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Abstract—The functional consolidation induced by the cost-
reduction trends in embedded systems can force tasks of different
criticality (e.g. ABS Brakes with DVD) to share a processor and
interfere with each other. These systems are known as mixed-
criticality systems. While traditional temporal isolation tech-
niques prevent all inter-task interference, they waste utilization
because they need to reserve for the absolute worst-case execution
time (WCET) for all tasks. In many mixed-criticality systems the
WCET is not only rare, but at times difficult to calculate, such as
the time to localize all possible objects in an obstacle avoidance
algorithm. In this situation it is more appropriate to allow the
execution time to grow by stealing cycles from lower-criticality
tasks. Even more crucial is the fact that temporal isolation
techniques can stop a high-criticality task (that was overrunning
its nomimal WCET) to allow a low-criticality task to run, making
the former miss its deadline. We identify this as the criticality
inversion problem. In this paper, we characterize the criticality
inversion problem and present a new scheduling scheme called
zero-slack scheduling that implements an alternative protection
scheme we refer to as asymmetric protection. This protection only
prevents interference from lower-criticality to higher-criticality
tasks and improves the schedulable utilization. We use an offline
algorithm with two parts: a zero-slack calculation algorithm, and
a slack analysis algorithm. The zero-slack calculation algorithm
minimizes the utilization needed by a task set by reducing
the time low-criticality tasks are preempted by high-criticality
ones. This algorithm can be used with priority-based preemptive
schedulers (e.g. RMS, EDF). The slack analysis algorithm is
specific for each priority-based preemptive scheduler and we
develop and evaluated the one for RMS. We prove that this
algorithm provides the same level of protection against criticality
inversion as the best known priority assignment for this purpose,
criticality as priority asignment (CAPA). We also prove that
zero-slack RM provides the same level of schedulable utilization
as RMS when all tasks have equal criticality levels. Finally,
we present our implementation of the runtime enforcement
mechanisms in Linux/RK to demonstrate its practicality.

I. INTRODUCTION

In modern real-time embedded systems, such as avionics
and automotive systems, there is increasing pressure to reduce
cost and physical resources such as power and heat. This
has resulted in the consolidation of functionality of different
criticality into shared hardware resources (e.g. processor and
memory). Unfortunately, such sharing can lead to interference
across tasks (e.g. one task using the processor longer than
expected) of different criticality potentially causing critical
failures. For instance, if we deploy an ABS braking system
task on the same processor as a navigation system task of the
car, if the latter does not release the processor on time it could
make the former miss its deadline. This problem is a concern

of growing interest. In particular, the US Air Force Research
Laboratory has been leading the Mixed-Criticality Architecture
Requirements (MCAR) [1] initiative to investigate building
blocks to safely construct these mixed-criticality systems.

Resource partitioning is the key mechanism used to prevent
interferences due to shared resources. This partitioning incurs
its own costs. In particular, we need to provision for the
worst-case resource demand (e.g. worst-case execution time –
WCET) even though such a demand is only exercised in rare
occasions. Obtaining this WCET is a challenging task due to
hardware unpredictability (e.g. caches, pipelines, speculative
execution) and the dependency of the execution time of some
algorithms on the environment (e.g. number of obstacles to
avoid). As a result, WCET numbers are often obtained through
measurements and supplemented by an added cushion factor
as an educated and typically conservative estimate. This leads
to a twofold problem: poor average utilization of the processor
and occasional enforcement (temporary stopping) of tasks
that need to run longer than their WCET. Such enforcement
prevents low-criticality tasks from interfering with higher-
criticality ones and can make the low-criticality task miss its
deadline while preventing the missing of the deadline of the
higher-criticality task. Unfortunately, such enforcement can
also be suffered by the higher-criticality task to prevent its
interference on a low-criticality task. As a result, the enforce-
ment can make the higher-criticality task miss its deadline to
allow the low-criticality one to meet its own. We call this
type of enforcement symmetric enforcement because it acts
the same way in both directions: low-to-high and high-to-low
criticalities. This enforcement can have the opposite effect to
our original intent: a lower-criticality task is favored over a
higher-criticality tasks and criticality inversion is said to occur.

One way to eliminate the criticality inversion problem is to
simply assign the priorities of the tasks in the order of their
criticality levels. We call this scheme Criticality As Priority
Assignment (CAPA). However, this scheme can lead to very
poor utilization if the resulting order turns out to be contrary
to the best priority assignment to maximize utilization (e.g.
rate-monotonic priority, proven to be optimal for fixed-priority
scheduling). Such an approach can lead to very low levels
of schedulable utilization due to forced priority inversion.
In this paper, we describe a scheduling policy called zero-
slack scheduling to provide a new form of protection we call
asymmetric protection. This new form of protection eliminates
the impact on deadline due to the criticality inversion while
minimizing the penalty on schedulable utilization. We also



develop new metrics to evaluate criticality inversion.
The rest of this paper is organized as follows. Section II

summarizes the related work in this area. Section III introduces
the criticality inversion problem, and develops the blocking
terms required to characterize it. Section IV develops the zero-
slack scheduling scheme to deal with criticality inversion and
presents performance metrics for mixed-criticality scheduling.
Section V applies the zero-slack scheme to rate-monotonic
(RM) scheduling, and proves useful properties about the
integrated zero-slack RM scheduler. Section VI details our
implementation of zero-slack RM scheduling on Linux/RK.
Finally, we provide our concluding remarks in section VII.

II. RELATED WORK

Multiple papers have been published related to overload
scheduling. [2] and [3] use a form of criticality together with
a value assigned to task completions. Their approach is then to
maximize the accrued value. In our case, we do not require a
value for task completion (which can be difficult to obtain) but
use an absolute ranking that matches the common semantics of
mixed-criticality task sets. Additional studies have also been
done on online scheduling of overloads [4–6]. These schemes
do not include an explicit notion of criticality and hence cannot
take advantage of this notion.

