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Abstract—  In this paper, we present an effective scheduling 
approach for a fault-tolerant IMA (Integrated Modular 
Avionics)-based system. The system architecture consists of 
connected cabinets that are made of multiple line 
replaceable modules, such as core processor and I/O 
modules. To provide fault tolerance, the system is 
incorporated with fault resilient capability and executes 
replicated tasks on different cabinets. Thus application 
output will be ready after a task processing stage and a 
consistency checking stage. To schedule the two-stage 
operations at task processing nodes and at the voter, we 
adopt fixed priority executives and investigate two priority 
assignment algorithms. Several experiments have been 
conducted to measure the success ratios of finding feasible 
schedules under various conditions. The evaluation results 
reveal a proper design space in which feasible schedules can 
be found easily. 
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 1. INTRODUCTION 
 
Computer controllers are the core units used in real-time 
embedded systems.  Such controllers or embedded 
processors may deviate from general-purpose computer 
processors since they are designed for some special 
applications and have substantially different performance 
and implementation constraints. Various high-end 32-bit 
processors have found a fast expansion in avionics, 
telecommunication, military, aerospace, manufacture plants, 
and medical monitoring applications where computation 
power and safe operation are rigidly required. These systems 
 not only must be fault tolerant, but also must meet task 

execution deadlines as their applications are often mission- 
and safety-critical. 
 
Consider an example of the autolanding systems of wide-
bodied jumbo passage jets [10] which control critical 
functions of aircraft's motion in each axis, i.e., roll, pitch, 
and yaw. They are required to operate in all visibility 
condition, including zero horizontal visibility and zero 
ceiling, and become truly critical in a 15 second interval just 
before touchdown. To certify the systems, a design must 
demonstrate a probability failure less than 10-9 during this 
critical interval. This high reliability requirement implies 
that the systems must tolerate most cases of component 
failures and must guarantee 100%  timing correctness. A 
cost-effective design to reach this strict requirement 
becomes extremely important considering that a failure can 
be catastrophic and that the avionics systems account for 
some 30% of the total cost of a new airplane [5]. 
 
One approach to reduce the design and maintenance cost of 
avionics system is to take a modular approach. Traditional 
avionics systems are implemented with autonomous and 
federated architectures [1]. They consist of a number of 
interconnected but functionally independent (or loosely 
coupled) subsystems. In order to improve performance, 
flexibility, and availability of avionics systems, it is 
necessary to avoid possible duplication of functions and to 
allow resource sharing of system components and standard 
modules. One significant approach for cost-effective 
avionics systems is based on the integrated modular avionics 
(IMA) approach in which hardware and software systems 
are decomposed into modules and then integrated for 
various avionics applications [1]. The IMA approach 
suggests an architecture that consists of a set of 
interconnected cabinets. Each cabinet, containing a standard 
backplane interconnection and multiple line replaceable 
modules (LRM), forms a common platform to house the 
execution of software modules. With standard interfaces, 
hardware and software modules become interchangeable and 
can be reused. They can also be upgraded using new 
technology to add new functions. Thus, it is expected that 
the life-cycle cost of avionics systems can be reduced, and 
the processes of system development, and maintenance can 
be simplified. 



   

 
As we gain the advantages of IMA approaches, it is 
expected that the whole system as well as the interactions 
between modules must be considered in the design and 
integration process. Modules must be put together to 
collectively perform application functions with a high 
reliability. In addition, the performance requirements must 
include a guarantee of responsiveness. A cabinet that cannot 
schedule all critical  tasks to meet their deadlines may cause 
a timing error that can be catastrophic for time-critical tasks. 
For instance, a miss of deadline in the control loop of the 
autolanding system may cause a crash. Thus in order to 
implement the IMA approach for avionics applications, we 
require the hardware and software platforms to be able to: 

1. allocate task modules of different applications into 
several candidate processors in which tasks can be 
scheduled according to their individual timing 
constraints. 

