis
is currently a research scientist with the AlliedSingal
Advanced Systems Technology Group, Columbia MD,
where he is leading multiple projects for building integrated
fault tolerant avionics. His technical interests are in fault
tolerant computing, system integration, real-time distributed
systems and compile-time analysis.

Jeffrey Zhou, Sr. Manager of AlliedSignal Advanced
Systems Technology Group, received his B.S. degree in
1980 from Shanghai Science and Technology University,
M.E. degree in 1983 from Shanghai Jiao-Tong University,
and Ph.D degree in 1989 from the University of Florida.
His major is computer engineering specialized in real-time
and fault-tolerant computing systems, complex computer-
based systems and avionics systems. He joined AlliedSignal
Aerospace in 1990 where he was involved in the
development of the real-time engine simulator FAST. He
also participated in the Shuttle Main Engine Control and
Health Monitoring System (EC&HMS) program funded by
NASA and was a key contributor for the development of the
Real-Time Executive Module (RTEM), a real-time and fault-
tolerant operating system for the EC&HMS program. Since
1996, he has been leading an AlliedSignal team in
developing the Redundancy Management System which is a
key component for the Vehicle and Mission Computer
currently under the development for NASA’s X-33 space
launch vehicle. Dr. Zhou has served different committees
and has numerous publications in his research field.