Chi-Sheng et al. present in [7] an approach to map the
semantic importance of tasks in a task set into QoS service
classes to improve the resource utilization. Their objective is
to ensure that the allocated resources are never less for a high-
criticality task than for a lower-criticality one. In our case, we
focus on deadlines, and guarantee that whenever an overload
reduces the resources available we ensure that a high-criticality
task will not miss its deadline due to the allocation of more
resources to a lower-criticality task.

Various operating systems like Linux/RK [8], QLinux [9],
Windows Vista [10], and Rialto [11], provide extensive mecha-
nisms for resource isolation through advance reservations. Al-
though such existing techniques are fundamental to providing
hard timing guarantees, they are still agnostic to criticality and
enforce isolation symmetrically. In contrast, our scheme uses
tasks criticalities and overload budgets to create an asymmetric
enforcement without incurring criticality inversion.

In the specific context of overload scheduling, scheduling
algorithms based on the elastic task model have been pro-
posed [12]. Tasks with higher elasticity are allowed to run at
higher rates when required, whereas tasks with lesser elasticity
are restricted to a more steady rate. This elasticity does not
explicitly capture the criticality of a task, and it requires
all remaining tasks to be compressed under an overload
scenario. Our solution explicitly supports overload scenarios
and criticality levels through a critical mode (C) of operation
in addition to the normal mode (N) of operation. During this
critical mode, we block the lower-criticality tasks, thereby
transferring utilization only from the lower-criticality tasks
under overloaded conditions to benefit higher-criticality tasks.

Closely related to our proposal for dual-execution modes
viz. normal mode (N) and critical mode (C) is the work

on dual-priority scheduling [13]. Dual-priority scheduling is
an effective technique for responsively scheduling soft tasks
without compromising the deadlines of crucial hard real-time
tasks. While their notion of crucial tasks is somewhat similar
to criticality there are two stark differences. First, non-crucial
tasks are not given any scheduling guarantees in their work,
whereas, in our scheme all criticality levels have a guarantee
on their execution times. Secondly, their limitation to two
levels simplifies the analysis but also limits the utility. In
contrast, we allow an unlimited number of criticality levels
with an implicit graceful degradation on overload that follows
the criticality order.

Another related work to dual-priority scheduling is the earli-
est deadline zero laxity (EDZL) algorithm [14, 15]. In EDZL,
tasks are scheduled based on earliest deadline first (EDF) until
some task reaches zero laxity (or zero slack), in which case
its priority is elevated to the highest level. While the notion of
zero slack is used in our solution, the existing EDZL results do
not consider the notion of task criticalities and are not directly
applicable to the mixed-criticality scheduling problem.

Period transformation has been an important solution stud-
ied in the context of mixed-criticality systems [16, 17]. This
technique has been subsequently extended and generalized
in [18]. For any given task set, we can transform the tasks
by scaling both their computation time and period equally.
In the context of mixed criticality, we can perform period
transformation to ensure that the task priorities match the
required criticality. The problem in using this solution for
dealing with overload scenarios is that the period transfor-
mation needs to be performed assuming the task will overrun
its absolute WCET, i.e., with an overloaded computation-time.
Performing such a period transform using the overloaded com-
putation time results in early and pessimistic preemptions by
the period-transformed higher-criticality tasks over the lower-
criticality tasks. The proposed zero-slack scheduling algorithm
switches tasks to their critical mode only when there would
be zero slack remaining to meet their corresponding over-
loaded computation time requirements. Therefore, the zero-
slack scheduling algorithm does not impose more interference
than necessary to provide scheduling guarantees in mixed-
criticality systems.

III. THE CRITICALITY INVERSION PROBLEM

Priority-based preemptive scheduling policies assign pri-
orities to tasks, and at run-time, attempt to schedule the
highest-priority ready task. The priority assignment can be
fixed across task instances (fixed-priority schedulers) or it can
change across task instances (dynamic priority schedulers).
In traditional real-time scheduling, priorities are assigned
with the purpose of maximizing schedulable utilization while
respecting the deadlines of all the tasks in the set.

The utilization maximization approach of traditional real-
time schedulers makes two important assumptions: (1) all
tasks are equally important, and (2) the utilization never goes
beyond the allowable threshold(s). These two assumptions
seldom hold in mixed-criticality systems. In particular, tasks



can have different criticality levels. Hence, if there is ever a
situation where we can only satisfy the deadline of one task,
then we should choose to meet the one with higher criticality.

The second assumption does not hold for a more subtle
reason. Specifically, the fact that enforcement is even con-
sidered as a protection mechanism implies that there is a
possibility that some tasks can go beyond their specified worst-
case execution time. While this is, in general, considered
a fault, an explicit protection against it is needed because
it can create (temporal) overload situations. These overload
situations are precisely when criticality inversion can occur.
Since the traditional priority assignment made by the scheduler
was tailored to increase schedulable utilization, it is agnostic
to criticality. In particular, under priority-based preemptive
scheduling, a low criticality task can have a higher scheduling
priority than a higher-criticality task. Such priority assignment
would schedule the low criticality task earlier than the higher-
criticality task, potentially making the latter miss its deadline.

On the other hand, if we assign priorities based on criticality
(as introduced in Section I), then we eliminate criticality
inversion. However, this assignment can potentially create
significant priority inversion [19] from the perspective of
priority-based preemptive schedulers.

To consider both scheduling priorities and task criticalities,
and explicitly capture the overload execution requirements, let
us define a task τi as:

τi = (Ci, Coi , Ti, Di, ζi)

where:
• Ci is its worst-case execution time under non-overloaded

conditions,
• Coi is the overload execution budget,
• Ti is the period of the task,
• Di is the deadline of the task (with Di ≤ Ti),
• ζi is the criticality of the task. We follow the same

convention as with priorities: lower its value, higher the
criticality.

It is worth noting that the overload budget Coi is used
to create a precise definition our guarantee, i.e., how much
overload is guaranteed. As we will show later, it is possible
to reserve a conservative (large) Coi since it does not add up
across criticality levels.

The priority blocking density PBi for task τi is then defined
as:

PBi =
∑

τj |ζj<ζi

pbji
Di

(1)

where:
• pbji is the maximum time that a higher-criticality task τj

can block the execution of an instance of τi during which
the scheduling priority of τi is higher than that of τj .

