
Covert Timing Channel Analysis of Rate Monotonic Real-Time Scheduling Algorithm in
MLS systems

Joon Son, Jim Alves-Foss

Abstract— The modern digital battlesphere requires the development
and deployment of multi-level secure computing systems and networks.
A portion of these systems will necessarily be operating under real-time
processing constraints. High assurance systems processing national secu-
rity information must be analyzed for possible information leakages, in-
cluding covert channels. In this paper we provide a mathematical frame-
work for examining the impact the rate-monotonic real-time scheduling al-
gorithm has on covert timing channels. We prove that in some system con-
figurations, it will not be possible to completely close the covert channel due
to the rate-monotonic timing constraints. In addition, we propose a simple
method to formulate a security metric to compare covert channels in terms
of the relative amount of possible information leakage.

I. INTRODUCTION

A covert timing channel is an illicit communication path in
which one entity (High) signals information to another entity
(Low) in violation of the security policy by modulating its use
of system resources in such a way that this manipulation affects
the response time observed by Low. In this paper, we classify
a covert (timing) channel into four different categories: non-
deducible, positive-deducible, negative-deducible, and partially-
deducible based upon the degree of deducibility and types of in-
formation deducible by Low. This categorization uses the con-
cepts of nondeducibility [16] by Sutherland and nondeducibil-
ity on strategies [19] by Wittbold. In their definition of nonde-
ducibility, there is no information flow if and only if Low cannot
deduce with certainty anything about the activities of High.

A real-time operating system employs a scheduling algorithm
to schedule multiple tasks so that each task can meet its real-
time constraints such as deadline. Most real-time scheduling
algorithms are priority based. Each task is assigned a priority
based on its importance. In priority-based scheduling, control
of the CPU is always given to the highest priority task ready to
run. How a scheduling priority is assigned to a task and when
the highest priority task gets the CPU, however, are determined
by the type of scheduling algorithms used. Most commercial
real-time scheduling algorithms are preemptive: when a higher

J. Son, J. Alves-Foss: Center for Secure and Dependable Systems, University
of Idaho, Moscow, ID 83844
Email: son2320@uidaho.edu, jimaf@cs.uidaho.edu

This material is based on research sponsored by AFRL and DARPA under agree-
ment number F30602-02-1-0178. The U.S. Government is authorized to re-
produce and distribute reprints for Governmental purposes notwithstanding any
copyright notation thereon. The views and conclusions contained herein are
those of the authors and should not be interpreted as necessarily representing
the official policies or endorsements, either expresses or implied, of AFLR and
DARPA or the U.S. Government.

priority task is ready to run, the current task is preempted, and
the higher priority task is immediately given control of the CPU.
It is not hard to conjecture that scheduling priorities and pre-
emptiveness of a task may cause a covert timing channel and
that noise introduced by a third party task may have an influ-
ence on the channel. One of our research goals is to formally
analyze how a covert timing channel is created and exploited by
a High task (τH) and a Low task (τL) while a third party task is
simultaneously running with them under a well-known real-time
scheduling algorithm.

The Rate Monotonic (RM) scheduling algorithm [2], [11] is
one of the most widely used scheduling strategies due to its
rich theoretical background and simplicity of implementation.
However, the major research effort has focused on analysis of
schedulability of real-time tasks running in various conditions.
This motivate us to formally identify and analyze a covert timing
channel present in a Multi-Level Secure (MLS) system which
uses the RM scheduling algorithm to execute multiple real-time
tasks. In RM scheduling which is preemptive, scheduling pri-
orities are inversely proportional to task arrival rates. We show
that a timing channel present in an RM based MLS system be-
longs to one of our four classifications and how this covert tim-
ing channel can be exploited due to a generic vulnerability of
RM scheduling. In addition, we prove that if an RM based real-
time system is configured in a certain way, no matter how noisy
a timing channel is, there exists a covert timing channel between
High and Low.

One important characteristic of a real-time operating sys-
tem is that it performs operations at fixed, predetermined
times (called preemption points) or within predetermined inter-
vals [15]. Under the RM scheduling algorithm, when a pre-
emption point occurs, a currently running task is preempted if a
higher-priority task is waiting. For the purpose of this paper we
define a unit of time as the interval between preemption points,
giving us a well-defined discrete time domain in which to ana-
lyze covert timing channels.

II. RELATED WORK

Analysis of a covert timing channel in multi-level systems has
been an active research area for many years. To prevent a covert
timing attack, researchers had devised numerous defensive mea-
sures [7], [8], [10], [14], [17]. However, some of these defensive
measures for timing channels may be unacceptable for applica-

Proceedings of the 2006 IEEE
Workshop on Information Assurance

United States Military Academy, West Point, NY

1-4244-0130-5/06/$20.00 ©2006 IEEE 361

Defensive measure Mechanism Real-time requirements

Fuzzy time A security kernel produces random
clock ticks to distort an accuracy of a
clock.

A real-time task must have access to an
accurate time source.

Adding delays (noise) Add random service requests to cause
unwanted delays in Low’s response
time.

Adding random service requests may
cause a real-time task to fail to meet its
real-time constraint such as deadline.