2. provide fault tolerance mechanisms such that 
replicated task executions and checking operations can 
be managed coherently. 

 
The design guidance report for IMA [1] lists several 
example architectures that can utilize modular components 
and install fault tolerance mechanisms at various levels. As 
the application modules are integrated in one or more 
cabinets, we may assume that operation executives can 
dispatch ready tasks based on either cyclic or priority-driven 
schedules [14]. On the other hand, the fault tolerance 
capability at system and cabinet levels can be established by 
incorporating redundant task execution at remote cabinets or 
at redundant processors. For either of these fault tolerant 
arrangements, the executions should be done before a 
checking process can verify the correctness of the results, 
and the accumulated response times must be bounded within 
the task’s deadlines. This response time requirement clearly 
indicates that the scheduling of task replications and the 
result checking process must be addressed altogether. 
 
The issues of scheduling tasks in fault tolerant systems have 
been investigated in previous research work. For instance, 
Krishna and Shin devised a ghost allocation mechanism in 
order to generate backup tasks [9]. The algorithm assumes 
that there exists a scheduling algorithm that checks the 
schedulability. The optimal allocation of replicated tasks 
under rate monotonic scheduling was studied in [16]. In 
addition, a dynamic scheduling and redundancy management 
approach was proposed in the Spring system in which 
replications can be created during system operation stages 
[6]. On the other hand, there are approaches to replicate 
identical subsystems. Then, similar to the cyclic scheduling 
executives, task executions and checking process are 
scheduled at specific instances [8, 10]. In these studies, the 
main focus is the scheduling of primary and backup tasks. 
In this paper, we look into two design issues: how to embed 
a scheduling mechanism into a fault tolerant IMA system, 
and how to implement fixed-priority scheduling algorithms 
for task execution and result checking. Building fault 
resilience at system level can be an adequate approach for 
avionics systems. This is due to the fault containment 

introduced by the physically distributed cabinets that are 
often equipped with independent power and clock sources.  
The task execution in each cabinet should meet a target time 
which is shorter than the task deadline. Thus, the 
computation results can be released to the following 
checking process in order to reach interactive consistency. 
In fact, as the task processing is modeled by a two-stage 
pipeline, we need to find feasible priority assignments such 
that the sum of processing delays at the stages is bounded to 
the given timing constraint. Through an extendible timing 
analysis, the system behavior under the fixed priority 
scheduling algorithm can be predicted [18]. Most 
importantly, the approach does not have to examine every 
execution instance, thus makes it easy to accommodate any 
changes of system load.  
 
In the following chapters, we first present the system 
architecture and describe the fault tolerance implementation 
with a Redundancy Management System (RMS) unit. Also, 
we show the scheduling model for such a system.  In Section 
3, we focus on the proposed algorithms to determine suitable 
priority assignments for a two-stage fixed priority schedule. 
The performance of the priority assignment algorithms is 
evaluated in several experiments. The success ratios of the 
algorithms are reported in Section 4. Finally, a short 
conclusion follows in Section 5. 
 
 
2.  SYSTEM ARCHITECTURE AND SCHEDULING 

MODEL 
 
Avionics systems typically consist of a number of cabinets 
that contains various modules to perform application 
processing, data communication, and local I/O operations to 
sensors and actuators. Each cabinet is made of multiple line 
replaceable modules (LRMs) of different types, such as 
CPU module, standard I/O and communication module, 
special I/O module, power supply module, etc. With the 
consideration of I/O requirement, wire length, 
maintainability, and payload areas, cabinets are physically 
distributed throughout the airplane. For avionics 
applications, this set of cabinets can be viewed as a 
distributed multi-computer system where application tasks 
and their redundant copies can be initiated in multiple 
cabinets and/or multiple modules. Thus, a failure of a 
cabinet or a LRM can be tolerated and the system functions 
continuously with a proper fault management scheme.  
 