Similarly, the criticality blocking density CBi for task τi is
calculated as:

CBi =
∑

τj |ζi<ζj

cbji
Di

(2)

where:
• cbji is the maximum time that a lower-criticality task τj

can block the execution of an instance of τi during which
the scheduling priority of τj is higher than that of τi.

PBi and CBi become blocking utilization when Di = Ti
quantifying the exact schedulable utilization loss. However,
we present our general discussion on utilization loss using the
blocking density figures to allow the more general case where
Di ≤ Ti. Notwithstanding we will use the blocking utiliza-
tion to evaluate our Zero-Slack Rate-Monotonic algorithm in
Section V-E since Di = Ti in this case.

Both pbji and cbji vary depending on how and when the
scheduler assigns priorities and the strategies used to tradeoff
priority and criticality blocking. In the next section we discuss
the strategies taken in our new scheduling scheme.

IV. ZERO-SLACK SCHEDULING

Our scheduling policy works on top of traditional priority-
based preemptive real-time schedulers. It is based on the ob-
servation that criticality inversion only matters under overload
conditions. We use this observation to create two execution
zones for each task τi. In the first zone, every task is included
while in the second zone, every task τj |ζj > ζi is suspended.
This suspension effectively blocks the interference of lower-
criticality tasks in the case of an overload condition, up to
the completion of the task activation. It must be noted that τi
itself can also be suspended by a task τc|ζc < ζi in τc’s second
zone. The execution zones partition the execution of each task
into two modes: the normal mode (N mode) and the critical
mode (C mode). Our scheduling algorithm then calculates the
execution time for each mode.

We now define our scheduling guarantee.

A. Scheduling Guarantee

Our scheduler performs admission control, and if admitted1,
a task τi is guaranteed to run up to Coi if no higher criticality
tasks exceeds its Ci.

This guarantee follows the separation of the overloaded
from the non-overloaded situation. This separation allows us
to make two strategic decisions. First, when no overload
condition is present, we should schedule the task with the
objective of maximizing utilization. And secondly, we also
avoid introducing any interference prevention until the last
instant necessary to satisfy our guarantee.

The last instant to block interference for a task τi is the latest
time at which the interference prevention mechanism can free
enough cycles for τi to complete its Coi before its deadline.
This instant is identified as zero-slack instant because it leaves
no slack in C mode after the completion of Coi . This is the
instant at which the execution mode of the task switches from
N mode into C mode. Avoiding interference prevention till
this last instant enables us to maximize the total schedulable
utilization, while still meeting our scheduling guarantee.

1In the rest of this paper, when we use the term schedulable, we refer to
the property of satisfying this scheduling guarantee.



Our scheme is divided into two parts. The first part is an
admission test that determines the zero-slack instant for each
of the tasks in a task set. The second is a runtime enforcement
mechanism that prevents interference based on the criticality
and the zero-slack instant of each task.

B. Admission Control

Our admission control scheme takes the form of a slack-
discovery algorithm. We start with the worst-case assumption
that there is no slack in the N mode of the tasks and they
always need to run in C mode. This is equivalent to CAPA.
Then, we start moving computation time from the C mode
(in Cci ) to the N mode (in Cni ) of the tasks as we discover
slack in the N mode. This scheme is presented in Algorithm
1. The algorithm converges when it cannot move the zero-
slack instant of any task towards their deadline. This is
codified with two variables per task Z0

i (zero-slack before
cycle) and Z1

i (zero-slack after cycle). Inside the cycle, the
algorithm calculates the slack vector in for task τi in N
mode (with a set of all the original tasks - Γni ) and C mode
(with a set of higher-criticality tasks - Γci ). The slack vector
contains a sequence of slack regions ordered by time, where
each slack region contains a starting instant and duration.
With these slack vectors, we obtain a new zero-slack instant
(Z1
i ) with the function GetSlackZeroInstant that takes Coi and

accommodates the most computation available in the N mode
slack vector, with the rest in the C mode slack vector. After
the convergence of this algorithm a taskset Γ is schedulable
if ∀τi ∈ Γ TotalSlack(V ci ) ≥ Coi .

Algorithm 1 Compute Final Zero-Slack Instants (t = Di)
1: ∀i Z1

i ⇐ 0
2: repeat
3: ∀i Z0

i ⇐ Z1
i

4: for all i in taskset do
5: V ni ⇐ GetSlackV ector(i,Γni )
6: V ci ⇐ GetSlackV ector(i,Γci )
7: Z1

i ⇐ GetSlackZeroInstant(i, V ci , V
n
i , t)

8: end for
9: until ∀i Z0

i = Z1
i

10: return Z1
i

The function GetSlackVector used in Algorithm 1 is specific
to each priority-based preemptive scheduling algorithm and we
will discuss it later in the context of rate-monotonic schedul-
ing. However, the function GetSlackZeroInstant is generic.
This function is presented in Algorithm 2. At the beginning
of this algorithm, we initialize the Cci and Cni of the task
to Coi and 0 respectively. The cycle in this algorithm first
finds the last time instant at which Cci units of slack are
available in the slack vector V c before t = Di (at line 3).
Then, we calculate how much slack is available from zero to
this instant in the vector V n (at line 5). This available slack
is then transferred from Cci to Cni (lines 7 and 8). The next
iteration of the cycle then finds the next instant for a smaller

TABLE I
SAMPLE CRITICAL TASK SET

Task C Co T D Criticality Priority
τ1 2 2 4 4 1 0
τ2 2.5 5 10 8 0 1

Cci (due to the transfer in lines 7 and 8), moving this instant
closer to t = Di. The loop ends when we are not able to
transfer any more computation from Cci to Cni . The function
StartOfTrailingSlack returns the instant at which the requested
slack (Coi ) for task τi starts such that it is available before
deadline t = Di. The function SlackUpToInstant, on the other
hand, returns the amount of slack available up to the specified
instant. It is to be noted here that for simplicity of presentation,
we assume that the origin of time coincides with the release
of task τi.