Fixing quanta Tasks are scheduled in a round-robin
fashion.

Tasks are scheduled according to a real-
time scheduling algorithm to meet their
real-time constraints.

Clock resolution Increase the clock resolution that is
available to untrusted tasks.

A real-time task must have access to an
acuurate time source.

TABLE I

tions running on real-time systems (see Table I).
The first priority of a hard real-time system1 is that a sched-

uler must make sure that every task running in the system meets
its real-time constraints, e.g., deadline, computation time, etc.
If every task meets its real-time constraints, a set of such tasks
is called schedulable. This schedulability requirement cannot
be compromised by security requirements if the system is to be
usable. Devising a real-time scheduling algorithm which satis-
fies both real-time constraints and security requirements is not
an easy task.

Research in covert channels consists of several areas: covert
channel identification and characterization, covert channel ca-
pacity estimation, and covert channel prevention (defensive
measures) to close a channel or reduce the bandwidth of a chan-
nel. In this paper, we identify and characterize a covert tim-
ing channel present between two real-time tasks High and Low

which are schedulable under RM scheduling. We also propose
a simple security metric to compare covert channels in terms of
the relative amount of possible information leakage.

III. TYPES OF COVERT CHANNELS

Since Goguen and Meseguer [6] formalized information flow
based on the concept of noninterference, numerous variants of
noninterference have been proposed [4], [5], [6], [13], [16], [19].
A central idea of non-interference in a MLS system is that in
order to show that there is no information flow from High to
Low, one must demonstrate that Low’s view of a system is in-
dependent of the behavior of High, or that Low should not be
able to deduce with certainty anything about the activities of
High. Even though the variants have many different names, e.g.
nondeducibility, nondeducibility on strategy, generalized nonin-
terference, and restrictiveness, they all share the same underly-

1In a hard real-time system, an operation performed after the deadline usually
has no value.

ing concept of noninterference. The mathematical treatment of
these works is often rigorous and it is sometimes hard to see the
similarities and differences of these definitions [12].

Since our approach is based upon a simple communication
channel model commonly used in information theory [3], [18],
a communication path between High and Low can be easily
modeled as a transition diagram shown in Figure 1. One of our
goals is to transform a model which describes timing behav-
iors of real-time tasks running under RM scheduling to a simple
communication channel model, so that one can easily identify
and characterize how the channel can be exploited by malicious
subjects for covert communication.

A. Channel Characteristics

1x y1

x2 y
2

yx

y

X XY Y
1 1

2 x2

High Low High Low

(b) noisy channel(a) noiseless channel

Fig. 1. Covert Channel

A covert communication path can be modeled as a discrete
memoryless channel which describes a medium through which
symbols flow from a sender (High) to a receiver (Low) as
shown in Figure 1. The channel is discrete when the input
alphabets X = {x1, . . . , xJ} and the output alphabets Y =
{y1, . . . , yK} are finite. It is memoryless when the current out-
put depends on only the current input. When noise occurs during
the transmission of a symbol, the symbol may be altered and af-
fect the output observed by the receiver. The behavior of a noisy

Proceedings of the 2006 IEEE
Workshop on Information Assurance

United States Military Academy, West Point, NY

1-4244-0130-5/06/$20.00 ©2006 IEEE 362

1x

x2

x3

x4

y1

y
2

y
3

y4

1x y1

y
2

y
3

y4

1x
x2

x3

x4

x2

x3

x4

y1

y
2

y
3

y4

1x
x2

x3

x4

y1

y
2

y
3

y4

(b)(a)
Nondeducible

(c) (d)
Negative Deducible Partially DeduciblePositive Deducible

High Low High Low High Low High Low

Fig. 2. Types of Covert (Signaling) Channels

channel may be nondeterministic in a sense that the output ob-
served by the receiver is no longer a function of the input symbol
transmitted. For example, consider the noisy channel shown in
Figure 1(b). Upon receiving y1, the receiver cannot reliably de-
duce which value (x1 or x2) was the input symbol transmitted
by the sender. In this paper, we assume that a covert channel is
noisy, which is typical in real world applications.

A covert channel can be characterized as a binary relation
between an input symbol and a corresponding output symbol(s).
We define channel as a set which has such a binary relation.

Definition 1: Let X be a set of all possible symbols available
for a sender to transmit and Y be a set of all possible symbols a
receiver receives through a noisy channel.

channel = {(x, y) | x ∈ X, y ∈ Y } (III.1)
Note that there may exist multiple output symbols which cor-
respond to a single input symbol when a channel is noisy. For
instance, the noisy channel shown in Figure 1(b) can be charac-
terized as follows:

channel = {(x1, y1), (x1, y2), (x2, y1), (x2, y2)}

B. Classification of Covert Channels

By extending the concepts of positive and negative chan-
nels introduced by McCullough [13] and nondeducibility (de-
ductive inference) by Sutherland and Wittbold [16], [19], we
classify channels into four different categories: nondeducible,
partially deducible, positive-deducible, and negative-deducible.
This classification is based upon the degree of deducibility and
types of information deducible by Low. Figure 2 shows differ-
ent types of signaling channels which a malicious subject can
attempt to transform into covert channels.