In the following, we will present a fault tolerance design 
based on AlliedSignal’s MAFT architecture to provide 
system level fault resilience in a cabinet-based avionics 
system. Then, we show a scheduling model suitable for this 
architecture. We assume that the cabinets are organized 
according to the example architecture “C” of the IMA report 
[1]. Under the architecture “C”, signal I/O is handled by 
remote data concentrators, thus the processing resources are 
physically independent of their I/O data. At each CPU 
module, the software structure includes a single executive 
and multiple application tasks. Application tasks are 
replicated across the redundant cabinets and a consistency 



   

checking operation ensures that correct results are always 
available given a limited degree of failure.  
  
Architecture Model 
The architecture model of our fault tolerant IMA system is 
shown in Figure 1. In addition to typical LRMs, each cabinet 
is equipped with a Redundancy Management System (RMS) 
module which provides system executive functions such as 
synchronization and data voting. With this quad-redundant 
architecture, the system can tolerate a single Byzantine-type 
failure. The approach can let a system developer concentrate 
on system application design and rely on the RMS module 
to achieve fault tolerance and redundancy management at 
the system level. The design of RMS is originated from the 
MAFT (Multi-computer Architecture for Fault Tolerance) 
system [8, 19] and can be implemented by a mix of 
hardware and software components.  
 
The primary function of the RMS modules is to provide a 
consistency checking and voting mechanism. With a fully 
connected broadcast network, RMS performs voting on data 
values collected from replicated applications that are 
allocated throughout the redundant cabinets. Such data 
voting maintains consistency between the cabinets. In 
addition, it assists in recovering from transient and 
intermittent faults by replacing any corrupted application 
data with the voted values. Moreover, RMS votes on its 
internal state and error reports to maintain a global 
consistent system view of the system health status. 
 
In order to perform checking and voting operations, the 
RMS modules of multiple cabinets must be synchronized 
and a global clock must be maintained in this loosely 
coupled distributed system. Each RMS has its own clock 
and the system synchronization is achieved by exchanging 
the local time among all RMS modules and correcting the 
local clock according to the cardinality of clocks from all 
healthy RMS units. A distributed agreement mechanism is 
used to prevent any single point of failure and a fault-
tolerant voting algorithm is used to protect the global system 
clock from failure by any type of faults including Byzantine 

faults. This synchronization will be invoked periodically so 
the system can limit the clock skew and detect a failing 
cabinet immediately. 

 
The ultimate goal of RMS is to prevent a system failure 
during the duration of a critical mission as a result of some 
error manifested by a fault on one node. After voting, RMS 
can detect, contain and recover from errors. By comparing 
the voted data values with the data submitted by the cabinet, 
RMS detects errors and penalizes the faulty one. Since all 
modules will be using the voted data values, errors can be 
tolerated and the faulty module will get a chance to recover 
by using the voted data. In addition, RMS supports dynamic 
system configuration by excluding faulty modules and 
readmission of recovered modules. 
 
From an application’s point of view, a task is replicated and 
statically allocated to CPU modules of different cabinets. 
The replicated instances of a task are executed 
synchronously, i.e. they must execute with the similar input 
data and produce results before a scheduled voting instance. 
When a result is generated by the task, it is passed from a 
host CPU module to the RMS module. When the RMS 
modules agree on the voting process on and completes the 
voting operation, the result is verified and become available 
for further computations or I/O operations. Thus, a set of 
CPU modules of different cabinets can be regarded as a 
logical processing node if they are running the same set of 
tasks. The RMS modules maintain the consistency between 
the replicated executions automatically as long as enough 
execution and voting times are scheduled. 
 
 
Scheduling Model 

To build the scheduling algorithms in the proposed system, 
we may investigate the task processing model depicted in 
the following figure. The system consists of m processing 
nodes and each node has a proper degree of redundancy. 
Also included in the system is a voter (implemented by the 
RMS units) which verifies computation results before they 
are put out. We assume that there are ni tasks allocated to 
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Figure 1. The fault-tolerant cabinets for IMA systems 



   

processing node i, where 1≤i≤m. A task TSj
i will be invoked 

periodically with a period Tj
i. For each invocation, it takes a 

worst-case execution time (WCET) Cj
i at processing node i 

and produces at most kj
i data items in the voting queue. The 

voting process of these items must be completed before the 
task’s deadline Dj

i, where Cj
i≤ Dj

i ≤Tj
i. 

