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This paper addresses the general area of computer architectures 
for safety-critical real-time applications. The maximum acceptable 
probability of failure for these applications ranges from about 
I O 4  to 1Oi0 per hour depending on whether it is a military 
or civil application. Typical examples include commercial and 
military aircraf fly-by-wire, full authority engine control, satellite 
and launch vehicle control, ground transport vehicles, etc. Real- 
time response requirements for these applications are also very 
demanding, with correct control inputs required every 10 to 100 
ms, depending on the application. These dual goals of ultrahigh 
reliability and real-time response necessitate computer systems 
that are quite different from other dependable systems in their 
architecture, design and development methodology, validation and 
verification, and operational philosophy. This paper highlights 
these differences by describing each of these aspects of safety- 
critical systems. Architectural principles and techniques to address 
these unique requirements are described. 

I. INTRODUCTION 
Safety-critical real-time computing became an impor- 

tant issue when designers began to incorporate computers 
into guidance, navigation, and control systems of space- 
craft at the dawn of the space age. Early spacecraft sys- 
tems achieved reliability through rigorous quality control 
and component engineering. The fault-avoidance approach 
proved quite satisfactory for the Apollo expeditions to the 
moon. There was a cost penalty, however, for engineering 
high reliability into devices through a reduced component 
failure rate. With the advent of the microprocessor, the 
weight, volume, and power associated with redundant hard- 
ware decreased. These physical resources, of course, are 
always at a premium in aerospace vehicles. The micro- 
processor made it possible to trade off fault-tolerance and 
fault-avoidance techniques to minimize the overall cost. 
Even more important, it made computers affordable for 
many more applications. Safety-critical real-time applica- 
tions of computers in the last 30 years have expanded to 
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include aircraft, rotorcraft, ground transportation vehicles, 
ships, and submersibles as well as nontransport applications 
such as nuclear power plants and medical equipment. 
Section I1 of this paper provides the historical background 
and evolution of safety-critical computer architectures and 
their applications. Section 111 provides an overview of 
the requirements that are a common denominator among 
these diverse applications and that distinguish this class of 
applications of fault-tolerant computers from others where 
computer failures are not as catastrophic. 

Dependable architectures designed in the early 1970’s for 
safety-critical applications included dual-dual and triplex 
systems. The emphasis was on tolerating random hard- 
ware faults, also known as operational faults, that are 
presumed to occur independently in redundant copies of 
hardware. Experience with these early systems showed that 
redundancy can provide a cost-effective altemative to fault 
avoidance for this class of faults. However, redundancy also 
substantially complicated the task of validation. In fact, 
it was all too easy to end up with a redundant system 
that was more failure-prone than a simplex system. A 
contributing factor to this situation was the ad hoc approach 
to redundancy management that was employed often under 
the simplistic assumption that redundancy equated with 
fault tolerance. Fault propagation, error propagation, syn- 
chronization of and consensus between redundant elements, 
and other redundancy management issues were often over- 
looked. However, twenty years ago, there was no theory to 
guide the designers of fault-tolerant systems. 

In the last 10 years or so, theoretically rigorous solu- 
tions to tolerate independent hardware faults have been 
designed, optimized, implemented, evaluated analytically 
and empirically, and validated. Section IV discusses the 
theoretical approach for hardware fault tolerance. This 
approach has been successful to such an extent that the 
dominant cause of failure of a correctly designed Byzantine 
resilient (BR) computer today is common-mode failures 
(CMF). A common-mode failure occurs when multiple 
copies of a redundant system suffer faults nearly simul- 
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taneously, generally due to a single cause. Increasingly, 
emphasis in the design of safety-critical computers has 
been on dealing with CMF’s. Unlike independent hardware 
faults, the sources of common-mode failures are so diverse 
that numerous disparate techniques are required to predict, 
avoid, remove, and tolerate them. There is no silver bullet 
like the solution to the Byzantine Generals Problem to solve 
the CMF problem. Solutions have ranged from application 
of formal methods to use of design diversity. Section V 
discusses an approach for common-mode failure tolerance. 

Real-time information processing is intrinsic to the op- 
eration of all these systems. Typically, the control stability 
aspects of these applications require that data operations 
(such as input, processing, and output) be performed within 
some bounded real-time constraints. Any missed time dead- 
lines can be viewed as system failures, with results as 
consequential as hardware failures. Thus contemporary 
designs must consider both the hardwarehoftware fault tol- 
erance as well as the deterministic scheduling of real-time 
tasks. Unlike other applications of computers, safety-critical 
applications require that the computer system be certified 
by some authority such as NASA for space missions, 
FAA or JAA for commercial transport aircraft, and the 
NRC for nuclear power plants. The issue of validation 
and verification plays a crucial role in the design and 
certification of safety-critical real-time computer systems. 
A full discussion of hard-real-time schedulers and the V&V 
issues is beyond the scope of this paper. Suffice it to say 
that the architectural principles discussed in the remainder 
of this paper have been chosen because of, among other 
things, their positive impact on both of these issues. 

11. HISTORICAL PERSPECTIVE 
Use of digital computers in safety-critical applications 

was pioneered by NASA on the Apollo missions to the 
moon. The Saturn V launch vehicle was controlled by 
an early triply redundant IBM computer. By contrast, the 
command module and the lunar module each had a sim- 
plex Apollo Guidance, Navigation, and Control (AGN&C) 
computer, due to severe weight limitations, on which the 
astronauts were critically dependent for their journey to the 
moon and back. The AGN&C computer relied on simplicity 
and quality control to achieve very high reliability. The 
AGN&C was one of the very first computers to use 
integrated circuits. Because of reliability considerations, 
only one type of circuit, a three-input NOR gate, which was 
simple enough to be controllable, testable, and producible, 
was used to synthesize all the digital logic in the computer 
[SI. During over 100000 h of cumulative operations, no 
permanent failure of the computer was ever recorded. 

The design and validation of these early systems in- 
fluenced the fly-by-wire flight control systems developed 
in the 1970’s for military aircraft. A surplus AGN&C 
computer was, in fact, flown on a NASA/Navy F-8 fighter 
aircraft converted to a flying research testbed. The basic 
F-8 mechanical control system, i.e., the mechanical links 
between the pilot and the control surface actuators, were 

completely removed. Between 1971 and 1973, 42 flights 
were accomplished with a total accumulated flight time of 
58 h [31]. Historically, this was the first recorded flight of 
an aircraft using as its primary means of flight control a 
Digital Fly-by-Wire (DFBW) system, with no mechanical 
backup. 

In 1976, the simplex Apollo computer was replaced by 
a frame-synchronous triply redundant system utilizing an 
IBM APlOl computer in each channel. The F-8 DFBW ar- 
chitecture relied on bit-wise exact consensus of the outputs 
of redundant computers for fault detection and isolation. 
Although the architecture did not meet the requirements 
for Byzantine resilience (the BR theory had yet to be 
developed), elaborate measures were taken to make sure 
that redundant computers obtained consistent sensor values. 
This was accomplished by a triply redundant interface unit 
(IFU) which was responsible for interfacing the sensors 
and actuators to the computers and for interchannel data 
transfers between computers. This second phase of the 
F-8 DFBW program was also a pathfinder, in terms of 
verification of synchronization, redundancy management, 
and other fundamental concepts for the Space Shuttle’s 
data processing system (DPS) which uses the same APlOl 
computers in a quad-redundant fashion. 

The Space Shuttle DPS was designed to meet the fail op- 
erational, fail safe (FOES) requirement. This requirement 
meant that the avionics system must remain fully capable of 
performing the operational mission after any single failure 
and fully capable of returning safely to a runway landing 
after any two failures [lo]. Although the Shuttle DPS, like 
the F-8 DFBW system, was not explicitly designed to meet 
the BR requirements, it comes very close. It meets the 
requirements for the number of fault containment regions 
(4) and the connectivity requirement (fully cross-strapped), 
at least in the full-up configuration. Additionally, the two- 
round exchange protocol is used to agree on some input 
values, deemed to be critical. (The BR theory requires that 
this protocol be used for all values). 

A very interesting aspect of the DPS architecture is the 
very early use of software design diversity in a safety- 
critical computer system. Considerations of software errors 
which could affect all four computers and concern about 
the overall complexity of the primary system forced a 
backup system. The main constraint on the backup system 
was that in no way it should degrade the reliability of 
the primary system or require additional crew training. 
The result was a concept which used the fifth computer, 
identical in hardware to the primary computers, but loaded 
with unique, independently developed and coded software 
capable of safe vehicle recovery and continuation of ascent 
or safe return from any mission phase. A redundant, manual 
switching concept was devised by which control of all 
required data buses, sensors, actuators, and displays was 
transferred to the single backup computer. 

