
Designing Safe, Reliable Systems using Scade

Parosh Aziz Abdulla1, Johann Deneux1, Gunnar St̊almarck2, Herman Ågren2,
and Ove Åkerlund2

1 Uppsala University, department of Information Technology
box 337 SE-75105 Uppsala, Sweden

2 Prover Technology AB, Rosenlundsgatan 54 SE-11863 Stockholm, Sweden

Abstract. As safety critical systems increase in size and complexity, the
need for efficient tools to verify their reliability grows. In this paper we
present a tool that helps engineers design safe and reliable systems. Sys-
tems are reliable if they keep operating safely when components fail. Our
tool is at the core of the Scade Design Verifier integrated within Scade,
a product developed by Esterel Technologies. Scade includes a graphical
interface to build formal models in the synchronous data-flow language
Lustre. Our tool automatically extends Lustre models by injecting faults,
using libraries of typical failures. It allows to perform Failure Mode and
Effect Analysis, which consists of verifying whether systems remain safe
when selected components fail. The tool can also compute minimal com-
binations of failures breaking systems’ safety, which is similar to Fault
Tree Analysis. The paper includes successful verifications of examples
from the aeronautics industry.

1 Introduction

Embedded controllers are found in an increasing number of systems. Their role
consists of continuously processing flows of data coming from sensors to control
various devices. The increase in size and complexity of these controllers has
followed that of the systems they belong to. Manual verification is no longer an
option, and non-exhaustive testing has its limits. They must be complemented
with exhaustive methods, if possible in an automated way.

Formal methods such as model checking [CES86] are good candidates. They
have been improving for several years within the research sector, and have re-
cently started to reach the industry. Model checking consists of automatically
verifying that a model representing a system meets all of its requirements. In
order for the method to work, both the model and the requirements must
be described formally. We present our tool, Prover SL Data Edition (Prover
SL DE), which performs reachability analysis using SAT-based model checking
[CBRZ01,SSS00]. It is integrated within several designing tools, including Scade

Suite, a set of software tools developed by Esterel Technologies. Scade Suite
includes the following tools:

– A graphical editor to build formal models and to specify safety properties.
Alternatively, it is possible to translate existing models written in other
languages.



– The Scade Design Verifier, built on top of Prover SL DE, to automatically
verify that models satisfy all safety properties.

– A simulation environment to interactively execute models step by step.
– A C code generator. Since the code is automatically generated from the

formal model, it is correct by construction, assuming the formal model is
correct.

Designing safe systems is important, but it is also vital to make them reliable
(fault-tolerant) i.e. they must remain safe even during failures of components.
The use of formal methods to prove reliability is an attractive solution, since it
increases the level of confidence in the design. There are two ways to verify that
systems are reliable:

– Failure Mode and Effect Analysis (FMEA). In this approach, one tries to
find the consequences of failures of components. This is usually achieved by
means of simulation.

– Fault Tree Analysis (FTA). This method is the opposite: one wants to find
the causes of a specific safety violation. In other words, the goal is to find
combinations of components which must fail in order to make the system
unsafe.

Both FMEA and FTA are described in details in [VGRH81].
We have recently extended Prover SL DE to support the two methods for

reliability analysis described above. This paper describes the formal language
used to build models and specify safety properties, as well as the techniques
used in this tool. We also describe how to perform both safety and reliability
analysis using Scade and Prover SL DE.

Related work There are a number of tools to perform safety and reliability anal-
ysis of complex systems using formal methods:

FSAP/NuSMV-SA [BV03] uses SMV’s [McM93] input language as the
modeling language. It supports automated BDD-based [Bry86] verification us-
ing NuSMV [C+02], fault tree generation and order analysis. Requirements are
specified using Computation Tree Logic [BPM83], allowing for both safety and
liveness properties.