 

 
To model the operations in the RMS, we assume that voting 
cycles are initiated every VT seconds as shown in Figure 3. 
During each voting cycle, the voter takes the ready items 
from the voting queue and makes the verified data available 
at the end of cycle. Given b as the base overhead to perform 
the synchronization and to initiate voting actions, and τ as 
the voting time for each data item, the voter can verify at 
most (VT−b)/τ data items in one cycle. The remaining 
items in the queue and the newly arrived items will be voted 
in the subsequent cycles. Note that the voting queue is 
divided into two parts: an on-time arrival queue and an early 
arrival queue, where the data items in the on-time arrival 
queue has a higher priority to join the voting process than 
the data items in the early arrival queue. For each task TSj

i, 
let VRTj

i be the target voting ready time that its output data 
items enter the voting queue. This target  voting ready time 
can be viewed as the execution deadline at the processing 
node and Dj

i - VRTj
i becomes the deadline of the voting 

processing for task TSj. If the task is completed earlier than 
VRTj

i, the data items can wait in the early arrival queue. On 
the other hand, if its data items have not been voted before 
the target voting ready time, the items are waiting in the on-
time arrival queue. With this two-queue scheme, we can 
avoid the impact of arrival jitters1 to the scheduling process 
at the voter [13]. The worst-case arrival sequence to the 
voter occurs when all tasks release their data items at their 
target voting ready times, thus forming periodic requests to 
the voter. 
 
In this paper, we explore the feasibility of using fixed 
priority preemptive scheduling [13] at the processing nodes 
and the voter. With static priority assignments at the 
processing nodes and at the voter, the task dispatchers can 
be easily implemented and the choice of data items to be 
voted in each cycle can be readily determined. Also, we can 

                                                           
1 Note that an arrival jitter caused by the variation of execution time can 
make the voting arrival process irregular. 

compute the worst-case response times for each task at the 
processing nodes and at the voter in order to check the 
schedulability. Given the execution priority pi(j) for each 
task TSj

i, the worst-case response time RSj
i at processing 

node i can be computed by the following recursive equation 
[18]: 
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where hpi(j)  is the set of tasks of higher priority than task 
TSj

i at processing node i. Similarly, with the voting priority 
pv(i,j) for task TSj

i, the maximum voting delay  VDj
i  can be 

calculated as the sum of two parts: the initial waiting for the 
beginning of a voting cycle and the voting response time, 
VRSj

i: 
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where hpv(i,j)  is the set of tasks of higher voting priority 
than task TSj

i. The equation for VRSj
i assumes that the data 

items from each task TSj
i
 arrive periodically with a period 

Tj
i. This case occurs when all task computations are done at 

the target voting ready times. 
 
 
3.  SCHEDULING ALGORITHMS 

 
As the task processing is decomposed into two stages at the 
processing nodes and the voter, a scheduling algorithm must 
provide the priority assignments pi(j) and pv(i,j). In addition, 
it must supply the target voting ready time VRTj

i to begin the 
voting process. A feasible schedule is a set of  (pi(j), pv(i,j), 
VRTj

i) for all tasks TSj
i under which RSj

i + VDj
i ≤ Dj

i 2. 
Among all static priority schemes, we adopt a deadline-
monotonic approach at each stage. Note that under a 
deadline-monotonic priority assignment, task priorities are 
assigned inversely proportional to the length of the deadlines 

                                                           
2 An unnecessary stringent definition of schedulability is to have RSj

i ≤  
RLj

i and VDj
i ≤ Dj

i - RLj
i. 
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Figure 3. The timing diagram of voting operations 
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Figure 2   Scheduling model for task processing and voting 