In parallel with NASA’s early efforts, the commercial 
air transport industry was also pioneering the use of fault- 
tolerant computers for real-time flight control applications. 
In early 1970’s, all wide-bodied “jumbo jets,” Boeing 747, 
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Lockheed L- 101 1, and Douglas DC-10, were equipped 
with computers to execute fully automatic landings in all 
visibility conditions including Category 111 (zero horizontal 
visibility and zero ceiling). Unlike the space missions, the 
autoland function had to operate for just a few minutes out 
of which only about 15 s were truly critical. At the alert 
height, 100 ft for Cat 111, if the autoland system is no longer 
fail-op, the pilot executes a go-around, i.e., chooses not 
to land automatically. Conversely, if the system is fail-op 
at the alert height, the automatic landing proceeds. During 
the remaining seconds before touchdown, the probability of 
failure of the autoland system must be lo-’ or less. This 
is two to three orders of magnitude less than what was 
acceptable for space missions and military flight control 
systems since public safety as opposed to lives of astronauts 
or pilots was at stake. However, as already pointed out, 
the autoland system had to demonstrate such an ultrahigh 
reliability only for a few seconds. The DC-IO autoland used 
two identical channels, each consisting of dual redundant 
fail-disconnect analog computers for each axis, i.e., roll, 
pitch, and yaw [29]. The Boeing 747 autoland was a triply 
redundant analog computer. The Lockheed L-1011 used 
a dual-dual architecture implemented by Collins Avionics 
using digital computers. (As an interesting aside, the FTMP 
was implemented using the same Collins CAPS-6 micropro- 
cessor and programmed in the same higher order language 
AED as the Lockheed autoland system.) The Lockheed 
flight control system did not use design diversity in software 
or hardware. 

The flight control computers for commercial airliners 
have made tremendous progress in the last 20 years. The 
AIRBUS A-320 has a full time DFBW flight control 
system with no mechanical backup. It uses software design 
diversity to protect against common-mode failures. The 
Boeing 777 flight control computer, now being designed 
by GEC Avionics, UK, takes design diversity well beyond 
what has ever been tried in practice or even in a re- 
search laboratory. The initial concept rested on three quad- 
redundant computers with each of the quads implemented in 
dissimilar hardware and programmed in dissimilar software, 
i.e., 12 processors arranged in a 3 by 4 matrix [14]. The 
three processors with their associated languages were to 
be Inmos Transputer T4 14/0ccam, Motorola 68020/Ada, 
and Intel 80386/C. The software design diversity has since 
been simplified to use only Ada, although three different 
compilers are still under consideration to generate code 
for the three types of microprocessors, which have also 
been changed to Motorola 68040, Intel 80486, and AMD 
29050 to take advantage of the latest technology and 
higher throughput [2]. The hardware design has also been 
simplified to a 3 by 3 matrix of 9 processors. 

The NASA/Navy F-8 DFBW program was a precursor to 
a number of military fly-by-wire flight control experiments 
and eventually operational systems. The Air Force’s F- 
16 fighter sports a full-time DFBW control system that 
uses four loosely synchronized redundant computational 
channels. The approximate consensus at the outputs of 
these channels caused considerable headaches during the 

development program in setting appropriate comparison 
thresholds in order to avoid nuisance false alarms and yet 
not miss any real faults [24]. Recent examples of military 
aircraft using full-time DFBW flight control systems in- 
clude the Air Force’s C-17 transport and the B-2 bomber 
both of which use quad-redundant flight control computers. 
DFBW systems are also finding their way into rotorcraft 
such as the Army’s Advanced AH-64 Apache helicopter 

Although there are numerous other applications of safety- 
critical real-time computers, too many to cover in this paper, 
two others are worth mentioning. The aircraft engines, both 
civilian and military, are now routinely controlled by Full 
Authority Digital Electronic Control (FADEC). In terms 
of the sheer number of deployed real-time fault tolerant 
computers, the engine controllers probably account for 
more than all the other applications combined. Require- 
ments for engine controllers are somewhat more relaxed 
than for flight control due to redundancy at a higher level, 
i.e., multiple engines per airplane. The requirement for 
FADEC is typically fail-safe rather than fail-op. The fail- 
safe requirement for commercial airlines is that the in-flight 
shut-down rate not exceed about one in one million flight 
hours per engine. This, along with the weight and volume 
constraints of engine-mounted controller, has tended to 
drive the FADEC to a dual redundant architecture. In the 
event of a failure of one of the two computers the engine 
is shut down in flight. No hardware or software design 
diversity has been used in these systems. 

A second application that is quite new is the control of 
underwater vehicles. The ARPAINavy have sponsored rapid 
prototyping of Unmanned Underwater Vehicles (UUV’s) 
using state-of-the-art technologies to demonstrate the utility 
of UUV’s in performing mine search, remote surveillance, 
and other classified missions of interest to the Navy. 
Several UUV’s have been built and gone through sea trials 
since 1988 [27]. Each UUV is controlled by a triplex 
BR fault-tolerant computer that uses identical hardware 
and software in the three channels. The Navy’s latest 
attack submarine, SSN-21 Seawolf, is also being designed 
to be controlled by a quad-redundant BR fault-tolerant 
computer that also uses identical hardware and software 
in each channel [21]. This is a radical departure for U.S. 
submarines, which until recently have not even had the 
luxury of an analog autopilot. Since the computer will 
perform functions very similar to an aircraft fly-by-wire 
system, we call the submarine’s system the swim-by-wire 
computer. 

[W. 

111. REQUIREMENTS 
Fault-tolerant computers are now used in a diverse set 

of applications, and the techniques for achieving fault 
tolerance vary as much as the application requirements. We 
focus here on achieving fault tolerance for ultra-reliable 
hard real-time systems. 

One way to define reliability requirements for these 
systems and to distinguish them from other fault-tolerant 
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applications is to measure them in terms of a maximum 
acceptable probability of failure. Because of the total de- 
pendence of the application on the correct operation of the 
system, the acceptable probability of failure of the computer 
is very small, typically in the range of 
depending on the consequences of the failure. Safety- 
critical applications are the most demanding. Commercial 
transport fly-by-wire, such as the Airbus A-320, require a 

probability of failure per flight hour. (In this type 
of flight control, a computer processes all pilot commands. 
There is no direct mechanical link between the pilot control 
wheel and the control-surface actuators.) 

Similar applications in military aircraft are several orders 
of magnitude less demanding, typically around per 
hour (presumably because the crew can bail out). Vehicle- 
critical applications in which the cost of failure is a huge 
economic penalty rather than loss of life (such as un- 
manned launch vehicles, autonomous underwater vehicles, 
and full-authority engine controls) require lop6 to 
probabilities of failure per hour. 

Mission-critical applications in which a computer 
failure would cause an incomplete or aborted mission 
occupy the low end of the ultra-reliable spectrum. Typical 
reliability requirements are to lop6 probabilities 
of mission failure. 

By contrast, on-line transaction processors (OLTP’s) used 
in airline reservation systems, banks, stock exchanges and 
other financial institutions demand high availability, i.e., 
uptime, rather than high reliability, i.e., correct operations. 
Incorrect operations in these applications can usually be 
found through audits and rolled back after the fact. This is 
also true of another popular use of fault-tolerant computers, 
namely, electronic switching systems for telecommuni- 
cations. For example, the stated goal for AT&T’s most 
advanced ESS computers is a down time of no more than 
an average of 3 min per year or 2 h over 40 years. However, 
requirements for completing a call correctly are not quite 
so stringent since the customer can be provided credit for 
incomplete or wrong calls. 

The real-time response requirements for the applications 
under consideration are also very demanding. For example, 
statically unstable fighter aircraft can develop divergent 
flight modes if correct control inputs are not applied every 
40 to 100 ms. Similarly, advanced variable-cycle jet engines 
can blow up if correct control inputs are not applied every 
20 to 50 ms. Mission-critical functions do not have such 
stringent response-time requirements but typically need 
higher throughput. 

By contrast, OLTP applications can withstand a delay of 
seconds to process transactions. In any event, the penalty 
for slow response is not nearly as catastrophic. 

A third requirement, although no one ever states it ex- 
plicitly, is system capability for validation. Commercial fly- 
by-wire systems cannot be placed into service in the U.S. 
until the Federal Aviation Administration is satisfied with 
their safety. Similarly, the Nuclear Regulatory Commission 
must certify nuclear power-plant trip monitors and controls, 
the National Aeronautics and Space Administration must 

to 

certify the avionics used on board spacecraft, and so 
on. 

Once again, the validation of OLTP, electronic switching 
systems, and other noncritical applications of fault-tolerant 
computers is not quite so formal. Although relatively more 
expensive to fix hardware and software design errors in the 
field than during production, the consequences of design 
errors getting through into operational systems are typically 
not catastrophic. 