In [BCS02], Altarica [GLP+98] is used to model systems. Fault trees are
automatically generated and analyzed using Aralia [DR97], an efficient BDD-
based fault tree analysis tool. Model checking is performed with Cadence Lab
SMV. Safety requirement are specified in Linear Time Logic [Pnu77], a logic
capable of expressing both safety and liveness properties.

Scade with Prover SL DE differs from these tools in the following ways:

– It is limited to model-checking of safety properties, which implies that it
is not possible to check liveness properties. Since most properties used in
practice are actually safety properties, this limitation is acceptable. Further,
we use the same formal language both for requirements and for the model,
which may make it easier for system designers and safety engineers to adopt
our tool.



– The SAT-solver used in our tool supports rational and integer linear arith-
metics, in addition to non-linear arithmetics over finite domains.

– The model-checking algorithm does not rely solely on BDDs. Although BDDs
can deal with many large formulas efficiently, they are known to perform
poorly in some cases. In order to be able to handle as many systems as
possible, our tool uses a combination of SAT procedures [DLL62,SS98] as
well as BDDs.

Outline This paper is organized as follows: We will first describe the model-
ing language used in Scade. Then we will show how SAT-based model checking
[CBRZ01,SSS00] is used to automatically verify that the design satisfies all re-
quirements. Since we are also interested in designing reliable systems, we will
continue with reliability analysis, i.e FTA and FMEA.

2 The modeling language

In order to formally verify systems using model checking, one must be able to
build formal models of these systems. We use Lustre [CPHJ87], a synchronous
dataflow language. A dataflow, or flow, is a variable whose value can change
over time. All flows are synchronized, meaning that there is a single global clock
controlling when flows change. The amount of real time passing between two
clock ticks is not necessarily constant. Each flow is typed: it can be Boolean,
integer or real. Nodes combine flows to generate new flows. Several basic nodes
are provided: Logic operators (AND, OR, NOT...), integer and real arithmetic
operators (addition, multiplication, division...). The third type consists of timed
operators:

– Delays: The PRE operator makes it possible to refer to the previous value
of a flow. It can, for example, be used to memorize values: A = PRE A. The
current value of A is defined to be the previous of A.

– Initial value: The -> operator is used to specify the value of a flow during
the first time step. Consider the following example: A = True ->NOT PRE

A. This defines flow A to be initially True. After that, the value is inverted
every time step, thus modeling a square clock signal.

A system is modeled as a node, possibly composed of several sub-nodes. Re-
cursion is not allowed, meaning that a node may not include itself as one of
its sub-nodes, or in one of its respective sub-nodes. Therefore, it is possible to
“flatten” the top node by substituting their contents to sub-nodes.

Scade provides a graphical interface to create, edit and visualize nodes. There
are two ways to visualize nodes: The network view (Figure 1) and the state

machine view. A textual equivalent representation of Figure 1 in Lustre can be
seen in figure 2. This fictitious example is a controller for the doors of a lift.
Requests to open the door are received from other parts of the system. These
requests are granted provided that the lift is not in motion, and that it is at



Fig. 1. Graphical representation of a lift door controller

node LiftDoor(OpenRequest: bool; CloseRequest: bool;

Stopped: bool; AtLevel: bool)

returns (SafeOpen: bool) ;

let

SafeOpen = if (CloseRequest or not (Stopped) or not (AtLevel))

then False

else (False -> (pre SafeOpen)) or OpenRequest ;

tel ;

Fig. 2. Textual representation of the lift door controller

level with the floor. If the open request is granted, the door is kept open until
the safety conditions are violated, or a close request is received.

Lustre is also used for expressing safety requirements. The system being
in a safe state is denoted by a specific Boolean flow in the model being true.
The model checker verifies whether this flow is always true. In other words, it
performs safety analysis by proving that the system constantly remains in a
safe state. Popular alternatives for specifying requirements are time logics such
as Linear Time Logic or Computation Tree Logic. See for example [Hol97] or
[McM93]. Our decision to use Lustre has the advantage that users need not learn
an additional requirement language. Although this implies that we are limited to
verifying safety properties, we consider this to be an acceptable restriction since
they constitute the majority of properties used in safety and reliability analysis.