   

and such an assignment is an optimal station priority scheme 
[3,12]. In fact, with deadline-monotonic approach,  we only 
need to determine one of  the three parameters, pi(j), pv(i,j), 
and RLj

i, and solve the other two based on their dependency. 
Thus, if VRTj

i is known, we can use VRTj
i  and Dj

i -VRTj
i as 

the deadlines at the processing node and the voter to assign 
pi(j) and pv(i,j) according to a deadline monotonic approach. 
Similarly, if pi(j) is known, we can compute the response 
time RSj

i and assign it to VRTj
i. Then, pv(i,j) can be 

determined.  
 
The scheduling approach of determining VRTj

i is similar to 
solving a 2-stage deadline distribution problem in which Dj

i 
is partitioned into two parts in order to meet the end-to-end 
deadline [7]. For a general deadline distribution problem, 
several heuristic approaches have been proposed for 
distributed real-time systems and dependent task sets. For 
instance, the deadline of a task can be evenly partitioned and 
used as the deadlines of its subtasks [4]. Search algorithms 
have also been applied for the problems, e.g., an iterative 
deadline assignment approach to improve the schedulability 
[17]. Recently, Di Natale and Stankovic suggested a slicing 
technique, which allocates slack time3 to the subtasks in the 
critical path of a task graph according to normalized laxity 
and pure laxity metrics [15]. Under the normalized laxity 
metric, slack time is distributed in proportional to subtask 
execution times, whereas, under the pure laxity metric, each 
subtask receives an equal share of slack time.  
 
Consider the computation and voting pipeline in our system. 
The voting processing time is expected to be much smaller 
than the task execution time at a processing node when the 
system has only one voter shared by all tasks. The pure 
laxity metric cannot be effective since, with an equal share 
of slack time, the computation deadlines become tight and 
the scheduling at each processing node can be feasible only 
if the processor utilization is low.  On the other hand, the 
approach with normalized laxity metric assigns a bigger 
slice of slack time to the computation stage than to the 
voting stage. This can be a reasonable approach since the 
scheduling of short voting processes is easier than the 
scheduling of long task executions. The approach uses   

 VRT C
D C VT k VT b VT

Cj
i

j
i j

i
j
i

j
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j
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− − − −
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to set the deadline of task computation. Thus the priorities at 
the processing nodes and the voter, pi(j) and pv(i,j), can be 
assigned based on deadline-monotonic assignment. The 
schedulability can then be determined once we compute RSj

i 
and VDj

i, and check that RSj
i + VDj

i ≤ Dj
i.   

 
 Instead of partitioning the deadlines, an alternate scheduling 
approach is to determine pi(j) and pv(i,j) directly. Let Φ and 
Θ be optimal priority assignments at the processing nodes 
and the voter. Denote RSj

i(Φ) and VDj
i(Θ) as the task 

response times at  processing nodes and the voting delays at 
the voter for task TSj

i under the priority assignments Φ and 
                                                           
3 A task’s slack time is defined as the difference between its deadline 
period and its total execution time. 

Θ, respectively. Given that deadline-monotonic is an optimal 
static schedule [3,12], we can easily observe that Φ and Θ 
must be deadline-monotonic priority assignments based on 
the deadlines {Dj

i - VDj
i(Θ)} and {Dj

i - RSj
i(Φ)}, 

respectively. This dependence suggests an iterative approach 
which begins with a priority assignment at the processing 
nodes Φ1. After RSj

i(Φ1) is computed, a deadline-monotonic 
priority assignment for the voter Θ1 can be obtained. Then, a 
deadline-monotonic priority assignment for the processing 
nodes Φ2 can be defined based on VDj

i(Θ1). The iteration 
can continue until either the priority assignments are feasible 
or there is no more improvement in schedulability. This 
scheduling algorithm, called DMA2, is given in the Figure 
4. 
 