Definition 2: Let x ∈ X and y ∈ Y . Let Domain(y) be a set
of input symbol(s) which may cause a output symbol y.

Domain(y) = { x | (x, y) ∈ channel}
If | X | > 1 (the number of symbols available for High to

transmit is greater than 1), a channel can be characterized as
follows:

Definition 3: A noisy channel is nondeducible if and only
if ∀ y ∈ Y • Domain(y) = X .

When a channel is characterized as nondeducible (Fig-
ure 2(a)), upon receiving any symbol, Low cannot reliably de-
duce which symbol has been sent by High. “Reliably de-
ducible” means that Low does not have to make any possibilis-

tic guess or probabilistic inference about which symbol has been
sent or not sent, given a symbol received.

Definition 4: A noisy channel is positive-deducible if and
only if ∃y ∈ Y • | Domain(y) | = 1.
If a noisy channel is positive-deducible, Low can tell exactly
which symbol has been sent by High by observing some sym-
bols. For instance, as shown in Figure 2(b), upon receiving y3,
Low can reliably deduce that x3 has been transmitted by High.

Definition 5: A noisy channel is negative-deducible if and
only if ∃y ∈ Y • | Domain(y) | = | X | −1
In a negative-deducible channel, by receiving a particular sym-
bol, Low can determine that exactly which symbol has not
been transmitted by High. For example, in the negative chan-
nel shown in Figure 2(c), upon receiving y3, Low can reliably
deduce that High has not transmitted x1. Please note that a
noisy channel can be classified as both positive-and negative-
deducible.

Definition 6: A noisy channel is partially-deducible if and
only if it is neither nondeducible, positive-deducible, nor
negative-deducible.

If a noisy channel is partially-deducible (Figure 2(d)), Low

can deduce the occurrence of a set of multiple input symbols
or the nonoccurrence of a set of multiple input symbols. For
instance, upon receiving y2, Low can reliably deduce that either
x2 or x3 has occurred. At the same time, Low can also reliably
deduce that neither x1 nor x4 has been transmitted.

Let us assume for a moment that High is a Trojan horse and
Low is an adversary. The intention of the Trojan horse is to
send a message to the adversary if it is able to attain classified
information and wants to signal the adversary while hiding in
a computer system. If a channel between the Trojan horse and
the adversary is nondeducible, the adversary cannot reliably de-
duce the intention of the Trojan horse. If the channel is positive-
deducible, the adversary can easily deduce the intention of the
Trojan horse. A possible strategy of the Trojan horse and the ad-
versary could be the following. The normal mode of operation
for the Trojan horse is to transmit either x1, x2 or x4. When the
Trojan horse is able to access some classified data and needs to
signal the adversary, it immediately changes its mode of opera-
tion and continues sending x3. Meanwhile, the adversary simply
waits until it observes y3 while ignoring other symbols. Upon
observing y3, it collects the classified information.

The negative-deducible channel could be as insecure as the
positive-deducible one. Let us assume that a channel is clas-

Proceedings of the 2006 IEEE
Workshop on Information Assurance

United States Military Academy, West Point, NY

1-4244-0130-5/06/$20.00 ©2006 IEEE 363

sified as negative-deducible. A possible strategy between the
Trojan horse and the adversary is described as follows. The nor-
mal mode of operation for the Trojan horse could be to transmit
x1. During this time, the adversary never observes y3. Imme-
diately after the Trojan horse attains classified information and
wants to signal the adversary, it starts to transmit either x2, x3

or x4. Meanwhile, the adversary waits until it detects y3, ignor-
ing other symbols. Upon receiving y3, the adversary begins to
collect the classified information.

Synchronization

Sender−Receiver Receiver observes

(Feedback)

Synchronization
Receiver−Sender

a symbol

transmitted

A symbol

Transmission

received

Period

Time
S−R Period

A symbol

Period
Feedback

Fig. 3. Transmission cycle of a covert channel

However, in both positive and negative channels, it is impor-
tant to note that the Trojan horse and the adversary cannot use
the exact count of y3 as a means of reliable communication if
no feedback path exists from the adversary to the Trojan horse.
Without feedback, the Trojan horse (transmitter) is not able to
know if the adversary (receiver) has observed y3. Thus, the Tro-
jan horse is not able to know when to start the transmission of
its next symbol. However, if a system allows information flow
from the adversary (Low) to the Trojan horse (High), the rate
at which the Trojan horse can transmit information depends on
how fast a noisy channel can deliver y3 to the adversary and re-
turn the acknowledgement back to the Trojan horse (feedback
rate). As illustrated in Figure 3, a covert channel has a transmis-
sion cycle which consists of sender-receiver synchronization (S-
R) period, transmission period and feedback period. During the
S-R period, a sender needs to notify a receiver that it is ready to
transmit a new symbol. Note that no S-R period may be needed
if a sender and a receiver have some previous agreement, e.g.
every t units of time, a new symbol is transmitted. The feed-
back period must exist in order for reliable communication to
continuously flow.