Back to our lift door example, two requirements could be:

OpensWhenSafe = (OpenRequest and AtLevel and Stopped) -> SafeOpen;

ClosesWhenUnsafe = (!AtLevel or !Stopped) -> !SafeOpen;

The first requirement ensures that users do not get trapped inside the lift, that
the door opens when requested if it can be done safely. The second requirement
makes sure that the lift cannot harm its passengers by opening while in motion,
or when not at level with the floor.

Lustre supports assertions to restrict the possible values of input flows. Sim-
ilarly to requirements, assertions are represented by Boolean expressions which
must always be True. They differ from requirements in the sense that they ex-
press assumptions about the environment of the system, which is not part of the
model. In the lift door example, we may assume that the environment will never
request to open and close the door simultaneously:

assert not (OpenRequest and CloseRequest);

When generating C code from a Lustre model, assertions can be translated into
C assert macro calls. Assertions are also used by Scade Design Verifier to speed
up the verification. Instead of verifying the model for all possible combinations
of inputs, the verification is limited to those inputs satisfying the assertions.

In the next section, we describe some of the techniques used in Prover SL
DE, upon which Scade Design Verifier is built.

3 Verifying safety

Prover SL DE verifies safety properties of transition systems. We will first define
the terms transition systems and safety properties, then explain how our tool
performs this kind of verification.

3.1 Transition systems

A transition system is a tuple (S, S0, T ), where

– S is a set of states,
– S0 ⊆ S is the set of initial states

– T ⊆ S × S is the transition relation.

A safety property P is a set of states denoting the good states.
Let ReachT (S) be the set of states reachable from S using the transition

relation T .
We want to decide if a transition system is safe, i.e. given a transition system

M = (S, S0, T ) and a safety property P , is it the case that ReachT (S0) ⊆ P ?
Lustre models are transition systems. The state of a Lustre model is denoted

by the current values of all its flows. The set of initial states is specified in



the model using initial value (->) operators. The transition relation is specified
using delay operators (PRE). The set of states is the set of all assignments
to flows in the model. This set is potentially infinite, because of the use of
unbounded types (integers and reals). Although Lustre can express complex
arithmetic expressions, Prover SL DE is limited to:

– Linear arithmetics over the set Q of rational numbers, i.e. expressions of the
form:

a0 ∗ C0 + . . . + an ∗ Cn � C

where a0, . . . , an are variables, C, C0, . . . , Cn are constants and � ∈ {=, 6=, >, <,≤,≥}.
– Non-linear arithmetics over finite domains.

3.2 SAT-based model checking

Building an explicit representation of the reachable states space is in general not
feasible (in our case it is even impossible). Instead, we represent sets symbolically
using predicates. Checking for the non-reachability of a set of bad states can now
be done by checking non-satisfiability of Boolean and linear arithmetic formulas.
This technique is SAT-based model checking extended to arithmetics.

For a set of states S, let S(s) be a predicate such that s ∈ S ⇐⇒ S(s).
For a sequence of states s0 . . . sn, path(s0 . . . sn) is a predicate denoting that

the sequence corresponds to a path through the graph of the transition relation.

path(s0 . . . sn) = ∀i ∈ {0, . . . , n − 1} : T (si, si+1)

The reachability problem for a transition system (S, S0, T ) and a safety prop-
erty P can be reformulated as follows:

∀n ≥ 0 : ∀s0 . . . sn : path(s0 . . . sn) ∧ S0(s0) ⇒ P (sn)

Two methods to solve this problem are Bounded Model Checking [CBRZ01]
and Induction Over Time [SSS00].