Because of the extremely low failure rate required of 
these systems, lifetime testing for the purposes of certi- 
fication is out of the question. Although empirical data 
collected on test articles in the laboratory and/or flight 
systems can be used as part of the validation process, 
the primary means is a hierarchy of analytical models, 
simulations, and proofs that would satisfy any determined 
inquisitor that a system can perform its intended function 
correctly under all expected conditions. 

Iv. THEORETICAL APPROACH FOR 
HARDWARE FAULT TOLERANCE 

The ad hoc approaches of the 1970’s gave way to more 
formal means of achieving fault tolerance for ultrahigh- 
reliability applications. The Byzantine Generals’ Problem 
(BGP) advanced by Lamport et al. and then expounded 
by others formed the theoretical foundation for tolerating 
arbitrary random hardware component failures. FTMP [ 181 
and SIFT [32] were the early examples of research systems 
that complied with the BGP requirements. This section 
will discuss these requirements. The issue of exact versus 
approximate consensus to detect faults and the implication 
of the two approaches on achieving the BGP requirements 
will also be discussed. Although a majority of safety- 
critical computer systems have been designed to provide 
exact consensus at the output of redundant computational 
channels, some notable exceptions include the F- 16 fly-by- 
wire flight control and the Boeing 737 yaw damper. 

We have evolved a philosophy to address the unique 
requirements of ultra-reliable real-time systems based on a 
number of major precepts. First, we deal with the problem 
of random hardware faults using efficient solutions to the 
“Byzantine Generals Problem.” We then utilize a three- 
pronged approach to reduce the system’s probability of 
failure due to common-mode failures, for which redundancy 
offers little if any assistance. 

A .  Byzantine Resilience 

For a computer to be considered adequately reliable for 
safety- or mission-critical applications, it must be capable of 
surviving a specified number of random component faults 
with a probability approaching unity [3]. A conservative 
failure model is to consider faults as consisting of arbitrary 
behavior on the part of failed components. This type of 
fault, known as a Byzantine fault ,  may include stopping 
and then restarting execution at a future time, sending con- 
flicting information to different destinations, and, in short, 
anything within a failed component’s power to attempt to 
corrupt the system. 
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Since the concept of Byzantine resilience is central to the 
theory and operation of Draper computers, it is important 
to discuss the motivation for this seemingly extreme degree 
of fault tolerance. Cost-effective validatability and achieve- 
ment of high reliability are important motivating factors. 
Validation-based motivation for Byzantine resilience is per- 
haps best viewed in the context of an example. We suppose 
that a digital computer system having a maximum allowable 
probability of failure of per hour is required, and 
that this system must be constructed of replicated channels 
each of which has an aggregate failure probability of 
lop4 per hour. In a traditional system Failure Modes and 
Effects Analysis (FMEA)-based approach to achieving the 
requisite failure rate: likely failure modes of the system are 
analyzed, their likely extent and effects are predicted, and 
suitable fault-tolerance techniques are developed for each 
failure mode which is considered to possess a reasonable 
chance of occurring. For the system to meet the reliability 
requirement, the probability that any given fault is not 
covered must be less than FZ 10-9/10-4 = that is, 
it is necessary that the likelihood of a failure occurring 
which was not predicted and planned for must be less than 
FZ Viewed another way, it is (or should be) incumbent 
upon the designer to prove to an aggressive and competent 
inquisitor such as a certification authority that fewer than 
one in 100000 faults which could occur in the field (as op- 
posed to those induced or injected in the laboratory) could 
conceivably defeat the proposed fault-tolerance techniques. 
If this assertion cannot be demonstrated within a reasonable 
amount of time and money, then it is not feasible to validate 
the FMEA assumptions and hence the claimed lo-’ per 
hour failure rate. 

The FMEA process is tedious, time-consuming, and 
extremely expensive. This is attested to by the seemingly 
contradictory trend of increasing costs of digital avionics 
systems even as the cost of hardware continues to decline. 
This is at least partially due to the fact that the cost of 
validating critical systems completely overwhelms the cost 
of their design and construction. Software validation is 
a major component of this cost, and inappropriate fault- 
tolerance-related architectural features only aggravate the 
difficulty. 

In contrast, consider another fault-tolerance technique 
which guarantees that the system can tolerate faults, without 
relying upon any a priori assumptions about component 
misbehavior. In effect, a faulty component may misbehave 
in any manner whatsoever, even to the extreme of dis- 
playing seemingly intelligent malicious behavior. A system 
tolerant of such faults would obviate the expensive and 
physically intractable problem of convincing a knowledge- 
able inquisitor of the validity of restrictive hypotheses 
regarding faulty behavior, in effect permitting faulty behav- 
ior to subsume all conceivable FMEA’s. Such a system is 
denoted “Byzantine-resilient,’’ that is, capable of tolerating 
“Byzantine” faults. 

One expects a system capable of tolerating such a pow- 
erful failure mode to be intrinsically complex and possess 
numerous inscrutable and exotic characteristics. To the 

contrary, the requirements levied upon an architecture tol- 
erant of Byzantine faults are relatively straightforward and 
unambiguous, simply comprising a lower bound on the 
number of fault-containment regions, their connectivity, 
their synchrony, and the utilization of certain simple in- 
formation exchange protocols. We assert that a satisfactory 
demonstration that an architecture possesses these simple 
attributes is far less expensive and time-consuming than 
proving that certain uncovered failure modes can occur with 
a probability of at most Existing critical computing 
systems are typically designed to be triply or quadruply 
redundant anyhow; meeting the requirements for Byzantine 
resilience requires a simple rearrangement of the channels 
and addition of a few interchannel communication proto- 
cols. We think this minor rearrangement of the architecture 
recovers many times over the cost of an FMEA-based 
validation. Moreover, it is our experience that the run- 
time overhead required to achieve Byzantine resilience 
can be substantially less than that required to achieve 
significantly lower levels of fault .coverage using fault- 
tolerant techniques based on restrictive hypothetical models 
of failure behavior. 

In our opinion, a Byzantine-resilient system possesses 
some powerful programming attributes which result in 
a significant reduction in software validation effort and 
cost. First, the hardware redundancy is largely transparent 
to the programmer. The applications programs and the 
operating system are developed, debugged, and validated in 
a simplex (nonredundant) environment without any regard 
for the redundant copies of the software executing on 
redundant hardware. Second, the management of hardware 
redundancy is transparent to the programmer. The appli- 
cations programs and the operating system are rigorously 
separated from the hardware and software that manages 
redundancy. Redundancy management includes functions 
for detection and isolation of faults, masking of errors 
resulting from faults, and reconfiguration and reallocation 
of resources. This rigorous separation allows independent 
validation of various software entities such as the applica- 
tions programs, the operating system, and the redundancy- 
management software. By breaking the destructive syner- 
gism that comes from intertwining these entities, significant 
reduction in software validation effort has resulted for the 
FTPP and its predecessors, including the Fault-Tolerant 
MultiProcessor (FTMP) [ 181, the Fault-Tolerant Processor 
(FTP) ([ 19]), and the Advanced Information Processing 
System (AIPS) ([16], [17]). Third, a guarantee is made to 
the applications programmer and the operating system on 
interprocessor message ordering and validity which holds in 
the presence of arbitrary faults, and relieves the programmer 
from consideration of faulty behavior when designing a 
distributed application. These guarantees are embodied in 
the Byzantine Resilient Virtual Circuit (BRVC) abstraction 
of the FTPP [ 1 11-[ 131. Once again, the practical impact of 
this abstraction is the reduction of effort required to validate 
distributed applications software. 

It is occasionally suggested that Byzantine-resilient sys- 
tems are overdesigned because such strange failure modes 
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cannot occur in real life. To the contrary, we contend that 
odd unanticipated failure modes occur often enough in prac- 
tice that their probability of occurrence cannot be dismissed, 
and that ultra-reliable computing systems must be able to 
tolerate them. Fortunately, the problem of tolerating such 
random hardware faults has been solved and optimized. 
Although incremental refinements continue to be made in 
areas such as encoded rather than replicated memory, fast 
realignment of a channel for transient fault recovery, etc., 
the dominant contributor to failure of correctly designed BR 
computer is now common-mode failures. This is discussed 
in a subsequent section. 

B.  Redundancy Management 

Due to the stringent real-time requirements discussed 
earlier, application functions cannot be suspended for more 
than a few milliseconds when a component fails. Fault 
effects must be masked until recovery measures can be 
taken. A majority voting architecture with a triplex or 
higher level of redundancy masks errors and provides spares 
to restore error masking after a failure. Use of redundancy, 
of course, is quite common in critical systems. However, 
managing that redundancy is supremely important. 

