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What is Real-Time Motion 
Planning?

1st floor vs. 2nd floor

Motion planning with a hard real-time constraint. 
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Real-Time Motion Planning

In the general case: impossible.



Precompute Motion Plan

Extremely popular option. 

• Allows arbitrarily long computation 

• Asymptotically feasible algorithms 

• Asymptotically optimal algorithms 

Is this real-time?  yes and no.



Real-time Motion Planning 
Problem

Time-bounded computation 

Responsive a dynamic environment  
(moving obstacles, goals, new data)



Collision Avoidance
• Reformulation of path 

planning into collision 
avoidance. 

• Potential fields 

• Real-time ✓ 

• Problem: gets stuck in 
local minima

[Khatib 1986]
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The region of influence of this potential field is
bounded by the surfaces f(x) = 0 and f(x) =f(x,,),
where xo is a given point in the vicinity of the obstacle
and 11 a constant gain. This potential function can be
obtained very simply in real time since it does not
require any distance calculations. However, this po-
tential is difficult to use for asymmetric obstacles
where the separation between an obstacle’s surface
and equipotential surfaces can vary widely.
Using the shortest distance to an obstacle 0, we

have proposed (Khatib 1980) the following artificial
potential field;

where po represents the limit distance of the potential
field influence and p the shortest distance to the obsta-
cle O. The selection of the distance po will depend on
the end effector operating speed V and on its decel-
eration ability. End-effector acceleration characteris-
tics are discussed in Khatib and Burdick (1985).
Any point of the robot can be subjected to the artifi-

cial potential field. The control of a Point Subjected to
the Potential (PSP) with respect to an obstacle 0 is
achieved using the FIRAS function,

where ap denotes the partial derivative vector of theax
distance from the PSP to the obstacle,

The joint forces corresponding to F~o,~s~} are obtained
using the Jacobian matrix associated with this PSP.
Observing Eqs. (6) and (9), these forces are given by

Fig. 1. An n-ellipsoid with
n=4.

5. Obstacle Geometric Modelling

Obstacles are described by the composition of primi-
tives. A typical geometric model base includes primi-
tives such as a point, line, plane, ellipsoid, parallele-
piped, cone, and cylinder. The first artificial potential
field (Eq. 16) requires analytic equations for the de-
scription of obstacles. We have developed analytic
equations representing envelopes which best approxi-
mate the shapes of primitives such as a parallelepiped,
finite cylinder, and cone.

The surface, termed an n-ellipsoid, is represented by
the equation,

and tends to a parallelepiped of dimensions
(2a, 2b, 2c) as n tends to infinity. A good approxima-
tion is obtained with n = 4, as shown in Fig. 1. A cyl-
inder of elliptical cross section (2a, 2b) and of length
2c can be approximated by the so-called n-cylinder
equation,

The analytic description of primitives is not neces-
sary for the artificial potential field (Eq. 17) since the
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Fig. 3. Control system
architecture.

10. Applications

This approach has been implemented in an experi-
mental manipulator programming system Control in
Operational Space of a Manipulator-with-Obstacles
System (COSMOS). Demonstration of real-time colli-
sion avoidance with links and moving obstacles (Kha-
tib et al. 1984) have been performed using a PUMA
560 and a Machine Intelligence Corporation vision
module.
We have also demonstrated real-time end-effector

motion and active force control operations with the
COSMOS system using wrist and finger sensing. These
include contact, slide, insertion, and compliance oper-
ations (Khatib, Burdick, and Armstrong 1985).

In the current multiprocessor implementation (PDP
11/45 and PDP 11/60), the rate of the servo control
level is 225 Hz while the coefficient evaluation level
runs at 100 Hz.

11. Summary and Discussion

We have described the formulation and implementa-
tion of a real-time obstacle avoidance approach based
on the artificial potential field concept. Collision
avoidance, generally treated as high level planning, has
been demonstrated to be an effective component of
low level real-time control in this approach. Further,
we have briefly presented our operational space for-

mulation of manipulator control that provides the
basis for this obstacle avoidance approach, and have
described the two-level architecture designed to in-
crease the real-time performance of the control system.

The integration of this low level control approach
with a high level planning system seems to be one of
the more promising solutions to the obstacle avoidance
problem in robot control. With this approach, the
problem may be treated in two stages:

. at high level control, generating a global strategy
for the manipulator’s path in terms of interme-
diate goals (rather than finding an accurate
collision-free path);

. at the low level, producing the appropriate
commands to attain each of these goals, taking
into account the detailed geometry and motion
of manipulator and obstacle, and making use of
real-time obstacle sensing (low level vision and
proximity sensors).