For the partially deducible channel case, the strategy of send-
ing information is similar. During the normal mode of opera-
tion, the Trojan horse transmits x3 and x4. During this time, y1

is never observed by the adversary. After sensing classified in-
formation, the Trojan horse sends x1. The adversary waits until
it observes y1.

It is not easy to formulate a correct metric to measure the se-
curity of each deducible channel since the degree of deducibility
depends on various factors2: the noise level of the environment
on which the Trojan horse and the adversary are running, the

2Note that our analysis is based upon the possibilistic approach, not proba-
bilistic one. If the transition probability of each transition is known, channel
capacity can be calculated using Shannon’s information theory [3], [18] and
used as a security measure.

Ci: Worst case computation (execution) time that may
be required by an invocation of task τi. It is also
denoted as Cmax

i .
Ti: Lower bound between successive arrivals of a task

τi. This is the period of a periodic task τi.
Di: The deadline for each invocation of task τi, mea-

sured from its arrival time. Usually Di ≤ Ti.
Ii: Worst case interference an invocation of task τi

may experience due to preemptions by higher-
priority tasks.

Ji: Worst case release jitter for an invocation of task
τi due to scheduling delay.

Ri: Worst case response time for an invocation of task
τi, measured from its arrival time to its termina-
tion time. A schedulable task must have Ri ≤ Di.

ri: Worst case response time for an invocation of task
τi, measured from its release time to its termina-
tion time.

Fig. 4. Mathematical notations used to characterize a task

longevity of a channel (short- or long-term channel), the exis-
tence of a feedback path, the intention of the Trojan horse (trans-
mission of short message or long message), etc.

IV. RATE MONOTONIC SCHEDULING ALGORITHM

A. Background, Notations, and Assumptions

Liu and Layland’s Rate Monotonic (RM) scheduling algo-
rithm [11] has become one of the most widely used scheduling
algorithms in real time systems. It has the following rules:
• Tasks with shorter periods (higher request rates) will have
higher priorities.
• A priority assigned to a task is fixed; priorities do not change
over time.
• It is intrinsically preemptive: a currently executing task is pre-
empted by a newly arrived task with a higher priority (shorter
period).

The mathematical symbols used are defined in Figure 4. In or-
der to simplify our analysis the following assumptions are made
on a periodic task:

A1. The periodic tasks running on a single processor are inde-
pendent (no shared resource among tasks other than a proces-
sor).
A2. The time between any successive arrivals of a task τi is
fixed as Ti (A task τi is activated at a constant rate Ti).
A3. The deadline for each invocation of task τi is equal to the
period (Di=Ti)
A4. There is no release time jitter (Ji = 0). A task τi is released
as soon as it arrives; thus, Ri = ri.
A5. The initial release time of all the tasks is zero.

From the above assumptions, a periodic task τi can be com-
pletely characterized as τi(Ti, Ci). Thus, we can denote a set of

Proceedings of the 2006 IEEE
Workshop on Information Assurance

United States Military Academy, West Point, NY

1-4244-0130-5/06/$20.00 ©2006 IEEE 364

periodic tasks running under RM scheduling algorithm as:

ΓRM = {τi(Ti, Ci), i = 1 . . . n}

B. Worst Case Response Time Analysis

Let ΓRM = {τi(Ti, Ci), i = 1 . . . n}. Let π(τi) represent a
scheduling priority assigned to a task τi. Assume that π(τ1) >

π(τ2) · · · > π(τn). Joseph and Pandya [9] showed that a task
set Γ will meet all its deadlines if:

for all tasks τi ∈ Γ Ri ≤ Di,

where Ri = Ci + Ii (IV.1)

and Ii =
i−1∑

j=1

⌈
Ri

Tj

⌉

Cj

The definition of Ri (Eq IV.1) is recursive. If a set of tasks are
not schedulable, one cannot find a solution for Ri of the lowest
priority task, which satisfies Ri ≤ Di. Please refer to [1] to see
how the recurrent equation (Eq IV.1) with a ceiling function is
solved.

V. COVERT TIMING CHANNEL ANALYSIS

In this section, we introduce a model which describes a covert
timing channel between a high-level task τH and a low-level task
τL, while a third party task τN (noise) is running concurrently
with them under RM scheduling. We then transform this model
into a simple communication channel model described as a set
with input-output binary relations (Definition 1). We make the
following assumptions in our model.
• Periodic tasks: Three tasks are running under RM schedul-
ing, i.e. ΓRM = {τi(Ti, Ci), i = N, H, L}
• Schedulability: ΓRM is schedulable.
• Scheduling priority: We assume TN < TH < TL, i.e. π(τN)
> π(τH) > π(τL). The outcome of analysis will be very similar
when TH < TN < TL, i.e. π(τH) > π(τN) > π(τL). What
is important here is that a low level task τL is assumed to be a
task with the longest period. There will be no covert channel if
a task τL has the shortest period; however, it may not be a viable
solution for some real-time application where a high level task
needs to consume more CPU time.
• Ability of High: High is given as much opportunity as pos-
sible for creating a covert timing channel. At every release time,
the computation of a task τH may vary from one unit to Cmax

