Avionics Certification

Dhruv Mittal
Motivation

• Complex Avionics systems have been regulated for a long time

• Autonomous systems are being researched and built in avionics right now

• Research in avionics is often driven/overseen by the US Air Force, and confronts the problems of certification directly

• There’s not an analogous organization for automotive, so we can look to avionics for a model
Current Certifications & Process

- Focus on safety critical hardware and software
- Focus on development processes
- Standards provided by organizations like SAE International and RTCA
SAE International

- Society of Automotive Engineers
- Coordinates the development of technical standards based on best practices
 - Task forces of engineering professionals create the standards
 - Since 1915, when they standardized the different lock washers and steel tubing used in the automotive industry
• Whole lifecycle for systems that implement aircraft functions aka communications, navigation, monitoring, flight-control, collision-avoidance

• “This document discusses the certification aspects of highly-integrated or complex systems installed on aircraft, taking into account the overall aircraft operating environment and functions. The term "highly-integrated" refers to systems that perform or contribute to multiple aircraft-level functions. The term "complex" refers to systems whose safety cannot be shown solely by test and whose logic is difficult to comprehend without the aid of analytical tools.”
Guidelines and Methods for Conducting the Safety Assessment Process on Civil Airborne Systems and Equipment

• Guidelines for conducting a safety assessment

• Functional Hazard Assessment - Determine possible failure conditions & severity (probability bounds and assurance levels)

• Preliminary System Safety Assessment - Determine how failures can arise

• System Safety Assessment - Verify that failure conditions are acceptable (probability bounds)
ARP4761 SSA Chart

<table>
<thead>
<tr>
<th>Probability (Quantitative)</th>
<th>1.0</th>
<th>1.0E-5</th>
<th>1.0E-5</th>
<th>1.0E-7</th>
<th>1.0E-7</th>
<th>1.0E-9</th>
<th>1.0E-9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Probability (Descriptive)</td>
<td>Probable</td>
<td>Improbable</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Failure Severity</td>
<td>Minor</td>
<td>Major</td>
<td>Severe Major</td>
<td>Catastrophic</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Failure Effect | • Slight reduction in safety margins
 • Slight increase in crew workload
 • Some inconvenience to occupants
 • Significant reduction in safety margins or functional capabilities
 • Significant increase in crew workload or conditions impairing crew efficiency
 • Some discomfort to occupants
 • Large reduction in safety margins or functional capabilities
 • Significant increase in crew workload or conditions impairing crew efficiency
 • Some discomfort to occupants
 • All failure conditions that prevent continued safe flight and landing |
| Development Assurance Level| Level D | Level C | Level B | Level A |

ARP4761 (tools)

- Fault Tree Analysis
- Dependence Diagram
- Markov Analysis
- Failure Modes and Effect Analysis
- Common Cause Analysis
FHA via Fault Tree Analysis

Safety Assessment Process

RTCA

- Radio Technical Commission for Aeronautics
- Private not-for-profit corporation
- develops technical guidance for use by government regulatory authorities & industry
- advisory body to the FAA
DO-178B/C

- Software Considerations in Airborne Systems and Equipment Certification

- Supplements:
 - DO-330: Software Tool Qualification Considerations
 - DO-331: Model-Based Development and Verification
 - DO-332: Object-Oriented Technology and Related Techniques
 - DO-333: Formal Methods
DO-178C

• Assumes that SSA has been performed on all software components

• Guides objectives for planning, development

• Explains how to
 • Develop software requirements and architecture from system requirements
 • Select processes, methods, tools, and error prevention methods for development
 • Select verification methods and test environments
DO-178C (cont)

• Sets up very specific requirements for software planning/development:
 • Defines software standards and environment
 • languages, compilers, IDEs, version control, verification tools/techniques, test environment
 • Decreases subjectivity across the entire development and verification process

Current Certification Process for Avionics

- Process Starts with Requirements
- Refine Requirements and Architecture
- Demonstrate Assurance depending on severity/criticality level

Diagram of Current Certification Process for Avionics

1. Process Starts with Requirements
2. Intended Aircraft Function
3. Function, Failure & Safety Information
4. System Design Information
5. Safety Assessment Process Guidelines & Methods (ARP 4761)
6. Safety Assessment of Aircraft in Commercial Service (ARP 5150 / 5151)
7. Aircraft & System Development Processes (ARP 4754 / ED-79)
9. Electronic Hardware Development Life-Cycle (DO-254 / ED-80)
10. Software Development Life-Cycle (DO-178B/ED-12B)

L. Humphrey, “Certification and Design Challenges for Autonomous Systems”, 2014
Autonomy

- AFRL Definition: “Systems that have a set of ‘intelligence-based’ capabilities that allow them to respond to situations in uncertain environments by choosing from a set of potential actions.”

- FAA Definition: “Autonomous operations refer to any system design that precludes any person from affecting the normal operations of the aircraft”

- Hard to certify because:
 - large state-space of system actions
 - large, potentially unknown environment
 - interactions with other autonomous systems can result in unexpected behaviors
 - testing is intractable for large state-space
 - lack of standard in design and analysis methods
Current Efforts to Certify Autonomous Avionics

• “accommodation, integration, evolution”

• Incremental fielding of autonomy - like in automotive

• human-in-the-loop for foreseeable future

FAA Integration of UAS into NAS Roadmap

• UAS - Unmanned Aircraft Systems

• NAS - National Airspace System

• “Although research will continue, fully certified UA-based collision avoidance solutions may not be feasible until the long-term and are deemed to be a necessary component for full UAS NAS integration. This will include research on safe and efficient terminal airspace and ground operations, followed by ground demonstrations of autonomous airfield navigation and ATC interaction.” (2013)
Key Differences between Avionics & Automotive

• Systems are often simpler wrt. safety certifications

 • Don’t have to deal with road challenges (pedestrian detection, constantly changing conditions, etc) except for airfield nav. on the ground, where it’s the same problem.

 • Radar and other detection techniques already in use are pretty effective

 • Operated by professionals, not general consumers

 • Low interest in reducing cost due to relative pricing of aircraft