Algorithm 2 GetSlackZeroInstant(i,V c, V n, t): Calculate
Instant of Slack = 0 before time t

1: Cci ⇐ Coi ; Cni ⇐ 0
2: repeat
3: t1 ⇐ StartOfTrailingSlack(i, Cci , V

c)
4: if t1 ≥ 0 and t1 ≤ t then
5: ku ⇐ SlackUpToInstant(V n, t1)− Cni
6: ku = max(min(ku, Cci ), 0)
7: Cci ⇐ Cci − ku
8: Cni ⇐ Cni + ku
9: else

10: ku ⇐ 0
11: end if
12: until ku = 0
13: return t1

C. A Two-Task Example

We now illustrate the admission control algorithm using a
two-task example and deadline-monotonic scheduling.

Consider the task set in Table I. In this table, we present
the parameters of two tasks, with an additional column for
their deadline-monotonic priority. Note that the priority and
the criticality of the tasks in this table are the inverse of each
other. With these parameters we proceed to calculate the Cci
and Cni for each task τi in the set.

For our task set in Table I, Cn2 and Cc2 are obtained by
first calculating the slack for τ2 in both the N mode and the C
mode. In N mode, the slack up to the end of its deadline (8) is
4 which is not enough to schedule its Co2 = 5 (this is, in fact,
the problem when using pure deadline-monotonic scheduling).
This means that we need to switch this task to C mode at
some point to compensate. To do this, we start by executing
its Cc2 = 5 time in C mode. Then, we evaluate the last instant
Z2 that Cc2 time units are available in C mode. Since τ2 has the
highest criticality, it is the only task running in its C mode, and
hence this last instant is its deadline (8) − Cc2(5) = Z2 = 3.
Then, we check how much time is available in N mode up to
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Fig. 1. Two-Task Example of the Zero-Slack Schedule

time 3, which in this case is 1 (i.e., 3 − Co1 = 1). We then
make this the initial time for Cn2 and subtract it from Cc2 . Next,
we repeat the operation to find the last instant to schedule
Cc2 = 4 units of time in C mode (Z2 = 4). This, in turn,
increments the available slack in N mode (up to instant 4) to
2, moving another unit to Cn2 (i.e., Cn2 = 2 and Cc2 = 3). The
last increment then leads us to the last instant when Cc2 = 3
is available in C mode (Z2 = 5). This new instant does not
increment the available slack in N mode but defines the final
zero-slack instant Z2 for task τ2 to switch to C mode. The final
schedule can be seen in Figure 1. In this figure, we can see
τ1 running first for its whole execution time Co1 = 2. Then, τ2
runs for 2 units and then gets preempted by the second arrival
of τ1 at time 4. Then, τ1 runs for one more unit. At this point
we reach the zero-slack instant Z2 of τ2 and suspend τ1. When
there is no overload in the system, τ2 will run only for 0.5
units more and resume τ1. However, in an overload situation,
τ2 will have enough cycles to complete its Co2 = 5 before the
end of its deadline (at 8).

It is worth noting that our computation of the zero-slack
instant in this example starts by assuming that there is no
slack in the N mode and, as it discovers more slack, keeps
moving computation to N mode. The key property of this
technique is that the computation executed in C mode de-
creases monotonically. A second important observation is that
the initial execution distribution (between Cni and Cci ) may
not be schedulable. In this example, the initial starting point
is, in fact, not schedulable, i.e., if τ2 runs always in C mode
and only uses up to C2 (2.5) units of time starting at zero,
τ1 misses its deadline because only 1.5 units are left before
its deadline (4) and our guarantee is not honored (this is how
CAPA would schedule the task set). However, with the final
scheduling parameters the task set honors our guarantee. That
is, if τ2 only uses C2, then it means that at its zero-slack
instant (5), it will only run for 1

2 a time unit more leaving 2 1
2

time units for τ1 (that only needs 1 more) to complete its Co2 .

D. Proof of Convergence of the Zero-Slack Computation

Because our scheme relies on the convergence of the zero-
slack computation algorithm, we state the assumptions of the
algorithm and prove its convergence.

The zero-slack computation algorithm assumes the use of
a non-anomalous2 fixed-priority scheduling algorithm. These
algorithms ensure that reducing any Cj of τj ∈ Γ never

2Some multiprocessor scheduling schemes are known to be anomalous,
where this property does not hold.

increases the response time Wi ∀τi ∈ Γ. Uniprocessor schedul-
ing algorithms like RMS and CAPA are known to be non-
anomalous with respect to computation time [20]. Assuming
the use of this algorithm, we can prove convergence.

Lemma 1: When non-anomalous scheduling algorithms are
used to calculate the slack vectors, the Compute Final Zero-
Slack Instants algorithm (Algorithm 1) converges.

Proof: The proof follows from the following three loop
invariants for Algorithm 1:

1) Z1
i ≥ 0 ∀τi ∈ Γ

2) Z1
i ≥ Z0

i ∀τi ∈ Γ
3) Z1

i ≤ Di ∀τi ∈ Γ
Given these three loop invariants, we can observe that Z1

i starts
at 0, never decreases since Z1

i ≥ Z0
i , and is bounded to be

less than or equal to Di. Therefore, Algorithm 1 converges.
We now prove that these three loop invariants hold true for

Algorithm 1.
Z1
i ≥ Z0

i ∀τi ∈ Γ: At the beginning of the iteration, task τi
is split into Cci units of execution in the critical mode (C), and
Coi − Cci units of execution in the normal mode (N). During
the iteration, the execution time in the critical mode Cci never
increases. For any non-anomalous scheduling algorithm, the
slack available in the critical mode (C) can never decrease
since Cci never increases. Therefore, the zero slack instant Z1

i

calculated using the slack available in the critical mode (C) is
never pushed earlier than Z0

i i.e. decreased in value.
Z1
i ≥ 0 ∀τi ∈ Γ: this follows from the initialization

condition Z1
i = 0 and the previously established invariant that

Z1
i ≥ Z0

i ∀τi ∈ Γ.
Z1
i ≤ Di ∀τi ∈ Γ: Consider a task τi with a zero-slack

scheduling instant of Di. The amount of time spent in the
critical mode (C) is 0. Therefore, there is no additional slack
available in the critical mode (C). This implies that the zero-
slack scheduling instant can be moved no further than Di.