Algorithm DMA2: 
 

VDj
i = τkj

i / (VT - b) VT; 
 old_tradiness=0; no_tries=0; 
  repeat   
  for each processing node i { 
    for each task TSj

i   (1≤j≤ni) { 
assign pi(j) inversely proportional to 

 Dj
i - VDj

i; 
   } 
   compute RSj

i for each task TSj
i (1≤j≤ni); 

  } 
  for each task TSj

i (1"j"ni and 1"i"m) { 

   assign pv(i,j) inversely proportional to  
Dj

i - RSj
i ; 

  } 
  compute VDj

i for each task TSj
i 

(1≤j≤ni and 1≤i≤m); 
  tardiness = max { RSj

i + VDj
i - Dj

i }; 
  if (tardiness >= old_tardiness)  
   no_tries++; old_tardines s= tardiness; 
 
 until { tardiness < 0,    # schedulable 
  or no_trial = a maximal threshold }   

# too many unsuccessful trials 
 
 

Figure 4. The DMA2 algorithm for priority assignments 

Note that, in DMA2 algorithm, the computation starts with a 
zero voting delay initially. This initial setting leads to a 
deadline-monotonic assignment of pi(j) almost similar to the 
one based on the deadline Dj

i. In fact, as the voting delay is 
much smaller than the task computation time, this 
initialization selects an assignment that focuses on the task 
delay caused in the processing nodes. Also, DMA2 
algorithm search for the priority assignments that are 
mutually deadline-monotonic. It may not be able to find 
such a pair of assignment or fail to find a feasible one. In 
these cases, the algorithm will terminate after the number of 
trials reaches a threshold. 
 
 



   

 4.  SCHEDULING EVALUATION AND EXPERIMENTS 
We performed several experiments to determine the 
performance of the slicing approach based on the 
normalized laxity metric and DMA2 priority assignment 
algorithm. Since the performance of the scheduling 
algorithms is likely affected by various parameters, we 
intend to set the values of the parameters in various ranges. 
The experimental environment has 4 processing nodes and 
each node has 6 tasks. Thus, data items generated by a total 
of 24 tasks will be voted. For each experiment, we collect 
the success ratios of the scheduling algorithms among 5000 
random cases.  
 
To define various parameters in the experiments, we first 
assume the voting overhead per each voting cycle, i.e., b, is 
a constant and is equal to one unit of time. The voting cycle 
is set to a period of 20, except the experiment that the period 
is a control parameter. The task periods are distributed 
uniformly in the range of [50, 500]. Then, for a given 
utilization at each processing node, we assign the task 
execution times such that the fraction of processor time 
spent in executing each task is randomly distributed in the 
range of [5%, 25%]. To determine voting processing times, 
we first assign the voting processing time for task TSj

i to be 
uniformly distributed between [15%, 45%] of the task’s 
execution time at the processing node. Then, all voting 
processing times are adjusted proportionally such that the 
overall utilization of the voter (including the voting 
initialization overhead) is in the range of 0.45 to 0.90.  
 
Our first experiment is to examine the performance of 
slicing technique and DMA2 algorithm under different 
utilization. As shown in Figure 5, two sets of curves are 
plotted in which the utilization of each processing node is 
set to 0.45 and 0.65, respectively. The cases with a 
utilization of 0.65 probably have the highest utilization we 
need to consider since it is slightly less than the theoretical 
utilization bound (i.e. ≅ ln 2) of rate monotonic algorithm in 
a single server [13]. The experiments assume that the task 
deadlines are equal to their periods, and the voting period is 
20. The utilization at the voter varies from 0.45 to 0.90. The 
figure reveals several interesting properties of the two 
scheduling algorithms. When the utilization at the voter is 
less than 50%, both algorithms can reach a success ratio of 
100% even if the utilization of each processing node reaches 
0.65. Caused by the small voting processing times, the voter 
is likely to complete the voting process for any output data 
in one cycle and impose at most two cycle delay in verifying 
the correctness of output data. This delay doesn’t make 
many disturbances in selecting a good scheduling at the 
processing nodes. However, when the utilization of the voter 
increases, the success ratios of the algorithms begin to 
diverge. A significant difference can be observed when the 
utilization of the voter is 0.75 and the utilization of the 
processing nodes is 0.65. The DMA2 algorithm has a 
success ratio of 0.98 whereas the slicing approach can make 
only 2% of the cases feasible  
 