The first method is suitable for debugging, i.e. finding errors in unsafe sys-
tems.

bmcn(s0 . . . sn) = path(s0 . . . sn) ∧ S0(s0) ⇒ P (sn)

It proceeds iteratively by increasing n until bmcn(s0 . . . sn) is falsifiable, in which
case we have found a shortest path to a bad state. However, this method will
never terminate for safe systems.

In the second method, we try to prove by induction over k that the system
is safe:

– Base case: bmcn(s0 . . . sn) is a tautology.
– Induction hypothesis: ihn(sk . . . sk+n) = path(sk . . . sk+n) ∧ ∀0 ≤ i ≤ n :

P (sk+i)
– Induction step: isn(sk+n) = ∀sk+n+1 : T (sk+n, sk+n+1) ⇒ P (sk+n+1)



Concretely, we increase n, starting from 0, until:

(∀s0 . . . sn : bmcn(s0 . . . sn)) ∧ (∀sk . . . sk+n : ihn(sk . . . sk+n) ⇒ isn(sk+n))

If we succeed, we have proved that the system is safe. If the system is not
safe, then the Bounded Model Checking step of the base case will detect it.
This procedure is still incomplete: Consider the case where an unreachable loop
leads to a bad state, shown in figure 3. The induction step will never succeed,

s0 s1 s2

s4s3

Fig. 3. A good unreachable loop leading to a bad state. The safety property includes
s0, s1, s2 and s3, but not s4. s0 is the initial state

even though the system is correct. This is solved [SSS00] by modifying the path

predicate to loop-free paths:

path(s0 . . . sn) = ∀i ∈ {0, . . . , n − 1} : T (si, si+1)∧∀j ∈ {0, . . . , n} : i 6= j ⇒ si 6= sj

3.3 Deciding the satisfiability of formulas

We have now described how to transform the problem of deciding whether a
transition system is safe into deciding whether a formula is satisfiable or not.
The kind of formula we have to deal with are math-formulas [ABC+02]. A math-
formula combines Boolean propositions and linear arithmetic predicates:

– A constant c in Q is a math-term.
– A variable v over Q is also a math-term.
– c.v is a math-term.
– If t1 and t2 are math-terms, then so are t1 + t2 and t1 − t2.
– A Boolean proposition is a math-formula.
– If t1 and t2 are math-terms, then t1 � t2 where � ∈ {=, 6=, >, <,≤,≥}, is a

math-formula.
– If φ1 and φ2 are math-formulas, then ¬φ1 and φ1�φ2 where � is a logical

connective are math-formulas.

A naive procedure for deciding the satisfiability of a math-formula, which is
a NP-hard problem [ABC+02], is to examine all satisfying assignments to the
boolean variables in the formula, and for each of these solve the resulting system



of linear constraints. The proof engine implements an efficient solver [ABCH02]
for MATH-SAT which combines SAT techniques, such as St̊almarck’s satura-
tion method [SS98], Davis-Putnam-Loveland-Logemann [DLL62], Reduced Or-
dered Binary Decision Diagrams [Bry86], linear programming techniques and
constraint propagation. In practice the proof engine can decide a strict superset
of math-formulas, mainly due to the constraint propagation. Even if a given sat-
isfiable formula contains non-linear predicates, the proof engine often manages
to decide it. In the case of integers restricted to finite ranges, Prover SL DE con-
verts them to bit vectors, and uses binary arithmetics to perform all operations.
This method is able to handle non-linear arithmetic over finite ranges.

4 Reliability analysis

In this section we explain shortly FTA and FMEA, and describe how to use
Scade to design reliable systems.

4.1 FTA and FMEA

A failure is the inability of a piece of equipment to perform its task. Here we make
a distinction between system-level and component-level failures. We restrict the
use of the term “failure” to component-level failures. When the system itself
fails to meet its expected performance, we say it is “unsafe”, or that it violates
a “safety requirement”. A system is reliable when it can sustain several failures
before becoming unsafe. More precisely, it is N-fault-tolerant if it remains safe
unless more than N failures happen. Two popular methods to assess reliability
are Failure Mode and Effect Analysis (FMEA) and Fault Tree Analysis (FTA)
[VGRH81]. The term “failure mode” refers to the way a component fails. For
instance, a valve may fail in different ways: It can be stuck in the opened position,
in the closed, or in some intermediate position. Each way of failing is called a
failure mode.

