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Control Loops

Use information from the output of an action to
adjust the input of the action

Process Variable
Setpoint

Manipulated variable



Votion

d°h l dh
m— = —mq—>b
dt? I dt

]‘C(h — h())

e |deal newtonian motion

* Easily solvable second order linear ODE



Nolse

1°1 1/
m(dt; b(dtL kh = —mg + kho + n(t) + F(z(t))

* Real world system with unpredictable noise term
n(t) causes errorsz=h-hn_0

 Measure error and compensate by applying force

(z(1))

 Can'’t solve this because n(t) is unknown



PID Equation

d

u(t) = Kye(t —|—K/ dT—I—KdEP()

 Measure error, calculate how to fix the error, drive
the signal back into the system Iin a way that
pushes It towards equilibrium

* (Goal is to manipulate the controlled variable such
that the error is minimized



Proportional

* present error

* provides stability against small disturbances



Integrated

 Accumulated Error
* provides stability against a steady disturbance

* [Ime dependence



Differentiated

u(t) = Kye(t) + Ki/o e(T)

* predicted error
* predicts system behavior
* Improves control

e variable impact on system stability, often left off
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P|D Controller

* responsiveness, overshoot, system oscillation.



Tuning

e adjustment of gain to the optimum values to obtain
a desired control response

e Various offline and online methods to tune PID

* Ziegler-Nichols method:

o Set Kiand Kd to zero, increase Kp until the output begins to
oscillate periodically (Ku, Pu). Use this information to determine
Kp, Ki, Kd formulaically.
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Analog Diagram
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Digital PID

Discretize general equation
Easier to tune
Communicate directly with computer

Sometimes less stable than analog controller
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L Imitations

* Linear and symmetric - performance in non-linear
systems Is inconsistent

e does’t guarantee optimal control of the system or
system stabillity.
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|_inear-quadratic regulator

e System dynamics are described by set of linear
ODE

* Costis described by a guadratic function
* Feedback controller, like PID
e Settings to the controller that governs a process

are found using an algorithm to minimize cost
function with supplied constraints
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QR Algorithm

* Automated way of finding an appropriate state-feedback
controller

» Different LQR Algorithms for
* Finite-horizon, continuous time
* Infinite-horizon, continuous time
* Finite-horizon, discrete time
* Infinite-horizon, discrete time

e Solve the representative Riccati equation in one of several ways.



| Inear-quadratic Estimator

o« Kalman filter

* Uses series of measurements over time containing
iInaccuracies

* produces estimates of unknown variables



| QE Algorithm

Prediction step: produces estimates of current state
variables and uncertainties

Observation step: observes next measurement

Adjustment step: estimates are updated via weighted
average

This process is linear as the previous calculated state
and uncertainty matrix are stored with each step.



L Inear-quadratic-gaussian
control problem

* |Introduce Gaussian noise to system, consider
Gaussian measurement uncertainty

 Composed of LQR and Linear-quadratic estimator

e Separation principle: the problem of designing an
optimal feedback controller for a stochastic system
can be solved by designing an optimal observer
and an optimal deterministic controller
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LQG
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| QG Problem

d);it) A(t)x(t) + B(t)u(t) + v(t)

y(t) = C(t)x(t) +w(t)

- X as vector of state variables

* U as vector of control inputs
+ Yy as vector of measured outputs

- (Gaussian system noise v, Gaussian measurement
Noise W



| QG Controller
dx(t)

— = AWDX() + Bu(t) + K (1)(y(t) — C(OX(1))
u(t) = —L(t)X(?)

* LQE estimate x(t)

* LQE gain K(t)

* Feedback gain L(t)

e K(1), L(t) determined by solving matrix Riccati



Analog LQG -
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