Redundancy alone does not guarantee fault tolerance. 
The only thing it does guarantee is a higher fault amval 
rate compared to a nonredundant system of the same 
functionality. For a redundant system to continue correct 
operation in the presence of a fault, the redundancy must 
be managed properly. Redundancy management issues are 
deeply interrelated and determine not only the ultimate 
system reliability but also the performance penalty paid 
for fault tolerance. A fault-tolerant computer can end up 
spending as much as 50% of its throughput managing 
redundancy [26]. 

As a first step in addressing this issue, we partition 
the redundant elements into individual fault-containment 
regions (FCR’s). An FCR is a collection of components 
that operates correctly regardless of any arbitrary logical or 
electrical fault outside the region. Conversely, a fault in an 
FCR cannot cause hardware outside the region to fail. 

To form a fault-containment boundary around a collection 
of hardware components, one must provide that hardware 
with independent power and clocking sources. Additionally, 
interfaces between FCR’s must be electrically isolated. The 
isolation should be robust enough to tolerate a short to 
the maximum voltage available in the FCR. Depending 
on the application, this may be 5 or 28 V dc, 115 V 
a c - o r  even higher in a HERFFMI (high-energy radio 
frequency/electromagnetic interference) environment. 

Some applications also require tolerance to such physical 
damage as a weapons hit or flooding. In those cases, FCR’s 
must also be physically separated; it is typically done 
by locating redundant elements in different avionics bays 
on aircraft or in compartments separated by bulkheads in 
underwater vehicles. 

Due to all these requirements, it is impractical to make 
each semiconductor chip, or even a board, an FCR. A 
realistic FCR size is that of a whole computer, also called a 

channel in the avionics parlance. A typical channel contains 
a processor, memory, I/O interfaces, and data and control 
interfaces to other channels. If the FCR requirements are 
enforced rigorously, one can argue that random hardware 
component failures in FCR’s constitute independent and 
uncorrelated events. This is an important underpinning of 
the analytical models used to predict the probability of 
failure of these systems. 

Although an FCR can keep a fault from propagating to 
other FCR’s, fault effects manifested as erroneous data can 
propagate across FCR boundaries. Therefore, the system 
must provide error containment as well. The basic principle 
is fairly straightforward: “voting planes” mask errors at 
different stages in a fault-tolerant system. For example, a 
typical embedded control application involves three steps: 
read redundant sensors, perform control law computation, 
and output actuator commands. 

In an embedded application, an input voting plane masks 
failed sensor values to keep them from propagating to the 
control law. Intemal computer voting masks erroneous data 
from a failed channel to prevent propagation to other chan- 
nels. Output voting and an interlock mechanism prevent 
outputs of failed channels from propagating outside the 
computational core. 

The interlock is a hardware device in each channel that 
can enable or disable the outputs of that channel. Only a 
majority of the channels can change the interlock state. 
Therefore, in triplex or higher redundancy level computers, 
the majority of channels can disable the outputs of a failed 
channel. 

Finally, a voting plane at the actuator masks errors in 
the transmission medium that connects the computer to 
the actuators. The typical actuator is driven by multiple 
electrical or hydraulic inputs so that a majority of inputs 
can drive it to the correct position even when one of the 
inputs fails to its maximum value, or a “hardover failure.” 

Masking faults and errors obviates the need for im- 
mediate diagnostics, isolation, and reconfiguration. The 
application functions need not be suspended. The majority 
of channels can continue to execute these functions cor- 
rectly and provide correct outputs. This approach meets the 
stringent real-time response requirements. 

C .  Exact Versus Approximate Consensus 

To mask errors, outputs of redundant channels must be 
compared and voted. Two distinct voter approaches have 
evolved to provide these functions. These methods affect 
everything from efficiency of fault tolerance to coverage of 
faults to validation of hardware and software. 

The two approaches seem to affect only the voter at 
first glance, but they actually go to the heart of the ar- 
chitecture. Draper utilizes an architectural approach that 
requires the outputs of all channels to agree bit-for-bit 
under no-fault conditions. This exact bit-wise consensus 
is used in most fault-tolerant computers (such as the F-8 
DFBW, the Space Shuttle DPS, the UUV triplex FTP’s, and 
the Seawolf swim-by-wire FTP). In contrast, a few others 
(such as AFTIF-16 Flight Control System and Sperry B- 
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737 Yaw Damper) use an approximate consensus approach 
in which the outputs of redundant channels agree within 
some threshold (also called a window of agreement) under 
no-fault conditions. 

The use of the exact consensus approach can best be 
motivated and discussed by addressing the limitations of 
approximate consensus. Fault-detection coverage in the 
latter approach is a function of how precisely one defines 
the thresholds. 

For most dynamic systems, thresholds are a function of 
the process and its inputs and outputs. Thresholds may also 
change with the operating mode. For example, the outputs 
of a redundant flight-control computer can be expected to be 
very close in a level, cruising flight with control-law inputs 
relatively constant. However, in a high-speed maneuver in 
which aircraft altitude, velocity, and other inputs change 
very rapidly, the outputs of redundant channels can be much 
farther apart. 

Since there is no mathematically precise way to define 
these thresholds, most designers use empirically derived 
heuristics guided by two opposing requirements: making 
the threshold or window of agreement too small generates 
nuisance false alarms; making the window too wide to avoid 
false alarms will miss some real faults and lower fault- de- 
tection coverage. Due to this dilemma, fault-detection cov- 
erage in approximate consensus systems cannot approach 
100%. In fact, there is no general formal methodology for 
accurately calculating the coverage achieved for a given 
threshold s ize-one must rely on empirical testing and mea- 
surement. This makes analytical modeling and validation 
extremely tedious, if not impossible. Furthermore, the use 
of application-process-derived thresholds for fault detection 
and isolation puts a serious and uncalled-for burden on the 
applications programmer to assure fault tolerance in the 
host machine. 

As a case in point, in an empirical evaluation of five 
voting algorithms (midvalue select, residual voter, first- 
order extrapolation, second-order extrapolation, and third- 
order extrapolation) for an asynchronous Ultrareliable Fault 
Tolerant Control System (UFTCS), [4] concludes that “To 
design an effective voter requires extensive knowledge of 
the types of errors that may occur in the system and the 
nature of the signals being tested.” Extensive testing of the 
candidate voters was performed for six fault modes (stuck at 
zero, random faults, constant drift, constant offset, transient 
impulse, and stuck at last value), and it was concluded 
that “...none of the voters were completely adequate for the 
UFTCS. ... To validate that these separate concepts can be 
brought together to form an effective voter for the UFTCS 
will require further testing.” We think that this conclusion 
highlights the general difficulty of validating the inexact 
consensus approach within the domain of ultra-reliable 
computing. 

Another limitation of the approximate consensus ap- 
proach is that a distributed network of redundant computers 
based on approximate consensus could only exchange and 
vote interprocessor messages that consist of physical quan- 
tities, since approximate equality of physical quantities is 

the basis for fault masking and detection. Unfortunately, 
most of the communication traffic in a distributed system 
typically has no physical semantics, and the notion of 
approximate equality between redundant copies of such 
abstract messages is meaningless. The concepts of ap- 
proximately near or far apart, in fact, are meaningless 
for most variables in a computer, resulting in systems 
using approximate consensus eventually having to address 
exact consensus issues, in addition to those of approximate 
consensus. 

The exact consensus approach, in contrast, rests on a 
foundation of clearly defined requirements and is amenable 
to formal methods and analytical validation. It begins 
with the realization that digital computers are finite-state 
machines. Under the following well-defined conditions, 
redundant digital computers produce bit-for-bit identical 
results. 

Identical initial states. The redundant copies of the 
hardware must be initialized to the same state. For a 
typical channel, this implies that at some initial time 
t o  all volatile memory, processor cache and registers, 
control registers, and clock and counter values (includ- 
ing the states of intermediate stages, discretes, etc.) are 
identical in all copies. 
Identical inputs. Each hardware copy must then be 
provided with an identical sequence of inputs. In real- 
time systems, typical inputs include data (such as sensor 
values) and events (such as interrupts generated within 
a channel or asserted by an extemal device). The inter- 
facing of sensors (simplex and redundant) to redundant 
channels and correct distribution of sensor values to all 
channels is a very important aspect of ultra-reliable real- 
time architectures. Interrupts must be asserted in each 
channel at identical points in the instruction stream. 
Identical operations. Each channel must execute the 
same sequence of operations on the same inputs. 
Bounded time skew. An upper bound on the time skew 
Atskew must be defined so that the time of completion 
for a given sequence of instructions for the slowest 
channel t, is no larger than the time for the fastest 
channel t f  by more than Atskew. The time skew is 
bounded by synchronizing the operations of redundant 
channels. 