The first method, FMEA, consists of investigating the effects of failure modes.
Designers specify a list of components that fail in addition to the way they fail,
then the system is simulated to check if it becomes unsafe. The second method,
FTA, can be seen as the opposite approach. It aims at finding the causes of safety
violations. A fault tree (Figure 4) is a graph relating failures of components and
safety violations. The root of the tree is called Top Level Event, and represents
an event that should not occur in a safe system. In this example, the top event
consists of the opening of the doors of a lift while it is moving or when it is not at
the level of the floor. The leaves are called basic events. They represent failures
of components as well as their failure mode. Here, the left basic event represents
the event that the motion detector fails to report movement. The right event
denotes the failure of the sensor to detect that the lift is not at the level of the
floor. The internal nodes are Boolean connectives. The connective represented in
this example is an OR gate. The fault tree is in fact a graphical representation
of a Boolean formula satisfied when the system is unsafe. The variables in the



Door opens unsafely

"At_Level" detector

fails fails

Motion detector

Fig. 4. A simple fault tree

formula denote failures of components. The goal of FTA is to find the minimal
combinations of basic events leading to the top event. In other words, one wants
to compute the minimal cut sets or prime implicants of the Boolean expression
represented by the fault tree.

We have extended Prover SL DE to support these two methods. We will now
describe how we perform reliability analysis using Scade and Prover SL DE.

4.2 Fault injection

In order to assess the reliability of a system, its model must include failure
modes. The process of adding failure modes into an existing model is called fault

injection. We have implemented a graphical user interface (Figure 5) allowing
designers to select the components susceptible to fail as well as their failure mode.
This results in a new model including failure modes, which is then analyzed
using the methods described in section 3. Failures of components are modeled
by modifying flows representing components outputs. The original flows, called
nominal flows, are replaced by modified flows, called extended flows. The value
of an extended flow is decided by the failure mode. All possible failure modes
affecting the nominal flow are modeled by a Lustre node called failure mode node.
A typical failure mode node has two or more inputs and one output. One of the
input is the nominal flow, and the output is the extended flow. The remaining
inputs are Boolean flows called failure mode variables controlling which failure
mode is triggered. Figure 6 represents two failure modes affecting a Boolean
flow: The value of the nominal flow (in) is ignored and the extended flow (out)
is set to False or True. This failure mode node can be used to model two failure
modes of a switch, for instance:

– FM OFF, in which case the switch acts as if it was stuck in the OFF position,
or



Fig. 5. The fault injection panel

– FM ON, the switch behaves as if it was stuck in the ON position, possibly
because of a short-circuit.

node FM_Fails_ON_or_OFF(in: bool; FM_ON: bool; FM_OFF: bool) returns

(out: bool)

let

out = if (FM_ON) then True else

if (FM_OFF) then False else

in;

assert not (FM_ON and FM_OFF);

tel;

Fig. 6. A failure mode node

The result of the fault injection into the lift door model (Figure 2) is shown
in Figure 7. The FTA prefix marks extended flows added during fault injection.
FM Fails ON is a failure mode node where a signal remains constantly True.
Flows with names starting with FM trigger failure modes.