H

units of time.
• Ability of Low: Low cannot measure the time between any
two occurrences of context switch. However, for each period,
Low is able to assess the response time of its own task (the time
between the submission of its task to a scheduler and the noti-
fication that it is completed). We assume there is no overhead
associated with the task submission and the notification.
• Timing behavior of τN : At every release time, the compu-
tation time of a task τN may vary from one unit to Cmax

N units
of time. However, its timing behavior is nondeterministic in a

sense that neither Low nor High can reliably predict the com-
putation time performed at each release.
• Periods of τN , τH , and τL: To simplify our analysis, we
assume that TN divides TL and TH divides TL. With this as-
sumption, Low can obtain a single output sample (the response
time of its own task) by monitoring at most TL units of time. In
addition, the number of periods of τN and τH which affect the
response time of Low can be well defined. This assumption is
not necessary, but without the assumption, Low has to wait for
the maximum of l.c.m. (TN , TH , TL) 3 units of time in each
period to sample the output.
• Sampling factor of Low: In order to detect (sample) a re-
sponse time of it own task, Low submits a task with known
computation time to a real-time scheduler. This fixed compu-
tation time is called the sampling factor of τL. We use ĈL to
denote the sampling factor.
• S-R period: We assume the S-R period is zero, e.g. High

begins to transmit a new symbol every t units of time, t ≥ (worst
case transmission period) + (worst case feedback period). This
provides us with an upper bound on the transmission rate of a
channel.

A. Extending Response Time Analysis

We extend Eq (IV.1) to calculate all possible response times
(not just the worst response time) of a task τL.

Let ĈH [k] denote the computation time of a task τH at the
kth release (during the kth period), 1 ≤ ĈH [k] ≤ Cmax

H . We
call ĈH [k] as a timed action of a task τH at the kth release. Let
ĈH be a vector (tuple) which represents a sequence of timed

actions of a task τH from the first up to
⌈

TL

TH

⌉th
release:

ĈH = (ĈH [1], ĈH [2], . . . , ĈH [k], . . . , ĈH [
⌈

TL

TH

⌉

])

Similarly, assuming 1 ≤ ĈN [k] ≤ Cmax
N , we denote a sequence

of timed actions of a task τN from the first up to
⌈

TL

TN

⌉th
release

as:

ĈN = (ĈN [1], ĈN [2], . . . , ĈN [l], . . . , ĈN [
⌈

TL

TN

⌉

])

The response time of a task τL is computed by adding up the
sampling factor ĈL, interference time caused by τH and inter-
ference time caused by τN :

R̂L = ĈL + InterferenceτH
+ InterferenceτN

(V.1)

= ĈL +

l
R̂L
TH

m
∑

k=1

ĈH [k] +

l
R̂L
TN

m
∑

l=1

ĈN [l] (V.2)

3l.c.m.(TN , TH , TL) represents the least common multiple of the periods of
tasks specified in the argument. It is often called the hyper-period.

Proceedings of the 2006 IEEE
Workshop on Information Assurance

United States Military Academy, West Point, NY

1-4244-0130-5/06/$20.00 ©2006 IEEE 365

1 2 3 4 5 6 7 8 9 201 2 3 4 5 6 7 8 9 20

Task (High)

Task (Low)

(a) (b)

Task (Noise) Task (Noise)

Task (High)

Task (Low)

Response time = 8 Response time = 5

Fig. 5. Timing Diagram

We solve (Eq V.2) for the response time R̂L using the recur-
rent relationship:

w
n+1
L = ĈL +

�
wn

L
TH

�
∑

k=1

ĈH [k] +

�
wn

L
TN

�
∑

l=1

ĈN [l] (V.3)

However, the recurrent equation has two free variables ĈH and
ĈN . The value of R̂L depends on the specific variable assign-
ments νh and νn from sets of positive integers to the variables.
We denote these variable assignments as follows:

νh(ĈH) = (h1, h2, . . . , hi, . . . , h
l

TL
TH

m), hi ∈ {1, . . . , C
max
H }

After the variable assignment νh, ĈH [1] = h1, ĈH [2] = h2, . . .,

and ĈH [
⌈

TL

TH

⌉
] = hl TL

TH

m. Likewise,

νn(ĈN) = (n1, n2, . . . , ni, . . . , n
l

TL
TN

m), ni ∈ {1, . . . , C
max
N }

After the variable assignment νn, ĈN [1] = n1, ĈN [2] = n2, . . .,

and ĈN [
⌈

TL

TN

⌉
] = nl TL

TN

m.