If all these requirements are satisfied, then all nonfaulty 
channels will produce bit-for-bit identical outputs by a 
well-defined point in time. 

D. Synchronization, Input Agreement, and Input 
Validity Conditions 

Two or more identically initiated processes that receive 
identical inputs and operate on them the same way are 
called congruent processes. Congruence, unlike threshold- 
based approaches, allows a mathematically precise and 
concise means for detecting and isolating faults: 

Fault detection. Two congruent processes that do not 
agree bit-wise produce an error condition, which indi- 
cates the presence of a fault. 
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Fault isolation. A congruent process that does not 
agree bit-wise with the majority of congruent processes 
is faulty. Note that the majority vote for congruent 
systems is a simple truth table. 

1 )  Synchronization: Synchronizing redundant channels 
places an upper bound on the time skew between 
corresponding operations in nonfaulty channels. Since the 
workload typically consists of iterative execution of various 
application programs at different frequencies, a commonly 
used technique synchronizes the start of the next frame by 
having the redundant processes exchange semaphores at 
the end of an iteration. 

Two major problems with this approach are the high 
software overhead for synchronization and the additional 
burden on the applications programmer to perform the 
synchronization task. Because of multiple frame rates and 
passing of 1/0 data between various frames, the high 
cognitive overhead of maintaining synchronism falls to 
the applications programmer. This worsens in the presence 
of faults, complicating the task of validating applications 
software. 

An altemative approach developed for the Draper FTP 
[ 191 uses a hardware-implemented synchronization scheme 
transparent to applications software. This approach relies 
on identical redundant hardware clocked by a fault-tolerant 
clock. The copies of hardware execute a given instruction 
in an identical number of CPU clock cycles. The fault- 
tolerant clock source provides exactly the same number of 
CPU clock ticks in a given time period to each redundant 
copy of the hardware. 

The fault-tolerant clock, as the name implies, is not 
a single clocking source but is independently derived in 
each channel by a majority vote of a redundant set of 
clocks. We used this hardware synchronization scheme 
in the Advanced Information Processing System (AIPS) 
fault-tolerant processor by making all hardware clock- 
deterministic. The clock-determinism attribute can be im- 
parted to digital hardware through appropriate design rules 
and makes the execution time of each instruction, as 
measured in the number of CPU clock cycles, a fixed and 
deterministic number. 

2 )  Input Agreement: Correct distribution of inputs (in 
general) and sensors (in particular) is a very important 
aspect of ultra-reliable real-time architectures. Incorrect 
distribution has caused at least one in-flight failure of a 
redundant computer. 

There are two conditions attached to inputs: congruency 
(or agreement) and validity. Input congruency occurs when 
each channel has an identical copy of that input, that is, 
all channels agree on the input value. Input validity occurs 
when all channels have a valid or correct value of that input. 

Note that congruency does not imply validity. All chan- 
nels may have the same wrong value, for example, and 
still be in agreement. Input congruency is the only nec- 
essary condition for bit-wise output consensus. Validity is 
necessary for correct channel outputs. 

The theory referred to as the Byzantine Generals’ Prob- 
lem (BGP) identifies the necessary conditions for input 

congruency in the presence of an arbitrary fault. According 
to this theory, to achieve input source congruency in the 
presence of f arbitrary, or Byzantine, faults, 

1) the system must consist of 3f + 1 FCR’s [ 2 8 ] ,  
2) the FCR’s must be interconnected through 2f + 1 

3 )  the inputs must be exchanged f + 1 times between 

4) the FCR’s must be synchronized to provide a bounded 

disjoint paths [6], 

the participants [9], and 

skew [7]. 

The 3f + 1 rule was actually discovered at Draper in 
1973-but only in the limited context of designing fault- 
tolerant clocks. We had observed malicious clock failures 
and concluded that 3f + 1-rather than the simple majority 
voting scheme that uses 2 f + l  clocks-is required to design 
a fault-tolerant clock. We did not, however, realize that data 
communication can also display Byzantine behavior. 

A redundant system that can achieve exact consensus 
in the presence of one arbitrary fault must have at least 
four fully cross-strapped FCR’s that execute a two-round 
exchange algorithm to distribute inputs. Note that triple- 
redundant majority-voting architectures do not meet these 
requirements. 

A number of single-point failures can be postulated that 
would cause the inputs to be noncongruent in the three 
channels, leading to a total system failure. Can such failures 
occur? A commonly observed Byzantine failure occurs 
when a marginal bus transmitter causes two receivers to 
perceive different values for a transmission. The question 
is not whether such failures can occur but how probable 
they are. 

To design ultra-reliable systems that can be validated, 
one must either demonstrate that these probabilities are 
very low ( lop4 to depending on the application) 
or meet the aforementioned requirements of Byzantine 
tolerance. We believe that systems that meet these very 
precise requirements are considerably easier to validate 
analytically. Based on our own experience with digital 
systems, as well as that of others, we also believe that such 
failures are not rare. 

Even though four FCR’s are required to tolerate one 
arbitrary fault, it is not necessary to use four processors 
in a system. We built triply redundant versions of the AIPS 
Fault-Tolerant Processor (FTP) [16] to comply with all 
requirements by providing extra FCR’s. The FCR’s took 
the form of independent data-replicating devices, also called 
interstages. We also built a quadruply redundant version 
with four interstages (for a total of eight FCR’s) that can 
tolerate any two sequential arbitrary FCR failures. Because 
it performs only a two-round exchange, this system can 
tolerate some (but not all) double simultaneous faults (see 
Fig. 1). We also built a fault-tolerant parallel processor 
[11]-[13] in which only three processors can mask an 
arbitrary failure. We achieved this by placing the minimum 
four FCR’s into special-purpose Network Elements (NE’s) 
that interconnect the processors and execute the source 
congruency algorithm. 
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Fig. 1. 
fault-tolerant processor. 

Fault Containment Regions (FCR’s) and interconnections in the AIPS quad-redundant 

3)  Input Vulidity: A redundant input source satisfies the 
condition of validity for external inputs. Typically, critical 
sensors are replicated and interface with different channels 
of the redundant computer. Figure 1 shows the quad- 
redundant FTP with a triplicated sensor. The three redun- 
dant sensors (Sl, 5’2, and S3) physically interface with 
channels A ,  B,  and C,  respectively. The design provides a 
valid and congruent sensor value to all four channels. 

Channel A reads sensor S1, and all four channels execute 
the two-round exchange algorithm that culminates in their 
receiving a congruent value of S1, say, VI. The process 
repeats for sensors S2 and S3. Now all four channels have 
the same three sensor values, say, V1, V2, and V3. 

To obtain a valid sensor value V, the system must 
compare and vote the three sensor values. However, a bit- 
for-bit voting of redundant sensors is usually not possible 
since sensors measure such real-world parameters as pres- 
sure, temperature, angle, and acceleration, which are all 
analog quantities. Even under no-fault conditions, digital 
representations of redundant sensor values differ. However, 
since the sensor values do represent real-world physical 
quantities, one can use a number of reasonableness checks 
(such as rate of change and minimum-maximum range of 
values) to filter out a grossly misbehaving sensor. Mid- 
value select, average, or mean value of the remaining 
sensors can then be used to arrive at a valid sensor value 
in all channels. Note that the value will also be congruent 
since all channels execute an identical sensor-redundancy 
management algorithm with congruent sensor inputs. 

v. OVERALL APPROACH FOR COMMON-MODE 
FAILURE TOLERANCE 

In our opinion, the random hardware fault-tolerance 
problem has been adequately solved. Attention now must 

tum to the problem of common-mode-failures (CMF’s). 
These result from faults that affect more than one fault 
containment region at the same time, generally due to a 
common cause. They may be design faults or operational 
faults; they may be externally caused such as EM1 or 
internal; they may be hardware faults or software errors; 
etc. Unlike the BGP, there is no single theory on which 
to base a solution to CMF’s, and redundancy is of little 
if any utility in tolerating CMF’s. Design diversity and 
formal methods have been proposed as two ways to deal 
with this problem. A broader perspective shows that there 
is a three-pronged approach to CMF’s: fault avoidance by 
using formal methods, for example; fault removal through 
test and evaluation or via fault insertion; and fault tol- 
erance in real time via exception handlers and program 
checkpointing and restart. All the safety-critical systems 
have had to use one or more of these techniques. This 
section will explore the issue of CMF’s, and outline our 
three-pronged approach to reducing their probability of 
occurrence. 

A .  Fault Classification 

Common-mode failures and their sources are extremely 
diverse. They can be classified in the same way that 
all faults are classified in “Dependability: Basic Concepts 
and Terminology” [23], that is, according to three main 
viewpoints which are not mutually exclusive: their nature, 
their origin, and their persistence. 