4.3 FMEA in Scade

Using the same graphical interface shown in Figure 5, designers constrain the
occurrence of failures. Typical kinds of constraints include:

– At most N failure modes can occur. This is equivalent to “At most N failure
mode variables can switch from False to True”.



node FTA_LiftDoor(OpenRequest : bool ; CloseRequest : bool ;

Stopped : bool ; AtLevel : bool,

FM_Stopped_Fails_ON : bool;

FM_AtLevel_Fails_ON)

returns (SafeOpen : bool) ;

var

FTA_Stopped: bool;

FTA_AtLevel: bool;

let

FTA_Stopped = FM_Fails_ON(Stopped, FM_Stopped_Fails_ON);

FTA_AtLevel = FM_Fails_ON(AtLevel, FM_AtLevel_Fails_ON);

SafeOpen = if (CloseRequest or not (FTA_Stopped) or not (FTA_AtLevel))

then False

else (False -> (pre SafeOpen)) or OpenRequest ;

tel ;

Fig. 7. The model of a lift door after fault injection

– At most N failure modes can happen simultaneously, which is the same as
“At most N failure mode variables can be True at any point in time”

– Once a component fails, it never recovers and continues to fail indefinitely
– A failure mode X cannot happen.
– When failure mode X is triggered, it continues to happen for T time steps.

These constraints are specified in Lustre, in a manner similar to requirements. A
constraint node has a single Boolean output flow, and any number of input flows
of any type. These input flows can take any value, as long as the constraint node’s
output remains true. Scade Design Verifier verifies that the safety requirement
is always respected, assuming all constraints are met. If this is not the case, a
sequence causing the system to become unsafe is returned.

4.4 FTA in Scade

The goal of FTA is to compute the minimal combinations of failures (also
called minimal cut set) causing a safety violation. Our tool proceeds by checking
whether the system is safe assuming that N failure modes occur, starting with
N = 0, and then increasing N . At each step, Scade Design Verifier verifies if
the system is safe. If it is not, the Design Verifier generated a counter-example
containing the values of each flow at each time step until the safety requirement
was violated. From this counter-example, the set of flows representing failure
modes that were triggered is extracted. These flows constitute a cut set. The
operation is repeated until all cut sets smaller than a user-fixed limit have been
found.

The first step, when N = 0, amounts to verifying that the system is safe.
If it is not, then it is obviously not reliable. Otherwise N is increased to 1 and



the system’s safety is checked again, assuming one failure mode occurs. If the
system is not safe, a counter example is generated. Since the verification was
restricted to the case where one failure mode occurs, one of the failure mode
variables in the counter-example must be True at some point in time. This fail-
ure mode variable represents one of the minimal cut sets of size 1. The tool
continues by doing another analysis with N unchanged until no more cut sets
of size 1 can be found. N is then increased, and the same steps are taken un-
til N reaches a user-fixed limit, usually 4 or 5. The process is summarized below:

ComputeMCS(M: system model, req: safety requirement, Nmax: integer):
Let N be an integer
Let S be a set of cut sets
N := 0
S := {}
Repeat

Let C1 be the constraint:
at most N failure mode variables become True

Let C2 be the constraint:
no combination of failure modes found in S is triggered

Let cx be a counter-example
cx := Verify(C1 ∧ C2, M, req)
If cx is not empty (i.e. the system is not safe)

Extract a cut set s from the counter-example cx

S := S ∪ {s}
Else (i.e. the system is safe) N := N + 1

Until N = Nmax

Verify(C1 ∧ C2, M, req) is a call to the model checker. The verification is
constrained to those executions satisfying C1 and C2. If the system is not safe,
a counter-example is returned and stored in cx.

5 Applications

In order to evaluate the tool, our industrial partners provided a number of ex-
amples. We describe three of them in this section: air inlet control, nose wheel

steering and hydraulic system. All models are designed and analyzed on widely
available laptops equipped with Intel Pentium3 processors with 512MB of RAM.

5.1 Air inlet control

This system is a controller to automatically manoeuvre opening and closing of
doors of an aircraft to regulate the inflow of air to an auxiliary power unit. Since
faulty cooling of the auxiliary power unit is a hazardous event the automated
manoeuvring is safety critical.