E. Runtime Behavior of The Zero-Slack Scheduling

The central piece of the runtime mechanism of our scheme
is the dual-mode execution implementation. It is important to
keep the overhead of such a mechanism as lean as possible.
We can achieve this by using the zero-slack instants calculated
offline as timers to switch to C mode. These timers then mark
the time when the lower-criticality tasks are suspended. For
this reason, we need to keep track of the criticality level of
the tasks to be able to distinguish which tasks need to be
suspended. At the same time, we need to keep track of which
tasks are in C mode in order to know which tasks to resume
when a task finishes its C mode. In a resource reservation
framework, the admission test can be performed at the time
of the resource reservation and the corresponding zero-slack
instants can be computed.

F. Effectiveness of Scheme

To evaluate the effectiveness of our scheduling algorithm,
we defined a metric to measure a reduction of the blocking
density factors (PBi and CBi) defined in Section III. For



CBi, we know that a task τj |ζi < ζj imposes a blocking
term cbji = Coj in the worst case. For PBi, a task τj |ζj < ζi
imposes a blocking term pbji = Cj in the worst case.

Because the blocking factors at each task level may involve
parts of the blocking factors of other tasks, the final taskset-
wise blocking, is calculated by taking the maximum blocking
among all the tasks:

TBΓ = max
τi∈Γ

(CBi + PBi)

This total blocking is the maximum blocking present in
the task set Γ whose criticality-awareness is improved by
zero-slack scheduling. We call this combined blocking mixed-
criticality blocking (MC blocking). It is worth noting that this
value depends on the level of inversion between priorities and
criticalities, as well as their budgets and periods.

For instance, for the task set in Table I, the blocking factors
are defined as:
• PB1 = C2

D1
= 2.5

4 = 0.625
• PB2 = 0 (because it is the lowest priority)
• CB1 = 0 (because it is the lowest criticality)
• CB2 = Co

1
D1

= 2
4 = 0.5

Hence, the MC blocking of the task set is the maximum of
the sum of the factors that is equal to 0.625.

1) Residual MC blocking: The effectiveness of an algo-
rithm in reducing MC blocking is calculated by the amount of
residual MC blocking that the algorithm is not able to remove.
For instance, in the task set of Table I, when criticality is used
as the scheduling priority (CAPA), both CB1 and CB2 are
zero. However, PB1 = C2

D1
= 2.5

4 = 0.625 (and PB2 = 0).
Taking the maximum of the factors the residual MC blocking
left by the algorithm is 0.625. On the other hand, when RMS
is used, then PB1 = PB2 = 0. But CB2 = Co

1
D1

= 2
4 = 0.5

(and CB1 = 0), is the residual MC blocking left by the
algorithm. Finally, in the case of the zero-slack scheduler, the
factors are reduced to PB1 = Cc

2
D1

= 0.5
4 = 0.125, PB2 = 0,

CB1 = 0, and CB2 = C1
D2

= C1
D2

+ 1
D2

= 2
8 + 1

8 = 0.375
( 1
D2

is the fraction of C1 that executes in the second arrival
of τ1 before the zero-slack instant). Hence, the residual MC
blocking is 0.375. It is worth noting that the zero-slack
scheduler reduces both PB and CB. PB is reduced because
only a fraction of the Co2 (0.5) is run with a priority greater
than the scheduling priority (deadline-monotonic priority). CB
is reduced because the switching to critical mode at the zero-
slack instant of τ2 reduces this blocking from 2

4 to 3
8 (2 in the

first period of τ1 and 1 in its second period). The reduction in
criticality blocking is just enough to enable the completion
of Co2 . Furthermore, the fact that PB1 was reduced from
0.625 to 0.125, when compared to CAPA, indicates that the
zero-slack algorithm has further capacity to tolerate a larger
priority blocking without breaking the scheduling guarantee.
We capture this tolerance with a metric we call laxity density.

2) Laxity Density: The laxity density of a task τi measures
the available density for τi after we discount the preemptions
of higher-priority tasks and the blocking factors left by the

scheduling algorithm of interest for this task. The laxity
density for a task τi is then defined as:

LaxUi = A(i)− Coi
Di
− (PBi + CBi)−

∑
τj∈Hhc

i

Cj
Dj

(3)

where:
• A(i) is the available density for task τi for a specific

priority-based preemptive scheduler. For instance, for
rate-monotonic scheduling with n implicit-deadline tasks,
this is n(2

1
n − 1) (see [21])

•
Co

i

Di
is the overload density of τi

• PBi + CBi is the blocking factor for the scheduling
algorithm of interest

•
∑
τj∈Hhc

i

Cj

Dj
is the density consumed by the higher-

priority and higher-criticality tasks (Hhc
i )

The laxity density allows us to see how an algorithm spreads
the laxity of the system across the different tasks. Hence a
successful algorithm will keep the minimum laxity across the
tasks of the task set always greater than or equal to zero. This
means that, an algorithm X is better than an algorithm Y , if
there exist task sets where the minimum laxity under Y goes
below zero while under X is greater than or equal to zero,
but if there exists a task set with a minimum laxity under X
below zero, its minimum laxity under Y is also below zero.
We will use this metric to evaluate the performance of our
zero-slack RM once we discuss its details in the next section.

V. THE ZERO-SLACK RATE-MONOTONIC SCHEDULING
(ZERO-SLACK-RM)

The zero-slack scheduling policy works on top of a priority-
based preemptive scheduler and relies on the calculation of
slack vectors provided by such scheduler. In this section, we
present the slack vector calculation for the rate-monotonic
scheduler. We chose the RM scheduler to simplify the ex-
planation of the zero-slack scheme. Hence, in this section we
will assume implicit deadlines (Di = Ti).