If we provide νh(ĈH), νn(ĈN), and ĈL to the recurrent equa-
tion (V.3), we can calculate the response time R̂L [1]. Once the
response time R̂L is computed, we can have a more accurate
trace or history of the actual execution sequences of tasks τH

and the τN which cause R̂L. Let ν̂h(νh, R̂L) be a sequence of
timed actions of a task τH which is responsible for the delay of

a task τL (the first
⌈

R̂L

TH

⌉
elements of νh(ĈH)):

ν̂h(νh, R̂L) = (h1, h2, . . . , h
l

R̂L
TH

m)
Similarly, let ν̂n(νn, R̂L) be a sequence of timed actions of a

task τN which is responsible for the delay of a task τL (the first⌈
R̂L

TN

⌉
elements of νn(ĈN)):

ν̂n(νn, R̂L) = (n1, n2, . . . , n
l

R̂L
TN

m)
The response time R̂L of a task τL can be represented as a

function f of ν̂h(νh, R̂L), ν̂n(νn, R̂L), and ĈL. Let us denote

this functional relation f by

R̂L = f(ν̂h(νh, R̂L), ν̂n(νn, R̂L), ĈL) (V.4)

Given a fixed variable assignment ν̂h(νh, R̂L) and a constant
value ĈL, multiple values of R̂L may be generated by the re-
current equation, depending on various variable assignments
ν̂n(νn, R̂L). If we consider the response time R̂L of a task τL as
the output symbol observed by a receiver, and a variable assign-
ment ν̂h(νh, R̂L) as the input symbol transmitted by a sender,
a simple communication channel model (channel-definition 1)
can be constructed as follows:

Let Vh and Vn be sets of all possible variable assignments
νh(ĈH) and νn(ĈN), respectively. Provided that ĈL is given,

{(ν̂h(νh, R̂L), R̂L) | R̂L = f(ν̂h(νh, R̂L), ν̂n(νn, R̂L), ĈL)

, νh(ĈH) ∈ Vh, νn(ĈN) ∈ Vn} (V.5)

By inputting all possible combinations of variable assign-
ments νh(ĈH) ∈ Vh and νn(ĈN) ∈ Vn and ĈL into the recur-
rent equation (V.3), we can construct a set channel with the
input symbol being a sequence of timed actions ν̂h(νh, R̂L) of a
task τH and the output symbol being a corresponding response
time R̂L. We specifically denote such a channel Eq (V.5) as
channel ΓRM

.
Example 1: Let ΓRM = {τN (5, 2), τH(10, 2), τL(20, 2)}

and ĈL = 2. Assume νh(ĈH) = (2, 2) and νn(ĈN) = (2, 2, 2, 2).
Then, using Eq (V.2) , R̂L = 8. The result can be compared with
the timing diagram (also known as Gantt diagram) provided in
Figure 5(a). Using Eq (V.4), this can be formally represented as
R̂L = f((2), (2, 2), 2) = 8.

Example 2: All the conditions are same as in Example 1 ex-
cept ĈL. Assume ĈL = 1. Then, using Eq (V.2), R̂L = 5. Please
refer to Figure 5(b). Using Eq (V.4), this can be formally repre-
sented as R̂L = f((2), (2), 1) = 5. Note that the small variation
in the sampling factor may result in (significant) change in re-
sponse time.

Example 3: Let ΓRM = {τN (5, 2), τH(10, 2), τL(20, 2)} and
ĈL = 1. We can construct channel ΓRM

by providing all possi-
ble combinations of variable assignments νh ∈ Vh and νn ∈ Vn

and ĈL into the recurrent equation. After all the computations,
channel ΓRM

= {((1), 3), ((1), 4), ((2), 4), ((2), 5)} as shown
in Figure 6(a). When Low observes that R̂L = 3 (or R̂L = 5), it

Proceedings of the 2006 IEEE
Workshop on Information Assurance

United States Military Academy, West Point, NY

1-4244-0130-5/06/$20.00 ©2006 IEEE 366

4

3

5

(a) (b)

4

5

7

8

(1)

(2)

(1)

(2)

High Low High Low

Fig. 6. channel ΓRM
for ΓRM ={ τ

N
(5, 2), τ

H
(10, 2), τL(20, 2)} (a) ĈL=

1 (b) ĈL = 2

can reliably deduce that a sequence of timed actions of a task τH

is (1) (or (2)). When it observes that R̂L = 4, it cannot reliably
deduce that which sequence of timed actions ((1) or (2)) causes
R̂L = 4.

Example 4: Let ΓRM = {τN (5, 2), τH(10, 2), τL(20, 2)} and
ĈL = 2. Please note that we only modify the sampling factor,
leaving other parameters unchanged, compared to the previous
example. Similarly, after all the computations, channel ΓRM

= {((1), 4), ((1), 5), ((2), 5), ((2), 7), ((2), 8)} as shown in Fig-
ure 6(b). When Low observes that R̂L = 4, 7, or 8, it can narrow
down which sequence of timed actions of τH affects its response
time. However, when Low observes that R̂L = 5, it cannot nar-
row down which sequence of timed actions ((1) or (2)) causes
R̂L = 5.

B. Classification of channel ΓRM

Before we figure out which category our model channel ΓRM

belongs to, we summarize a few important assumptions we
made to build it. The important assumptions are:
• We have a schedulable set of tasks ΓRM = {τi(Ti, Ci), i =
N, H, L} and π(τN) > π(τH) > π(τL). The schedulability im-
plies that transmission period, i.e. R̂L is less than or equal to
TL

• Low submits a job with known computation time (ĈL) to ob-
serve the response time of its own job. The time between any
two context switches cannot be measured.
• High is given as much opportunity as possible: 1 ≤ ĈH [k] ≤
Cmax

H .
• The timing behavior ĈN of τN at every release is nondeter-
ministic. However, its range is 1 ≤ ĈN [k] ≤ Cmax

N .