I )  Classification by Nature: Common-mode failures may 
be viewed according to their nature: 

1)  Accidental Faults 
They may be accidental in nature, i.e., they appear 

or are created fortuitously. 
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Phenomenological System Phase of Persistence 
Cause Boundary Creation 

Physical Human Intemal Extemal Design Operational Permanent Temporary 
Made 

X X X X 

X X X X 

X X X X 

X X X X 

X X X X 

2) Intentional Faults 
They may be intentional in nature, i.e., they are 

created deliberately. 
Intentional faults, e.g. Trojan horses, time bombs, viruses, 
are not usually considered since they are related primarily 
to secure systems; security is often not a requirement for 
typical ultra-reliable hard real-time applications. 

2 )  Classification by Origin: Classification by origin may 
be divided into three viewpoints which, again, are not 
necessarily mutually exclusive. 

1) Phenomenological Causes 
physical faults which are due to adverse physical 

phenomena; 
human-made faults which result from human im- 

perfections. 

internal faults, which are those parts of the sys- 
tem’s state which, when invoked by the computation 
activity, will produce an error; 

external faults, which result from system interfer- 
ence caused by its physical environment, or from 
system interaction with its human environment. 

design faults resulting from imperfections that arise 
during the development of the system (from require- 
ments specification to implementation), subsequent 
modifications, or the establishment of procedures for 
operating or maintaining the system; 

operational faults, which appear during the system’s 
exploitation. 

3) Classification by Persistence: Common-mode failures 

1) Permanent Faults 

2) System Boundaries 

3) Phase of Creation 

may be classified according to their persistence. 

their presence is not related to internal conditions 
such as computation activity or external conditions 
such as the environment. 

Common- 
Mode Fault 

Label 

Transient 
(Extemal) 

CMF 

Permanent 
(Extemal) 

CMF 

Intermittent 
(Design) 

CMF 

(Permanent) 
Design CMF 

Interaction 
CMF 

2) Temporary Faults 
their presence is related to temporary internal or 

external conditions and as such they are present for 
a limited amount of time. 

4 )  Relevant Sources of Common-Mode Failure: Since in- 
tentional faults are excluded from the current scope of 
work, there are only 16 possible sources of faults that must 
be considered. These are all the possible combinations 
of the remaining four viewpoints. Of these the physical, 
internal, operational faults can be tolerated by using 
hardware redundancy. This is treated in greater detail in 
the section devoted to random hardware fault tolerance. All 
other faults can affect multiple fault-containment regions 
simultaneously. These are the sources of common-mode 
failures. However, only some of these fault classes are 
meaningful. These are shown in Table 1. Of these, the 
interaction faults which arise from the interaction of 
the computer system with its human environment, e.g., 
an operator, will not be considered here due to space 
considerations. 

Using this taxonomy, then, only four sources of common- 
mode failures need to be considered in the current context. 

1) Transient (External) Faults which are the result of 
temporary interference to the system from its physical 
environment such as lightning, High Energy Radio 
Frequencies (HERF), heat, etc. 

2 )  Permanent (External) Faults which are the result of 
permanent system interference caused by its opera- 
tional environment such as heat, sand, salt water, dust, 
damage, etc. 

3 )  Intermittent (Design) Faults which are introduced due 
to imperfections in the requirements specifications, 
detailed design, implementation of design, and other 
phases leading up to the operation of the system. 
These faults manifest themselves only part of the 
time. 

34 PROCEEDINGS OF THE IEEE, VOL. 82, NO. 1 ,  JANUARY 1994 



4) (Permanent) Design Faults are introduced during the 
same phases as intermittent faults, but manifest them- 
selves permanently. 

If the relative likelihoods of the classes of common-mode 
failures were known, one could apportion the efforts in 
dealing with them appropriately. However, the models to 
predict the occurrence of common-mode failures either do 
not exist, or are not mature enough to be of any practical 
value. Similarly, the rates of occurrence of transient faults 
and permanent external faults are very much dependent 
upon the operational environment. Thus while the relative 
arrival rates of the four classes of common-mode failures 
cannot be predicted with any accuracy, experience and 
prudence suggest that all of these are sufficiently likely 
to be of concern. 

As of now, no unifying theory has been developed that 
can treat CMF’s the same way that BR treats random 
hardware faults or physical operational faults. There is no 
silver bullet to slay the CMF monster. Instead we must 
rely on three brass bullets: 

1)  Fault-avoidance techniques applied primarily during 
the specification, design and implementation phases. 

2) Fault-removal techniques applied primarily during the 
test and validation phases. 

3) Fault-tolerance techniques applied during the opera- 
tional phases. 

Subsequent sections discuss each of these techniques 
in detail. One should keep in mind the fact that we 
do not expect to obtain 100% coverage from any of 
these techniques individually or even from one group 
collectively; only that when we have gone through the 
whole process the likelihood of common-mode failure is 
reduced significantly. 

The coverage of the various CMF resilience techniques 
is difficult to quantify. However, if one concedes that a 
modest and quantifiable coverage of, say 99%, is achievable 
at each of the three-layered defenses against CMF’s (i.e., 
avoidance, removal, and tolerance), then this could result 
in a lack of coverage on the order of for all CMF’s 
provided no additional sources of CMF’s are introduced in 
the test and validation and the operational phases. Given a 
fairly pessimistic CMF arrival rate of, say, per hour, 
one can estimate that the overall probability of a system 
failure due to CMF would be commensurate with that due 
to exhaustion of spares or coincident random faults. While 
this is clearly not a rigorous analysis, the order of magnitude 
of the parameters involved indicates that the layered CMF 
defenses constitute a feasible approach, as well as provides 
certain coverage objectives for each of the three layers of 
CMF defenses described below. 

B .  Common-Mode Fault Avoidance 

The most cost effective phase of the total design and de- 
velopment process for reducing the likelihood of common- 
mode failures is the earliest part of the program. Avoid- 
ance techniques and tools can be used from the require- 
ments specifications phase to the design and implementation 

phase, and result in fewer permanent and intermittent design 
CMF’s being introduced into the computer system. 

I) Use of Mature and Formally Verified Components: 
By using commercial off-the-shelf (COTS) or Nondevelop- 
mental Item (NDI) hardware, software, and formally ver- 
ified microprocessors and real-time kernels as these come 
on-line, one can leverage the industry’s large investment 
in the testing and verification of components, essentially 
having others perform fault removal for free. Unfortunately, 
the tradition for building critical systems in many industries 
such as the aerospace industry is just the reverse: the 
processors, memories, input/output controllers, operating 
system, and other system software are almost invariably 
point-designed from scratch for each specific program, 
complete with brand new specification and design flaws. 

2) Conformance to Standards: A number of standards 
have been developed for the design of computer systems. 
Although the primary motivation for the development of 
standards is ease of interoperability, logistics, maintainabil- 
ity, reduced cost, and so on, one of the side benefits of 
using standards is the reduction of design errors. Widely 
used standards usually result in detailed, precise, and stable 
specifications that can be adhered to in the design phase 
and, over time, verified against in the verification phase. 
Design errors due to ambiguous or changing specifications 
can be substantially reduced by the use of standards. 

3)  Formal Methods: Formal methods are mathematically 
based techniques for specifying, developing, and verifying 
computer systems with strong emphasis on consistency, 
completeness, and correctness of system properties. Formal 
methods have been applied at various levels of specification 
and design to hardware, software, and algorithmic parts 
of fault-tolerant computers too numerous to be listed here. 
Recent examples include microprocessor design (e.g., [30]) 
and an embedded Reliable Computing Platform [ 5 ] .  

Many ultra-reliable computer components are suitable 
for the insertion of formal methods technology. Generally 
speaking, these components are both critical to the correct 
operation of the machine and are not expected to change 
significantly from one application to another, thus making 
the potentially significant effort involved in formal meth- 
ods a cost-effective means to reduce the introduction of 
specification, design, and implementation errors. Such com- 
ponents include voters, fault-tolerant clocks, synchroniza- 
tion software, task-scheduling software, message-passing 
software, and fault detection, identification, and recovery 
software. 

4 )  Design Automation: Design-automation tools and 
techniques can help automate parts of the hardware and 
software design cycle. By replacing a labor-intensive design 
process with automated tools, the incidence of human errors 
can be reduced. 

In the software arena, more than 75 different CASE 
(Computer-Aided Software Engineering) tools are available 
that provide different levels of automated software gener- 
ation. A Draper developed tool, called ASTER, has been 
used, among other applications, to produce transport aircraft 
autoland code in Ada starting from a high level control law 
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tests, Device 

Fig. 2. VHDL and formal methods design and verification methodology. 

specification. The Ada code was compiled and integrated 
with the existing system software on the FTPP. 