A. Worst-Case Phasing of Dual-Mode Tasks

Key to the calculation of the slack vectors in the rate-
monotonic scheduling is the phasing of the tasks. For a single-
mode execution, Liu and Layland [21] proved that the phasing
that creates the maximum preemption for a task τi happens
when every task τj |priority(τj) < priority(τi) arrives at the
same time as τi. However, in a dual-mode task, this worst-
case phasing does not hold. This is because, when tasks reach
their zero-slack instants, they will suspend lower-criticality
tasks. On the one hand, this suspension acts, as intended, to
avoid preemptions suffered by task τi from lower-criticality
tasks. However, it also acts as a preemption when higher-
criticality tasks suspend τi. Hence, to calculate the worst-case
delay imposed by this type of preemption, we need to align
all the suspensions in the same way as the period arrivals.
Unfortunately, if we align the zero-slack instants of the higher-
criticality tasks, we may misalign the arrival of higher-priority
tasks. In other words, it is not always possible to align both



TABLE II
ZERO-SLACK-RM SCHEDULED TASK SET

Task C Co T D Criticality Priority ZS Instant
τ0 10 50 100 100 2 0 80
τ1 20 100 200 200 1 1 60
τ2 40 200 400 400 0 2 200

the worst-case arrival of the tasks and the zero-slack instants.
The implication of this misalignment is that we cannot create
a single integrated critical zone based on the alignment of
both types of preemptions. As a result, we take a pessimistic
approach by assuming that the effects of both alignments
always happen.

Although the worst-case phasing may not exist, it provides
an upper bound on the total interference imposed on task τi.
This can be shown as follows. Before the zero-slack instant,
the maximum interference from higher-priority tasks happens
when they are released simultaneously with τi (from [21]).
After the zero-slack instant, τi effectively blocks all the lower -
criticality tasks. Therefore, the interference can only arise from
higher-criticality tasks. By switching all the higher-criticality
tasks to their critical mode (C) along with τi, the interference
suffered by τi in the critical mode (C) is also maximized.

B. A Zero-Slack-RM Scheduling Example

Let us use an example to illustrate the characteristics of the
zero-slack-RM scheduler. Table II presents a task set with the
priorities assigned by the rate-monotonic scheduler and the
zero-slack instants calculated by our algorithm.

Due to space limitations, we will focus our discussions
on τ1. Figure 2 presents the critical zone of this task. In
this figure, we can see the preemption from τ0 in the N
mode of τ1 for 50 units of time. After this, τ1 runs for
10 units and then reaches its zero-slack instant at time 60,
switching to C mode. In C mode, it suspends the lower-
criticality task τ0, but at the same time it is suspended by the
higher-criticality task τ2. This suspension is the pessimistic
approach we use due to the absence of an exact worst-case
phasing (as discussed in Subsection V-A). τ2 then runs for C2

(40) units and resumes the lower-criticality tasks. However,
in order to maintain the criticality order, this resumption is
implemented as a stack, meaning that it only returns to the
previous criticality level (leaving τ0 suspended). Then, τ1 can
continue executing completing its Co1 (100) at time 190.

Each task in the task set has its own (pessimistic) critical
zone similar to the one presented in Figure 2, but they are
unfortunately not necessarily aligned with each other.

C. Calculating The Slack Vectors in Zero-Slack-RM

In order to calculate the slack vectors in zero-slack-RM,
we first define an interfering taskset for each task τi under
zero-slack-RM. For each of the two execution modes (C and
N=RM), there could be different tasksets that could interfere
with (i.e. preempt) τi. We use CEj to represent the effective
execution time that will be considered for each interfering task

0 50 60 100 190

Zero-slack instant

0τ
1τ
2τ

Fig. 2. Critical Zone of Task 1

τj . In particular, in the RM mode, the task set that would
interfere with task τi is defined as:

Γni = Γrmi = H lc
i ∪Hhc

i ∪ Lhci ∪ Si
where,
* H lc

i is the set of tasks with higher rate-monotonic prior-
ities but lower criticality. These tasks attempt to run for Co

units. That is, ∀τj ∈ H lc
i , CEj ⇐ Coj .

* Hhc
i is the set of tasks with higher rate-monotonic priori-

ties and higher criticality. These tasks run for their respective
non-overloaded computation time. If a higher-criticality task
executes beyond its non-overloaded computation time, then the
scheduling guarantee of lower-criticality task τi need not be
honored. Hence, ∀τj ∈ Hhc

i , CEj ⇐ Cj .
* Lhci is the set of tasks with lower rate-monotonic priorities

and higher criticality. These tasks are considered to be running
in their C mode. In fact, we only need to consider the part
of computation that runs in its C mode. That is, assuming
that arm,ij contains the slack available to task τj | τj ∈ Lhci
in RM mode, while honoring the guarantee of task τi, then
CEj ⇐ (Cj − arm,ij ). Initially, we assume that there is no
slack available in RM mode (arm,ij = 0), but as we move the
zero-slack instants of the tasks towards the end of their period
we will discover additional slack in RM mode reducing CEj
further, in turn the available slack in RM mode increases.

* Si is the set of tasks with the same level of criticality
but higher priority. These tasks are running at their Co, i.e.,
∀τj ∈ Si, CEj ⇐ Coj .

The interfering task set for C mode of task τi is defined as:

Γci = Hhc
i ∪ Lhci ∪ Si

with the same set of definitions as before. Note that the low
criticality tasks are excluded since the lower-criticality tasks
are blocked during τi C mode of execution.

With these task sets, we create a slack vector for each
execution zone using Algorithm 3. This algorithm receives
as parameters the index of the task we are evaluating and the
interfering task set, ordered by increasing order of priority.

Algorithm 3 calculates the slack vector given a task τi and
its interfering task set Γ, for the execution mode under consid-
eration. The algorithm uses a parameter Cvi to accumulate the
total slack available to τi over the entire period of duration t.
The outer loop of Algorithm 3, adds new entries to the slack



vector. The inner loop computes the time instant Rcurrent by
which Cvi units of slack are available, and the time instant b at
which the next interfering task Im arrives. Difference between
b and Rcurrent is the next available slack region for τi.

