An Introduction to Motion Planning

Alan Kuntz

2/4/15

http://cs.unc.edu/~adkuntz/MotionPlanning.pdf
Applications
Applications
Applications
Applications

cs.unm.edu/amprg
Applications

cs.unm.edu/amprg
Problem Definition

• Compute a collision-free path for the robot/agent from a start configuration to a goal configuration

• Inputs
 • Geometry of robot/agent
 • Geometry of environment
 • Start and goal configurations

• Outputs
 • Continuous sequence of robot/agent configurations connecting the start and goal configurations
Problem Definition

- **Problem Definition**

- **Diagram**
 - Start point s
 - Goal point g
 - Free space
 - Obstacles
 - Free path
Problem Definition

• Complete - Always return a solution plan if one exists, otherwise indicate there isn’t one
• Optimal - Always return the best solution plan under some value metric
Problem Definition

• Completeness - In more than 2D, PSPACE-hard
• Exponential in DOFs, number of obstacles, etc.
• May require computation of entire C-space.
• Doable in simple cases, like 2D with point robot. Easy because C-space is workspace
Problem Definition
Problem Definition

• What about for something more complex than a point?
• Next most complex - Polygonal robot that translates but does not rotate.
• Can also be done relatively easy in 2D space through Minkowski Sums/Differences
Minkowski Difference

\[CB = B \ominus A = \{ b - a \mid a \in A, \ b \in B \} \]
Minkowski Difference

Obstacle P

Robot M

$P \oplus -M$

C-obstacle

Classic result by Lozano-Perez and Wesley 1979
Minkowski Difference

Grate 1 (444 tris)

Grate 2 (1,134 tris)

Grate 1 \oplus Grate 2 (Union of 66,667 prims, 358K tris)
Minkowski Difference
Minkowski Difference
Minkowski Difference

• That’s an obstacle in C-space for a mobile robot.
• The problem has now become to navigate a point through this higher dimensional space.
A huge amount of motion planning concerns itself with navigating a point through some n-dimensional space.

Why a point?

• Points are easy.
 • Lines, Vectors, Graphs etc.

Is this even useful?

• Abstraction
 • Approximation

How?
Potential Fields
• How to plan the motion of a point?
• Discretize the space, construct a graph, search the graph.
Trapezoidal Decomposition
Quadtree Decomposition

(a)

(b)
Octree Decomposition

- EMPTY cell
- MIXED cell
- FULL cell
The Problem

- Methods like these require a model of C-space.
- These spaces become difficult/infeasible beyond three dimensions.
- How do we get around this?
The Point

• Describing the space is hard, but describing the state of a single point may not be.
Roadmaps

• Lets build a “roadmap” of the space, which requires much less evaluation.
Probabilistic Road Maps - PRM

- **Learning Phase**
 - Sample free points
 - Link samples to learn connectivity
 - Precomputed

- **Query Phase**
 - Add start and goal to roadmap
 - Connect to nearest neighbor
 - Compute path from start to goal
 - Multiple queries per road map
• Interactive Demo: http://robotics.cs.unc.edu/interactive/prm.html
Rapidly Exploring Random Trees - RRT

[LaValle, Kuffner 2001]
Rapidly Exploring Random Trees - RRT

[LaValle, Kuffner 2001]
Rapidly Exploring Random Trees - RRT

[LaValle, Kuffner 2001]
Rapidly Exploring Random Trees - RRT

[LaValle, Kuffner 2001]
Rapidly Exploring Random Trees - RRT

[LaValle, Kuffner 2001]
Rapidly Exploring Random Trees - RRT

[LaValle, Kuffner 2001]
Rapidly Exploring Random Trees - RRT

[LaValle, Kuffner 2001]
Rapidly Exploring Random Trees - RRT

[LaValle, Kuffner 2001]
Rapidly Exploring Random Trees - RRT

[LaValle, Kuffner 2001]
Rapidly Exploring Random Trees - RRT

[LaValle, Kuffner 2001]
RRT*

[Karaman, Frazzoli 2010]
RRT*

[Karaman, Frazzoli 2010]
RRT*

[Karaman, Frazzoli 2010]
Intuition

• Describe your system in terms of some high dimensional space
 • C-space
 • State space
 • Workspace
 • Trajectory space
 • A combination
• Plan a path through that space under some constraints
Space Choices

• Choice is frequently problem dependent
• Frequently require some approximation, so what model resolution is sufficient?
• May be influenced by the capabilities of your controller
 • One end of the spectrum, control propagation
 • Other end, maps.
Additional Considerations

• What space will allow for easy and effective implementation or adaptation of pre-existing algorithms?

• Space construction will affect topology, connectivity, obstacle definitions etc.
Increased Complexity

• Dynamic Environments
 • Ideas?

• Noisy Sensing/Actuation
 • Other Ideas?

• Nonholonomy
 • Even More Ideas?
Conclusion

• Many different classes of motion planning algorithms
• It is very difficult to generalize them
• The intuition gained from thinking about the abstractions will help you to understand the approaches as you encounter them.
Questions?

• Many images courtesy of Dr. Alterovitz’ Robotics course.