We can derive two interesting properties from our model
channel ΓRM

. If Low observes the maximum (or minimum) re-
sponse time, Low can uniquely determine a sequence of timed
actions of a high-level task τH which is responsible for the max-
imum (or minimum) response time. The following two lemmas
formalize these two properties. Let R̂max

L be the the maximum
response time and R̂min

L be the maximum response time.
Lemma 1: If (ν̂h(νh, R̂

max
L), R̂

max
L) ∈ channel ΓRM

, the
one and only possible variable assignment ν̂h(νh, R̂max

L)
which causes the delay of a task τL is ν̂h(νh, R̂max

L) =
(Cmax

H , Cmax
H , . . . , Cmax

H).

Proof: The proof is trivial. Since we as-
sume R̂L = R̂max

L , Eq V.1 becomes R̂max
L = ĈL +

InterferenceτH
+ InterferenceτN

, where InterferenceτH

=
∑

�
R̂max

L
TH

�
k=1 ĈH [k]. R̂max

L implies that both InterferenceτH

and InterferenceτN
must be maximum (ĈL is constant). The

maximum value of InterferenceτH
means that all the values

assigned to ĈH [k] must be C
max
H .

Lemma 2: If (ν̂h(νh, R̂min
L), R̂min

L) ∈ channel ΓRM
, the

one and only possible variable assignment ν̂h(νh, R̂
min
L) which

causes the delay of a task τL is ν̂h(νh, R̂min
L) = (1, 1, . . . , 1).

Proof: Since the approach of proving this lemma is very
similar to that in Lemma 1, we leave the proof to the reader.

From the previous two lemmas, we can prove the following
theorem:

Theorem 1: The noisy timing channel channel ΓRM
is al-

ways positive-deducible.
Proof: Lemma 1 implies that, upon observing the max-

imum response time R̂max
L , Low can reliably deduce that

(Cmax
H , Cmax

H , . . . , Cmax
H) is the only possible sequence of high

level actions to have occurred. Therefore, Domain(R̂max
L) =

{(Cmax
H , Cmax

H , . . . , Cmax
H)} and thus, | Domain(R̂max

L) | = 1.
Likewise, Lemma 2 implies that, upon detecting the minimum
response time R̂min

L , Low can reliably deduce that (1, 1, . . . , 1)
is the only possible sequence of high level actions to have oc-
curred. Therefore, Domain(R̂max

L) = {(1, 1, . . . , 1)} and thus,
| Domain(R̂min

L) | = 1. Since channel ΓRM
has at least two

response times R̂max
L and R̂min

L , which satisfy the definition
of positive-deducible (Definition 4), channel ΓRM

is always
positive-deducible.

VI. SECURITY METRIC - RELATIVE CHANNEL CAPACITY

Low can deduce more information about the intention of
High and, thus, more information is transferred from High to
Low if a channel becomes less noisy. Security researchers com-
monly uses Shannon’s information theory [3], [18] to quantify
the amount of information transferred from High to Low. This
absolute quantity, called channel capacity, is used to assess and
evaluate the severity of a covert channel. Channel capacity is
an effective metric to measure the degree of deducibility if the
goal of High is to send a long message and a noisy channel
lasts enough to complete the transmission. In order to compute
the channel capacity of a noisy channel, a transition probability
p(y | x), x ∈ X, y ∈ Y must be known.

It is not easy to formulate a metric to quantify information
flow present in a noisy environment if a transition probability is
not known (in many practical situations such statistical data are
either unavailable or unreliable). However, if one is less ambi-
tious and thus not seeking for an absolute measure such as chan-
nel capacity, an alternative way may be devised to measure the
relative and approximate quantity of information flow. The rel-
ative quantity of information flow may be useful to make com-
parisons between the amount of information transmitted in one

Proceedings of the 2006 IEEE
Workshop on Information Assurance

United States Military Academy, West Point, NY

1-4244-0130-5/06/$20.00 ©2006 IEEE 367

1x

x2

x3

x4

y1

y
2

y
3

y4

1x y1

y
2

y
3

y4

x2

x3

x4

(b)(a)
Channel A Channel B

HighLowHigh Low

Fig. 7. The degree of deducibility

channel and that of information in another channel. We propose
a simple method to formulate a security metric which can indi-
cate the relative quantity of information flow. We call this secu-
rity metric as relative channel capacity. The new method begins
with the use of Shannon’s general formula for computing the
amount of information generated by the reduction of n equally
likely possibilities to m. This general formula is log2 (n

m
). We

write IS(y) to denote the measure of information carried by a
particular symbol y about the state of a sender S. For example,
in the noisy channel A shown in Figure 7(a), upon observing y1,
a receiver can deduce that x1 has been transmitted by a sender,
e.g. the reduction of four possibilities (x1, x2, x3, or x4) to one
(x1). Thus, IS(y1) = log2 (4

1) = 2, assuming that the probabili-
ties associated with occurrences of input symbols are all equal.
Upon receiving y2, a receiver is able to deduce that either x1 or
x2 was sent by a sender, e.g. the reduction of four possibilities to
two (x1 or x2). Thus, IS(y1) = log2 (4