This model consists of a state transition diagram, regulating the doors move-
ment. The system contains 21 Boolean inputs, 12 Boolean outputs and 2 rational



inputs. 20 flows among the inputs are affected by fault injection, resulting in 40
new Boolean inputs. Arithmetic expressions found in this model are limited to
simple comparisons.

In this case many variables represent input coming from sensors telling if
doors are closed or open, or information about motor status.

One safety requirement concerns the movement of doors when landing. Land-
ing is detected by a sensor recognizing if there is any weight on the wheels. The
corresponding input flow in the model is named ”weight on wheel”. When this
variable changes from False to True, i.e. a landing event was detected, the airflow
doors must be open.

The verification, taking less than a minute, concludes that the system is
safe, i.e. the requirement is respected when no components fail. It is however
not reliable, since 5 different single failures and 3 double failures can make the
system unsafe.

5.2 Nose wheel steering

This example is a control system to ensure suitable manoeuvrability for different
aircraft operations whilst on the ground. It was originally designed in Mathworks,
Matlab/Simulink, then automatically translated using tools from the Scade suite.

The Scade model includes 36 inputs (33 Boolean and 3 rational). The re-
quirements concerns the validity of the value of the steering angle, computed by
the controller. It must remain within predefined bounds. All 33 Boolean inputs
are affected by failures, thus doubling the number of variables in the system after
fault injection.

This requirement is fulfilled when no failures are allowed, i.e. the design is
safe. It is not reliable, since 32 minimal cut sets of size 1 were found. The analysis
took about 10 minutes.

5.3 Hydraulic system

This system controls the hydraulic power supply to devices ensuring aircraft
control in flight, landing gear, braking system, etc. Three independent hydraulic
subsystems are shared between consuming devices in order to achieve fault tol-
erance. The hazardous event we want to investigate in this case is the total loss
of hydraulic power.

This system was originally modeled in Altarica, whose semantic is close to
Lustre’s, making it easily translatable to a Scade model. Since fault injection
was performed on the original Altarica model, it was not performed again on
the Scade model. Unlike the other examples presented in this section, the original
model already takes into account failures of components.

This analysis, which took about 3 minutes, found no single or double cut
sets, 11 cut sets of size 3 and 24 cut sets of size 4.



6 Conclusion

In this paper we have presented a methodology to perform FMEA and FTA
using Scade Suite and Scade Design Verifier from Esterel Technologies. Scade
Design Verifier is based on the proof engine Prover SL Data Edition from Prover
Technology, which has also been presented.

Future work. Our users remarked that sequences showing violations of require-
ments are too complex. They contain too many variables, and it is hard to find
which ones are “interesting”, i.e. which variables have a key role in the unreli-
ability of a system. This problem and several solutions are discussed in [RS04].
Our implementation of Fault Tree Analysis, which repeatedly calls the model
checker, is currently quite naive. We plan to optimize the model checker for this
kind of usage, thus possibly reducing the number of calls and hopefully speed-
ing up each verification. Finally, we will also extend the tool to support order
analysis [BV03].

References

[ABC+02] Gilles Audemard, Piergiorgio Bertoli, Alessandro Cimatti, Artur Kornilow-
icz, and Roberto Sebastiani. A sat based approach for solving formulas over
boolean and linear mathematical propositions. In Proceedings of the 18th
International Conference on Automated Deduction, pages 195–210. Springer-
Verlag, 2002.

[ABCH02] Gunnar Andersson, Per Bjesse, Byron Cook, and Ziyad Hanna. A proof
engine approach to solving combinational design automation problems. In
Proceedings of the 39th conference on Design automation, pages 725–730.
ACM Press, 2002.

[BCS02] Pierre Bieber, Charles Castel, and Christel Seguin. Combination of fault tree
analysis and model-checking for safety assessment of complex system. In Pro-
ceedings of the fourth European Dependable Computing Conference (EDCC-
4), Toulouse. Springer Verlag, October 2002.