In the hardware arena, VHSIC Hardware Description 
Language (VHDL) is becoming widely available to describe 
hardware designs at various levels of abstraction, from a 
high-level functional description to all the way down to the 
gate level. Synthesis tools can be used to convert VHDL or 
other high-level design descriptions through various levels 
of detailed hardware design, right down to the silicon 
implementation with some help from the human designer. 

A part of the FTPP Network Element called the Score- 
board was specified in VHDL and synthesized using com- 
mercially available logic synthesis tools. The Scoreboard 
hardware, consisting of three 8000-gate ACTEL I1 FPGA's 
and some RAM chips, was described in VHDL and syn- 
thesized using Synopss. To our amazement, it worked the 
first time and passes all tests to date. 

5 )  Integrated Formal Methods and VHDL Design Meth- 
odology: Based on our experience with VHDL and formal 
methods, we have defined a methodology which integrates 
the conventional VHDL-based top-down digital design and 
synthesis methodology with formal specification and ver- 
ification (Fig. 2). This methodology is an extension of 
the one used for constructing, specifying, and verifying 
the FTPP Scoreboard. This methodology appears to be 
an excellent way to transition the powerful technology 
of formal methods into the general digital engineering 
community. 
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The participants come from engineering and formal 
methods disciplines. The engineering participants use the 
computer-aided design and synthesis to which they are 
accustomed, and are not expected to become experts 
in formal methods. The formal methods participants are 
responsible for formalizing key abstract properties of the 
specification of the design. They are also responsible for 
verifying that the derived formal descriptions do in fact 
comply with the formalized version of the specification. 
They perform this function using formal descriptions and 
methods which are familiar to them, and which can be 
automatically extracted from the engineers' descriptions 
of the design. 

The design effort begins with an informal specification 
of the intended functionality of the device. Following this, 
an essentially creative act is performed which results in a 
number of databases and functions. In a top-down VHDL- 
based design methodology a hierarchical set of VHDL 
descriptions is manually constructed. A top-level VHDL 
model of a design, executable in a VHDL Test Bench, 
is constructed which is believed to meet the informal 
specification. A set of functional verification tests is derived 
from the informal specification for injection into any exe- 
cutable VHDL description, with the objective of empirically 
demonstrating that the description meets the intent of the 
informal specification. 

More detailed lower level VHDL models are manually 
constructed and each VHDL representation in the hierarchy 
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can be tested in the Test Bench to ensure that it is in com- 
pliance with the informal interpretation of the highest level 
informal specification. At a certain level in the hierarchy, a 
“synthesizeable” description is reached which is suitable for 
input into an integrated circuit synthesis software package. 
The synthesis package generates documentation suitable 
for device fabrication, as well as gate-level executable 
functionality and timing models in both vendor-specific 
simulation language and in VHDL. The VHDL description 
of the gate-level circuit can be stimulated and verified with 
the functional verification tests through the Test Bench. 
Moreover, the synthesis package provides back-annotated 
delays which are of use in re-executing higher level models. 
If the critical timing requirements are not met, then the 
design is modified at one or more hierarchical levels and 
resynthesized until all requirements are met. 

From the gate-level description of the circuit, Automated 
Test Pattern Generation software may be used to generate 
test pattems for use in manufacturing tests. The objective of 
these tests is to ensure that each node in the circuit can be 
visibly toggled in order to identify stuck-at manufacturing 
faults. The test pattems are executed on an integrated circuit 
tester. Some synthesis software packages include software 
to automatically design boundary scan paths, boundary scan 
test pattems, and I/O pads which comply with the IEEE 
1 149.1 standard on scan path testing. The device’s boundary 
scan capability can be used both for manufacturing quality 
control tests and for offline testing of the device while in 
the field. 

The formal methods organization also constructs a hi- 
erarchical representation of the design. They begin by 
extracting the salient abstract properties of the informal 
specification through review of the informal specification, 
VHDL models, Test Bench, and functional verification 
tests, and discussions with the engineering team members. 
The formal methods team transforms these properties into 
a syntax and semantics which are formally tractable in the 
language of their own choosing, using automated syntax 
conversion tools. It is the intent that lower level formal 
specifications of the design will be rigorously shown to 
meet this specification by the formal methods practitioners. 

Lower level formal specifications are generated via an 
automated process of syntactic transformation to the desired 
formal specifications using an automated process developed 
by the formal methods practitioners. Such transformation 
tools are currently under development by a number of 
researchers. For this to work, suitable care must be taken 
by the engineering team to remain reasonably within lim- 
itations of the formal semantics used by the formalists. 
Formal proofs may then be constructed which demonstrate 
that each level of the hierarchical formal model is a correct 
representation of the level above it. A complete proof chain 
may be constructed from the gate-level model which was 
produced by the synthesis tool all the way up to the formal 
specification of the abstract properties. 

As part of the FTPP Scoreboard design and fabrication, 
a partial formal specification of the Scoreboard’s function- 
ality was constructed from its top-level VHDL description, 

and formal proofs were constructed showing that certain 
lower level VHDL-derived descriptions correctly imple- 
mented this functionality. In the course of constructing 
the functional description, several high-level specification 
omissions were uncovered. One of these would have caused 
all channels of the FTPP to halt simultaneously under input 
conditions which were bizarre enough to have been omitted 
during normal testing, but realistic enough to occur in 
practice. 

6) Simplihing Abstractions: Human errors are more 
likely when dealing with complex systems and un- 
conventional concepts than when dealing with simple 
systems and familiar concepts. In a fault-tolerant parallel 
computer, concepts that can add to the design complexity 
include fault and error containment, synchronization of 
redundant processes, communication between redundant 
processes, synchronization of and communication between 
distributed/parallel processes (all of these in the presence 
of one or more faults), detection, isolation, and recovery 
from faults, and so on. 

If the design complexity can be reduced then the in- 
cidence of human errors can be reduced. Some of the 
fault-tolerance concepts can be stated simply and precisely 
using a mathematical formalism. These include the require- 
ments for synchronization, agreement, and validity. Other 
concepts that can be stated precisely include requirements 
for fault containment and error containment. Because of 
their simplicity, fault-tolerant computers that are based on 
these concepts and implement these requirements are likely 
to contain fewer design errors. 

Another architectural consideration is the hiding of irre- 
ducible design complexity. For example, certain architec- 
tures implement fault tolerance in such a manner that the 
virtual architecture apparent to the applications programmer 
and the operating system programmer appears to be that of 
a conventional nonredundant computer. The complexities 
of a redundant architecture are made visible only to the 
tasks that must deal with detection and isolation of faults 
and recovery from faults. The FTPP virtual architecture 
presented to the applications programmer, for example, is 
that of a set of communicating tasks needing no knowledge 
of their replication level or mapping to physical processors. 

7) Performance Common-Mode Failure Avoidance: A 
frequently encountered source of common-mode failures 
in hard real-time systems is the inability of the system 
to deliver the required services by the required deadline 
under various workload conditions. To avoid this source 
of CMF’s, a complete and accurate performance model 
is needed, along with the capability to predict a priori, 
via static code analysis, whether performance timing faults 
will occur. Such a performance model is only possible with 
an unambiguously structured and thoroughly benchmarked 
scheduling system. The scheduler used for hard real-time 
FTPP applications is a variant of rate monotonic scheduling 
which has been optimized to support task suites having 
harmonic iteration rates [ 131. A concept similar to temporal 
encapsulation [15] is used to restrict the points in time at 
which tasks may interact with each other and the outside 
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world to crystal oscillator-generated interrupts. Temporal 
encapsulation abstracts timing behavior away from highly 
variable task execution times, facilitates predictability and 
determinism, and provides an unambiguous framework for 
predicting, detecting, and recovering from performance 

applications. Therefore, our recommended approach is to 
limit the design diversity to applications programs which 
have the most likelihood of containing residual design 
errors. 

common-mode failures. 
Within this framework, it is necessary to benchmark 

critical functions such as operating system calls, message- 
passing latencies, task scheduler time, context switches, 
FDIR, etc. This enables accurate prediction of the net 
processor, bus, network, and other resources that are avail- 
able to the applications software under various conditions 
such as normal operating mode, faulted conditions, reduced 
number of PE’s, etc. The performance measurement and 
analysis apparatus is also invaluable in determining that 
application code does not exceed its specified time al- 
lotment. These empirical measurements can be combined 
with a static code analysis tool which evaluates the source 
code to determine the number and frequency of calls to 
time-consuming functions, and thus compute the overall 
execution time of each task. 

8) Software and Hardware Engineering Practice: Many 
software and hardware errors can be avoided by following 
well-established engineering design practices. Since these 
techniques are well known, they will not be discussed here 
further except to note that there is an amazing correlation 
between shortcuts and design flaws. 