Algorithm 3 GetSlackVector(i, Γ, t = Ti): Slack Vector
Calculation

1: index⇐ 0 ; Cvi ⇐ 0
2: repeat
3: Rcurrent ⇐ Cvi l b⇐ 0
4: repeat
5: Rprevious ⇐ Rcurrent
6: Rcurrent ⇐ Cvi +

∑
j∈Γd

Rprevious

Tj
eCej

7: b⇐ t ; Im ⇐ i
8: for (j ∈ Γ) do
9: A⇐ dRprevious

Tj
eTj

10: if (A < b) then
11: b⇐ A ; Im ⇐ j
12: end if
13: end for
14: if (Rprevious = Rcurrent ) then
15: Rcurrent ⇐ Rcurrent + CeIm

16: end if
17: until (Rprevious = Rcurrent or Rcurrent ≤ t)
18: Vi[index].slack ⇐ min(b, t)−Rcurrent
19: Vi[index].time⇐ Rcurrent
20: Cvi ⇐ Cvi + (min(b, t)−Rcurrent)
21: index+ +
22: until (Rcurrent ≥ t)
23: return Vi

D. Properties of The Zero-Slack-RM Scheduler

We now present the properties of our zero-slack RM sched-
uler.

1) Subsumes CAPA: Any task set schedulable under
Criticality-As-Priority Assignment(CAPA) is also schedulable
under the zero-slack scheduling scheme.

Proof: Algorithm 1 starts with assigning Z0
i = Z1

i = 0
for all tasks τi. Under this assignment of zero-slack instants,
the zero-slack scheduler behaves essentially like a CAPA
scheme, since whenever τi is released all the lower criticality
tasks are immediately blocked due to τi switching to its critical
mode (Z1

i = 0). Therefore, if the task set is schedulable
under CAPA, it should be schedulable at the first iteration of
Algorithm 1. In this scenario, we now inductively prove that
each task τi remains schedulable over subsequent iterations.

During subsequent iterations of the Compute Final zero-
slack Instant algorithm, the Algorithm 2 is used to transfer
additional computation of up to ku from the critical mode (C)
to the normal mode (N). This transfer is performed only to
use up the slack of ku available in the normal mode (N) as
calculated using SlackUpToInstant till the zero-slack instant
t1. Considering any task τi, this transfer of computation does
not increase the blocking terms suffered by τi from higher
criticality tasks executing in their C mode. The normal mode

N of τi remains unaffected, since the additional computation
is transferred to only fill up the available slack. Therefore,
the response time of task τi only reduces with subsequent
iterations. Hence, if task τi was schedulable in the previous
iteration, it continues to remain schedulable. This completes
the proof by induction.

2) Corollary: Graceful Degradation: When a task τj ex-
ecutes for a C such that Cj < C ≤ Coj , then only tasks
τi with ζi > ζj can miss their deadline. This follows from
the scheduling guarantee provided by zero-slack scheduling,
which was described in subsection IV-A, and the property that
rate-monotonic scheduling is non-anomalous.

3) Subsumes RM Scheduler: Any task set schedulable un-
der rate-monotonic scheduling is also schedulable under the
zero-slack scheduling scheme.

Proof: For any task set Γ consisting of tasks τi = (Ci, Ti)
schedulable under the RM scheduling scheme, consider an
equivalent Γz with tasks τzi = (Ci, Coi , Ti, ζi) with Ci =
Coi = Ci and ζi = πi, where πi is the priority assigned to
task τi under RM scheduling. Scheduling the task set Γz using
CAPA produces the same schedule as the RM scheduler, since
the priorities are completely aligned with the criticality under
the chosen ζi values. Hence, Γz is also schedulable under
CAPA, since it is schedulable under RM scheduling. Using the
property that zero-slack scheduling subsumes CAPA, it follows
that Γz is also schedulable under zero-slack scheduling.

4) Utilization Properties: A task set Γz with with tasks
τzi = (Ci, Coi , Ti, ζi) is schedulable under zero-slack-RM if:

Urm ≥ Uz =
∑

ζk=ζiandTk<Ti

Cok
Tk

+
∑

ζj<ζiandTj<Ti

Cj
Tj

+

Coi +
∑

ζp<ζiandTp≥Ti

Cp

Ti
(4)

From the perspective of τi, under overloaded conditions,
the utilization is Co

i

Ti
. The worst-case interfering utilization

arising from the equal-criticality higher-priority tasks τk is
given by Co

k

Tk
, since they could potentially misbehave. The

worst-case interfering utilization arising from higher-criticality
higher-priority tasks τi is given by Cj

Tj
, and the blocking

utilization from higher-criticality lower-priority tasks is given
by Cp

Ti
. We do not have to consider the lower-criticality tasks

since they cannot affect the schedulability of task τi. If the
lower-criticality tasks could impose any interference on τi that
causes it to potentially become unschedulable, then the zero-
slack instant would have been moved earlier to ensure the
schedulability of τi.

It is important to note here that Equation (4) is only used
to present a property of the Zero-Slack RM Scheduler. For the
purposes the admission control, we use the response-time test
based slack discovery algorithm described in Algorithm 3.

E. Laxity Utilization Comparison

The properties of the zero-slack-RM algorithm can be
depicted graphically in a comparison of its laxity utilization
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Fig. 3. Laxity Utilization vs Criticality-to-Priority Inversion

against that of both RMS and CAPA. Figure 3 depicts this
comparison. We decided not to include period transformation
in the comparison given that in the end it will behave as RMS
with overloaded computation time, as described in section II.

For the comparison, we use the task set presented in
Table II. We then vary the criticality of the task set (as a
criticality vector [ζ0, ζ1, ζ2]) to explore all the different degrees
of priority-to-criticality inversion. Because this task set is
harmonic, we use 1 as the available utilization A(i) for each
task τi, the maximum for a harmonic task set under rate-
monotonic scheduling. The assigned criticality vector is shown
in the X-axis, and the minimum and total laxity utilization
values are plotted. It is to be noted here that the total laxity
utilization can be greater than 1 because the laxity available
to a task could also be available to other tasks in the system.