Figure 5 also shows substantial differences in the change of 
success ratios for each algorithm when the utilization of the 

processing node varies from 0.45 to 0.65.  With a voter 
utilization  larger than 0.55, the success ratio under the 
slicing approach drops drastically with an increase of 
processor utilization. It suggests the setting of voting ready 
times does not weigh  the increased delays at both the 
processing node and the voter. Conversely, DMA2 
algorithm can adjust the priorities properly, thus avoid the 
adverse effort caused by the increase of utilization at the 
processing nodes. This scheduling implication can be 
explained in a simple example. Consider two tasks with 
slightly different deadlines. If their ratios of the execution 
time at the processing node to that at the voter are similar, 
the deadlines are distributed to each stage with the same 
proportion. Then, the task with a shorter deadline will be 
assigned a higher priority at both the processing node and 
the voter. It can be completed much earlier in the expense of 
the task with a longer deadline that may miss its deadline. 
On the other hand, under DMA2 algorithm, the task 
receiving a higher priority at the processing node is likely 
assigned with a lower priority at the voter. Thus, the total 
delays of these two tasks are limited due to the shuffle of 
priorities, and can meet the deadlines as long as the 
utilization is not high. 
 
To reassess the priority shuffling under DMA2 algorithm, 
we conduct the second experiment that compares the success 
ratios of two cases. The utilization at the processing nodes 
and the voting cycle are fixed at 0.45 and 20, respectively. 
In the first case, we set task deadlines randomly in the range 
of 60% to 100% of the task periods, whereas the second 
case assumes task deadlines are identical to the task periods. 
As the deadline shrinks, we expect that the tasks with long 
response time and voting delay will miss their deadlines. 
Thus, by examining the success ratios, we can detect the 
existence of long task delays. The results of the experiment 
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are shown in Figure 6. The reduction of deadlines leads to a 
bigger decrease of success ratio for the slicing approach than 
for DMA2 algorithm. This difference implies that the slicing 
approach may result in a delay distribution that has a long 
percentile. Also, the effect of priority shuffling under DMA2 
algorithm can eliminate the long percentile and allow 
individual tasks to meet their deadlines. 
 
As the first two experiments assume that all processing 
nodes have the similar utilization, we look into the cases that 
the loads in processing nodes are not balanced in our third 
experiment. We set the average utilization of processing 
node to 0.55. Under the balanced case, each node has an 
equal utilization, whereas, in the unbalanced case, the 
utilization is set to 0.45 and 0.65 for two pairs of nodes. The 
success ratios with the slicing approach and DMA2 
algorithm are shown in Figure 7. The success ratios under 
DMA2 algorithm are almost identical in both balanced and 
unbalanced cases. Apparently, the priority assignment at the 
voter adapts to the utilization of each processing node by 
comparing Dj

i - RSj
i. Thus, the task which experiences a long 

computation delay in a heavily loaded processing node can 
still meet its deadline by holding a high priority at the voter. 
On the contrary, the slicing approach fails to make any 
compensation to the variation of node utilization as it does 
not check the loading situation at all in the determination of 
the target voting ready times. 
 
Our next experiment is to investigate the effect of various 
periods of voting cycles. To make the synchronization 
between RMS units easy, the voting is initiated periodically 
by a hardware clock. This results in a periodic voting server 
and an initiation overhead per each cycle. Consider the 
impact of voting cycle times to the schedulability. We can 
conjecture that a short period may increase the utilization of 

the voter, and a long period may bring up additional waiting 
time to the voting requests.  These suppositions are 
illustrated in Figure 8 that plots the success ratios with the 
periods vary from 5 to 50. Note that, in all cases, the 
utilization due to voting process (excluding the 
synchronization overhead) is set to 0.55. By adding the 
synchronization overhead per cycle, the net utilization at the 
voter varies from 0.75 to 0.57. In addition, the figure also 
confirms the stability of the DMA2 algorithm against any 
change of processing load and voting cycle. 
 