2) = 1. The relative chan-
nel capacity IS(Y) of information flow in the noisy channel A

is computed by adding all IS(yj), j ∈ {1, 2, 3, 4}. Therefore,
IS(Y)= IS(y1) + IS(y2) + IS(y3) + IS(y4) = 2 + 1 + 1 + 2 =
6. If the same method is applied to the noisy channel of Fig-
ure 7(b), we get IS(Y) = IS(y1) + IS(y2) + IS(y3) + IS(y4)
= 2 + 1 + 1 + 1 = 5. These relative quantities can be used as
effective metrics to compare the degrees of deducibility of two
positive noisy channels when they are modeled in a possibilistic
way. Since IS(Y) of the noisy channel A is greater than that
of the channel B, we may conclude that Low can deduce more
information about the intention of High if both of them com-
municate covertly in an environment which could be modeled
as the channel A.

VII. CONCLUSION & DISCUSSION

Using a simple communication channel model, we classify a
noisy channel into four categories based upon the degree of de-
ducibility and the type of information deducible by Low. From
each deducible channel, we show that how High and Low can
exploit the noisy channel for covert communication. To prove
that noise introduced by a third party application as a part of
an RM based system will not completely close a covert timing
channel, we show that the covert timing channel channel ΓRM

always falls into the positive-deducible category. Finally, the
security metric called relative channel capacity is proposed to
compare between the degree of deducibility of one covert chan-

nel and that of another channel.
Currently, we are researching how to quantify the information

deducible from a specific observation when transition probabil-
ities of a channel are known. When Low observes a specific
symbol, it can positively (or negatively) deduce a set of input
symbols High tries to signal. If the amount of deducible infor-
mation can be measured for each specific symbol received, it can
be found out that which output symbol(s) carries more informa-
tion about the state of High than others. Such quantities may
be useful in designing an effective defensive measure against a
timing attack.

REFERENCES

[1] N.C. Audsly, A. Burns, M.F. Richardson, K. Tindell, and A.J. Wellings.
Applying New Scheduling Theory to Static Priority Pre-emptive Schedul-
ing. 8(5):284–292, 1993.

[2] G. Buttazzo. Hard Real-Time Computing Systems: Predictable Scheduling
Algorithms and Applications. Kluwer Academic Publishers, 1997.

[3] T. Cover and J. Thomas. Elements of Information Theory. Wiley-
Interscience, 1991.

[4] R. Focardi and R. Gorrieri. A classification of security properties. Journal
of Computer Security, 3(1):5–33, 1994.

[5] R. Forster. Non-Interference Properties for Nondeterministic Processes.
PhD thesis, Oxford University, 1999.

[6] J. Goguen and J. Meseguer. Security policies and security models. In IEEE
Symposium on Research in Security and Privacy, pages 11–20, 1982.

[7] W. Hu. Reducing Timing Channels with Fuzzy Time. In IEEE Symposium
on Research in Security and Privacy, May 1991.

[8] J. Janeri, D. Darby, and D. Schnackenberg. Building Higher Resolution
Synthetic Clocks for Signaling in Covert Timing Channels. In The Eighth
IEEE Computer Security Foundations Workshop, 1995.

[9] M. Joseph and P. Pandya. Finding Response Time in a Real-Time System.
29(5):390–395, 1986.

[10] M.H. Kang, I. Moskowitz, and S.Chincheck. The pump: A Decade of
Covert Fun. In 21st Annual Computer Security Applications Conference,
2005.

[11] C. Liu and J. Layland. Scheduling algorithms for multiprogramming in
a hard-real-time environment. Journal of the Association for Computing
Machinery, 20(1), 1973.

[12] H. Mantel. Possibilistic Definitions of Security - An Assembly Kit. In 13
th IEEE Computer Security Foudnations Workshop, pages 235–243, 2000.

[13] D. McCullough. Covert Channel and Degree of Insecurity. In Proceedings
of the Computer Security Foundations Workshop, 1988.

[14] I. Moskowitz and M.H. Kang. Covert Channels - Here to Stay. In Com-
puter Assurance, COMPASS 94, pages 235–243, 1994.

[15] W. Stallings. Operating Systems: Internals and Design Principles. Pren-
tice Hall, fifth edition, July 2004.

[16] D. Sutherland. A Model of Information. In Proceedings of the 9th National
Computer Security Conference, pages 175–183, 1986.

[17] J. Gray III. On introducing noise into the Bus-Contentiion Channel. In
IEEE Symposium on Research in Security and Privacy, 1993.

[18] W. Weaver and C.E. Shannon. The Mathematical Theory of Communica-
tion. University of Illionois Press, 1963.

[19] J. Wittbold and D.M. Johnson. Information Flow in Nondeterministic Sys-
tems. In IEEE Symposium on Security and Privacy, pages 144–161, 1990.

Proceedings of the 2006 IEEE
Workshop on Information Assurance

United States Military Academy, West Point, NY

1-4244-0130-5/06/$20.00 ©2006 IEEE 368