Figure 3 shows that there are criticality assignments for
which either RMS or CAPA or both algorithms are unable
to achieve a minimum laxity greater than or equal to 0 (to
make it schedulable), whereas zero-slack scheduling ensures
a minimum laxity greater than or equal to zero in all cases. In
particular, this figure shows that, for a criticality assignment
[1, 0, 2], both RMS and zero-slack scheduling algorithms are
feasible, whereas, CAPA renders the task set unschedula-
ble. However, for the criticality assignment [1, 2, 0], RMS
is unschedulable, whereas, CAPA and zero-slack scheduling
continue to remain feasible. This illustrates that zero-slack
scheduling subsumes both RMS and CAPA.

We observe that the total laxity available under zero-slack
scheduling is bounded by the maximum total laxity available
under RMS and CAPA. Specifically, Figure 3 shows that zero-
slack scheduling always has a total laxity that is either upper
bounded by the laxity of RMS or by the laxity of CAPA.
However, there are criticality assignments like [2, 1, 0], where
both RMS and CAPA have negative minimum laxity but zero-
slack scheduling remains feasible. The reason for this behavior
is that the key factor determining feasibility is the distribution
of available laxity, as opposed to the total available laxity
itself. For the criticality assignment [2, 1, 0], while CAPA has

more laxity than zero-slack scheduling, the latter distributes
the laxity more evenly among the tasks by controlling the
switching between different execution modes.

F. Relaxing Constraints

For simplicity of presentation, the discussion so far has
assumed implicit-deadline constraints and accommodated rate-
monotonic scheduling. It is important to note here that our
slack vector calculation in Algorithm 3 uses generic static-
priority preemptive scheduling results [22], therefore enabling
it to be readily extended to other priority assignments. For
instance, it can be extended to deadline-monotonic scheduling,
which is an optimal scheduling algorithm for systems with
constrained deadlines (Di ≤ Ti). In the context of deadline-
monotonic scheduling, it is straight forward to use t = Di in-
stead of Ti in Algorithm 3, after assigning deadline-monotonic
priorities to tasks. Due to space constraints, we do not discuss
the density-based properties of such a Zero-Slack Deadline-
Monotonic (ZSDM) scheduler.

Subsequent support for release jitter also follows from
existing results for fixed-priority scheduling based on those
presented in [22]. This is due to the fact that we employ
their basic analysis in step 6 of Algorithm 3. Replacing this
response-time computation with the results in [22] will enable
such extensions. In order to simplify the presentation of our
results, we avoid a detailed discussion of such extensions.

VI. IMPLEMENTATION

The zero-slack-RM scheduler and its runtime enforce-
ment mechanism have been implemented in Linux/RK [8].
Linux/RK is a resource kernel that creates time (or space)
partitions of resources, e.g. CPU, providing temporal isolation
between these partitions. These partitions are called resource
reserves. Tasks are then associated with these reserves. Time
reserves are specified as a consumption time (C) of the
resource over a period of time (T ). With this specification,
Linux/RK ensures that the tasks do not consume more time
than the allocated one over the specified period. These reserves
are implemented as periodic servers [23] where their budget is
replenished periodically and if this budget is exhausted before
the end of the period, the associated tasks are stopped. These
tasks are resumed once the reserve is replenished.

Our runtime enforcement is implemented as a new type of
reserve in Linux/RK with two execution modes. This reserved
type is called a criticality reserve. A criticality reserve adds
two additional parameters to the regular CPU reserve: the
criticality (ζ) and the zero-slack instant (ZS), and uses Coi
as the C consumption time.

A. Zero-Slack Enforcement

The dual execution mode is implemented as a zero-slack
enforcement. Specifically, a timer is setup at the start of the
period of every task τi to expire according at the zero-slack
instant. If, when the timer expires, τi has not finished its
activation, it suspends all the tasks with a criticality lower
that its own, thereby entering its C mode. It also sets a global



criticality-level variable to equal its own criticality indicating
that no task with lower criticality should be running (storing
the previous value as set by any previous task in C mode in
a stack). In addition, it puts the suspended tasks in a list that
is ordered by criticality. Once τi finishes its execution, then
it resumes the tasks in C mode for the next criticality level,
or all the tasks if no other task is in C mode. Finally, when
a reserve is replenished, the criticality level of the associated
task is compared against the current criticality level and it is
added to the suspended list if it is lower.

VII. CONCLUSIONS

In this paper, we studied the problems introduced by mixed-
criticality task sets. We also identified the shortcomings of
traditional temporal isolation schemes to prevent inter-task
interference in mixed-criticality systems. In particular, we
characterized and quantified the criticality inversion problem
that arises when a higher-criticality tasks misses its deadline
because it is forced to wait for a lower-criticality task. We
then presented a new scheduling scheme with a new protection
policy, which we call as asymmetric protection that only
prevents interference to higher-criticality tasks from lower-
criticality tasks. Our scheme has a generic offline zero-slack
computation algorithm and runtime enforcement mechanism
that can be used with any priority-based preemptive scheduler
that has non-anomalous scheduling behavior. The other part of
our scheme is a slack analysis algorithm that is specific to each
priority-based preemptive scheduler. We developed the slack
analysis algorithm for RMS and proved multiple properties
of the integrated algorithm (zero-slack RM). This algorithm
provides the same level of protection against criticality inver-
sion as the best known priority assignment for this purpose,
criticality as priority (CAPA). Zero-slack RM provides the
same level of schedulable utilization as RMS if criticality
levels are equal to priorities, and better if they are different
and we use our scheduling guaranteed. We also developed
two metrics to evaluate such algorithms. First, a mixed-
criticality blocking (MC blocking) metric measures how much
blocking reduction is possible in a specific task set. Secondly,
laxity utilization measures how well a scheduling algorithm
reduces the MC blocking of the task set to make the task set
schedulable. These metrics are then used to show that zero-
slack RM always outperforms or equals CAPA and RMS to
spread the MC blocking reduction of a task set to the tasks that
need it the most. Finally, we demonstrate the practicality of
our runtime enforcement with an implementation in Linux/RK.
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