9) Design Diversity: Design diversity is listed here as a 
fault-avoidance rather than a fault-tolerance technique since 
it attempts to confine each design fault to a single fault- 
containment region, thereby avoiding a common-mode fail- 
ure. Design diversity is the concept of implementing dif- 
ferent copies in a redundant system using different designs 
starting from a common set of specifications. The concept 
can be applied to hardware, software, programming lan- 
guage, design development environment, and other design 
activities. This approach can potentially eliminate many 
common-mode design faults since each redundant copy 
uses a different design. Some design faults such as those 
that result from an incorrect interpretation of ambiguous 
specifications could still find their way into multiple or 
all designs. Thus design diversity cannot provide 100% 
coverage of all design faults. 

When attempting to employ design diversity it is critical 
not to defeat the benefits of bit-wise exact match Byzantine 
Resilience. It is equally critical not to confuse faults in 
the diverse redundant application software with faults in 
the redundant hardware. When redundant hardware and/or 
software elements are implemented using different designs, 
bit-wise exact consensus cannot be guaranteed between 
the outputs of redundant processors. However, using the 
approach described in [20], it is possible to provide an 
exact bit-wise match Byzantine resilient core fault-tolerant 
computer in which design diversity is used for applications 
programs. We also believe that the core of the fault-tolerant 
computer, including PE’s, NE’s, OS, can be made error- 
free or nearly so by the use of many other techniques cited 
here and then that core can be reused for many different 

C .  Common-Mode Fault Removal 

Faults that slip past the design process can be found and 
removed at various stages prior to the computer system 
becoming operational. Fault-removal techniques and tools 
include design reviews, simulations, testing, fault injection, 
and a rigorous program of discrepancy reporting and clo- 
sure. Traditionally, these techniques have been relied on 
almost exclusively to deal with common-mode failures. 
Most of these techniques, with the exception of fault 
injection, are well-developed and well-known. We will, 
therefore, limit the discussion to the use of fault injection 
for CMF removal. 

Insertion of faults in an otherwise fault-free computer 
system that is designed to tolerate faults is a powerful 
technique to exercise redundancy management hardware 
and software that is specialized, error-prone, difficult to 
test, and not likely to be exercised under normal conditions, 
i.e., likely to stay dormant until a real fault occurs. Fault 
insertion techniques can also be used to operate the system 
in various degraded modes which are expected to be 
encountered in operational life of the system. Degraded- 
mode operation stresses not only fault handling and re- 
dundancy management aspects but also task scheduling, 
task and frame completion deadlines, workload assignment 
to processors, inter-task communication, flow control, and 
other performance-related system aspects. Fault insertion 
exposes the weaknesses in the hardware and software 
design, the interactions between hardware and software, 
and the interactions between redundancy management and 
system performance. It is an accelerated form of testing the 
hardware, software, and the system, analogous to “shake 
and bake” testing of hardware devices. 

Many researchers, too numerous to be cited here, have 
developed and used fault/error injection tools. A recent 
paper [ 11 attempts to formalize the process of using fault in- 
jection for explicitly removing design/implementation faults 
in fault-tolerance algorithms and mechanisms. Fault in- 
sertions at higher levels such as module, link, and fault 
containment region have also been used at Draper for 
the purposes of design verification. Faults may also be 
injected into various levels of the executable VHDL design 
hierarchy, subject to Test Bench simulation time constraints. 

D. Common-Mode Failure Tolerance 
Common-mode failures may eventually manifest them- 

selves in the field due to transient and permanent external 
faults which overwhelm environmental defenses, intermit- 
tent and permanent design faults that are not removed prior 
to operational use, and a general unwillingness of reality to 
conform to specifications. At this point the only recourse 
is to 1) detect the occurrence of such a failure and 2) take 
some corrective action. 
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1)  Common-Mode Failure Detection: Before a recovery 
procedure can be invoked to deal with common-mode 
failures in real time, it is necessary to detect the occurrence 
of such an event. Many ad hoc techniques have been 
developed over the years to accomplish this objective. Most 
of these techniques can also be used prior to operational use 
of the system to remove faults. The difference is that in 
the fault-removal phase, detection of a fault leads to some 
trap in the debugging environment, while in the operational 
phase it will lead to a recovery routine. Similarly, fault- 
removal techniques discussed above can also be used to 
aid in the task of detecting faults in real time, albeit with 
a high penalty in performance. 

Watchdog timers can be used to catch both hardware 
and software wandering into undesirable states. Note that 
failure of a watchdog timer to expire does not necessarily 
indicate the absence of a common-mode failure. Hardware 
exceptions such as illegal address, illegal opcode, access 
violation, privilege violation, etc., are all indications of 
a malfunction. Ada provides numerous run-time checks 
such as type checks, range constraints, etc., that can detect 
malfunctions in real time. Additionally, a user can define 
exceptions and exception handlers at various levels to 
trap abnormal or unexpected program/machine behavior. 
Memory management units can be programmed to limit 
access to memory and control registers by different tasks. 
Violations can be trapped by the MMU and trigger a 
recovery action. Acceptance test is a very broad term and 
can be applied to applications tasks and various components 
of the operating system such as the task scheduler and 
dispatcher. The results of the target task are checked for 
acceptability using some criteria which may range from 
a single physical reasonableness check, such as a pitch 
command not exceeding a certain rate, to an elaborate check 
of certain control blocks to ascertain whether the operating 
system scheduled all tasks appropriately. Presence tests are 
normally used in FTP’s and FTPP’s to detect the loss of 
synchronization of a single channel due to a physical fault. 
However, it has also been modified to detect a total loss 
of synchronization between multiple channels of an AIPS 
FTP, a sure indication of a common-mode failure. 

It should be noted that a physical fault can trigger any 
of these detection mechanisms just as well as a common- 
mode failure. Therefore, it is necessary to corroborate the 
error information across redundant channels to ascertain 
which recovery mechanism (i.e., physical fault recovery, 
or common-mode failure recovery) to use. 

2 )  Common-Mode Failure Recovery: Recovery from 
CMF in real time requires that the state of the system be 
restored to a previously known correct point from which 
the computation activity can resume. This assumes that the 
occurrence of the common-mode failure has been detected 
by one of the techniques discussed earlier. 

If a common-mode failure causes an Ada exception or 
a hardware exception to be raised, then an appropriate 
exception handler that is written for that abnormal condition 
can affect recovery. The recovery may involve a local 
action such as flushing input buffers to clear up an overflow 

condition or it may cascade into a more complex set of 
recovery actions such as restarting a task, a single redundant 
virtual group, or the whole system. 

If the errors from CMF are limited to a single task and do 
not propagate to the operating system, then only the affected 
task needs to be restored andlor restarted with new inputs. 
The state can be rolled back using a checkpointed state from 
stable storage and recovery can be effected by invoking 
an alternate version of the task using the old inputs, 
assuming that the fault was caused by the task software. 
This is termed the backward recovery block approach. 
If the fault is caused by a simultaneous transient in all 
redundant hardware channels then the same task software 
can be re-executed using old inputs. This is termed temporal 
redundancy. Altematively, forward recovery can be effected 
by restarting the task at some future point in time, usually 
the next iteration, using new inputs. This assumes that the 
fault was caused by input-sensitive software that will not 
repeat with new and different inputs. 

In case the CMF results in the loss of synchronization, 
redundant channels must be resynchronized before rollback 
can begin. Furthermore, the state of the virtual group must 
be restored before resuming computational activity. Finally, 
if all else fails, the whole system must be restarted and a 
new system state established with current sensor inputs. 

VI. CONCLUSION 
The realm of applicability of safety-critical hard real- 

time computing has come a long way in the past 30 years. 
Applications have expanded from the Apollo AGN&C 
computer to air transport autoland, continuous fly-by-wire, 
full-authority digital engine controls, nuclear power plants, 
ground transport, and swim-by-wire for undersea vehicles, 
and will undoubtedly expand in the future as computers find 
their way into every human activity. Fortunately, depend- 
ability technology has also progressed from sole reliance 
on expensive fault avoidance, to ad hoc fault-tolerance 
techniques, to fault tolerance based on rigorous distributed 
systems theory. For safety-critical applications, physical 
operational hardware faults no longer pose the major threat 
to dependability. The dominant threat is now common- 
mode failures, for which no single theory can be applied 
and which requires a multidiscipline, multiphased defense. 
A form of common-mode failure unique to hard real-time 
systems is a failure to meet a real-time deadline to deliver a 
service. Finally, validation and verification, often the most 
expensive part of a system’s development, is important 
since these systems must be proven to possess the requisite 
dependability characteristics. This paper outlined typical 
requirements facing designers of safety-critical hard real- 
time computers and differentiated them from requirements 
of other applications. It provided a historical perspective in 
the field, and presented a set of architectural principles and 
techniques to address the issues described above. 
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