Comparing the cases of experiments 1 and 4, we may 
observe that feasible schedules can be found easily when the 
voting period is short. In experiment 1, we have a case that 
the utilization of the voter is 0.75 and the voting period 
equals to 20. With the same utilization, we have a case in 
experiment 4 in which the voting period equals to 5. The 
resulting success ratios are quite different, i.e., much higher 
for the cases in the experiment 4 than that in the experiment 
1. As our voter begins a voting process periodically, the 
voting delay increases linearly as we prolong the voting 
period. A good design of the voter should maintain a 
utilization less that 65% while  choosing a small voting 
period. 

Our last experiment is to investigate the effect of task 
periods to the schedulability of these two algorithms. In the 
previous experiments, the task periods are uniformly 
distributed between 50 to 500. Thus, the maximal period is 
likely several times more than the minimal period. If we 
change the range in which the task periods are distributed, it 
may get difficult to find a feasible schedule as that  the most 
difficult scheduling condition occurs when all periods are 
less than the twice of the minimal period [13]. We assume 
that the mean of task periods is 275. The range is set to 275-
task_period_range  to 275+task_period_range, where 
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Figure 6. The success ratios of slicing and DMA2 
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task_period_range varies from 90 to 225. The experiment 
also assumes that the utilization of the processing node is 
equal to 0.45. Two sets of curves are plotted in Figure 9 to 
represent the cases that the voter utilization is equal to 0.70 
and 0.75, respectively. They illustrate the property that the 
scheduling algorithms result in different success ratios as the 
range of task periods changes. For instance, with a voter 
utilization of 0.75, the success ratios of various period 
distributions may drop more than 50% and 40% under the 
slicing approach and DMA2 algorithm, respectively. 
 
The results from the 5 experiments clearly indicate that 
DMA2 algorithm outperforms the slicing approach in 
determining feasible schedules, and is robust under various 
conditions. In fact, the experiments show that feasible 
schedules can be found even if the utilization at the 
processing node and the voter closes to the theoretical 
bound of rate-monotonic algorithm. This finding is 
interesting since, in order to make a schedule feasible, we 
expect there is a need to limit the utilization at the two 
processing stages such that the sum of the experienced 
delays at both processing stages is less than the task 
deadline. However, when DMA2 algorithm is able to shuffle 
the priorities at the two stages, no task needs to undergo 
long delays at both stages and feasible schedules can be 
obtained when the utilization is not high.  
 
 
5. CONCLUSION 
In this paper, we have proposed an effective scheduling 
mechanism that can be incorporated in fault-tolerant IMA 
systems. The emphases are placed in the issues of designing 
fault resilience at system level and scheduling consistency 
checking operations along with task execution. To find 
feasible solutions for fixed priority scheduling, we have 
examines two priority assignment schemes and evaluated 

their corresponding performance through a set of 
experiments. In addition, the measured data indicates a 
suitable design space in terms of the utilization  at each 
processing node and the RMS unit. This result will be 
extremely useful in preparing system requirements in the 
early stage of the design process. 
  
To continue the research work in the integrated mechanisms 
for scheduling and fault tolerance, we plan to  investigate the 
scheduling algorithms in the APEX (application/executive 
interface) environment. The APEX environment calls for a 
partitioning approach to set up fault containment [2]. The 
temporal partition limits the execution of a task set to 
specific partition windows of a major time frame. 
Apparently, this deterministic approach favors a cyclic task 
scheduling which in turn results in a deterministic checking 
process. In this context, we need to look into efficient 
approaches of sharing the checking mechanisms among 
partitions, and to schedule partitions, the task set within each 
partition, and consistency checking operations.  
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