[BPM83] M. Ben-Ari, A. Pnueli, and Z. Manna. The temporal logic of branching time.
Acta Informatica, 20:207–226, 1983.

[Bry86] R.E. Bryant. Graph-based algorithms for boolean function manipulation.
IEEE Trans. on Computers, C-35(8):677–691, Aug. 1986.

[BV03] Marco Bozzano and Adolfo Villafiorita. Improving system reliability via
model checking: The fsap/nusmv-sa safety analysis platform. In Proceed-
ings of the 22nd International Conference on Computer Safety, Reliability
and Security [SAFECOMP 2003], September 2003.

[C+02] Alessandro Cimatti et al. NuSMV2: an opensource tool for symbolic model
checking. In Ed Brinksma and Kim Guldstrand Larsen, editors, Computer
Aided Verification, volume 2404 of Lecture Notes in Computer Science, pages
359–364. Springer-Verlag, July 27–31 2002.

[CBRZ01] Edmund M. Clarke, Armin Biere, Richard Raimi, and Yunshan Zhu.
Bounded model checking using satisfiability solving. Formal Methods in Sys-
tem Design, 19(1):7–34, 2001.



[CES86] E.M. Clarke, E.A. Emerson, and A.P. Sistla. Automatic verification of finite-
state concurrent systems using temporal logic specification. ACM Trans. on
Programming Languages and Systems, 8(2):244–263, April 1986.

[CPHJ87] P. Caspi, D. Pilaud, N. Halbwachs, and J.Plaice. Lustre: a declarative lan-
guage for programming synchronous systems. In 14th ACM Symposium on
Principles of Programming Languages, Munchen, January 1987.

[DLL62] Martin Davis, George Logemann, and Donald Loveland. A machine program
for theorem-proving. Commun. ACM, 5(7):394–397, 1962.

[DR97] Yves Dutuit and Antoine Rauzy. Exact and truncated computations of prime
implicants of coherent and non-coherent fault trees within aralia. Reliability
Engineering and System Safety, 1997.

[GLP+98] Alain Griffault, Sylvain Lajeunesse, Gérald Point, Antoine Rauzy,
Jean Pierre Signoret, and Philippe Thomas. The altarica language. In Pro-
ceedings of the International Conference on Safety and Reliability, ESREL’98.
Balkema Publishers, June 20-24 1998.

[Hol97] G.J. Holzmann. The model checker SPIN. IEEE Trans. on Software Engi-
neering, SE-23(5):279–295, May 1997.

[McM93] K.L. McMillan. Symbolic Model Checking. Kluwer Academic Publishers,
1993.

[Pnu77] A. Pnueli. The temporal logic of programs. In Proc. 18th Annual Symp.
Foundations of Computer Science, pages 46–57. IEEE, 31 October–2 Novem-
ber 1977.

[RS04] K. Ravi and F. Somenzi. Minimal assignments for bounded model checking.
In Tools and Algorithms for the Construction and Analysis of Systems: 10th
International Conference. Springer-Verlag Heidelberg, April 2004.

[SS98] Mary Sheeran and Gunnar St̊almarck. A tutorial on St̊almarck’s proof pro-
cedure for propositional logic. In G. Gopalakrishnan and P. Windley, editors,
Proceedings 2nd Intl. Conf. on Formal Methods in Computer-Aided Design,
FMCAD’98, Palo Alto, CA, USA, 4–6 Nov 1998, volume 1522, pages 82–99,
Berlin, 1998. Springer-Verlag.

[SSS00] M. Sheeran, S. Singh, and G. St̊almarck. Checking safety properties using
induction and a sat-solver. In Int. Conf. on Formal Methods in Computer-
Aided Design, volume 1954, 2000.

[VGRH81] W. E. Vesely, F. F. Goldberg, N. H. Roberts, and D. F. Haasl. Fault Tree
Handbook. U. S. Nuclear Regulatory Commission, NUREG-0492, Washington
DC, 1981.