By extending low level control capabilities and re-
ducing the high level path planning burden, the inte-
gration of this collision avoidance approach into a
multi-level robot control structure will improve the
real-time performance of the overall robot control
system. Potential applications of this control approach
include moving obstacle avoidance, collision avoid-
ance in grasping operations, and obstacle avoidance
problems involving multimanipulators or multifin-
gered hands.

Appendix I: Link Distance to a Parallelepiped

The axes of the frame of reference R are chosen to be
the parallelepiped axes of symmetry. The link’s length
is I and the dot product is ( . ).

DISTANCE TO A VERTEX

The closest point m of the line (Eq. 26) to the vertex v
is such that
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Anytime Planners

• Incrementally build a planning tree 
• May be stopped at anytime 
• Example: RRT, RRT* 
• Real-time? 
• Reactivity: rapid re-planning + some luck

[Image source: Ichnowski 2013]



Roadmap Planners
• Pre-computes a roadmap  

(connectivity of freespace) 

• Motion plan = graph search 

• Real-time? 

• Example: PRM 

• Reactivity must come from another task.
[Image source: LaValle 2006]



Grid/Lattice Planners
1. Discretize space 

2. Plan in the discretized space 

Often done with A* or variant. 

Weighted A*: reduced plan optimality & compute time 

D* is reverse A* + keep data for next compute cycle
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exploration of the lattice and keeps the neighborhood size
small to preserve search efficiency.

3.1 Path Decomposition
With the insights obtained in Section 2.6, we again look at
the lattice as a concept derived from a grid. The regularity
property of the grid implies that it is possible to isolate a
certain representative set of connections which is repeated
everywhere in the grid. As is illustrated in Fig. 6, for the
case of a 4-connected rectangular grid, it is easy to identify
a minimal set of connections. If we cast the grid in the con-
text of motion planning, we understand connections as ele-
mentary motions between two nodes. This minimal set of
connections is the (finite) set of controls that is identical for
every state and that allows us to generate arbitrarily long
motion plans in the infinite grid. This concept has been
used in motion planning for some time [8]. 
In a similar fashion, if we could identify such a control set
for a lattice, we could use it to address the computational
issues mentioned above and essentially create a finite rep-
resentation of the lattice.
By invoking the notion of path equivalence class and some
non-zero , we can substitute a path with two other paths
such that their concatenation generates a motion that
belongs to the same equivalence class as the original path.
We define path decomposition as the problem of finding
two such constituents of a path (Figure 7). 
By definition of path decomposition, the two constituent
paths must meet at a lattice node. Intuitively, the longer a
path is, the more lattice nodes it comes “close” to, hence
the easier it is to find a decomposition because there are
more “opportunities” to do so. Hence, it may be possible to
decompose all motions in the lattice and create a finite con-
trol set, as was done for a grid. However, whereas in case of
the grid, the nodes are equidistant and hence component
paths have constant length, no such assumptions can be
made regarding paths in the lattice. Due to this generality, it
is difficult to create a rigorous proof that the entire infinity
of motions, of infinite length, of the lattice can be decom-
posed in this fashion. 

However, through a simulation study we concluded that
this is possible for realistic vehicle parameters (  and
path following error ). We considered over 2000 differ-
ent (relatively long) paths in the lattice and showed that all
of them could be decomposed into at least two (usually
more) smaller paths.
Thus, the control set allows us to eliminate redundancies of
the lattice both in terms of the variety of paths between
nodes (through the notion of path equivalence), and in
terms of generally unlimited path length (path decomposi-
tion).

3.2 Properties of the Control Set
As a representation of the state lattice as a search space, the
control set contains motion alternatives that a search algo-
rithm has to consider at each node. There are several impor-
tant properties of the control set that make it attractive for
nonholonomic motion planning.
3.2.1 Minimal Set of Feasible Motions
The process of path decomposition can be implemented in
a variety of ways. Our formulation of decomposition
admits constructing a decomposition algorithm that gener-
ates the smallest possible set of motion alternatives. That is,
given some control set, if there exists another set that has
fewer motion alternatives, then the algorithm chooses it.
Inductively, the algorithm will arrive at the smallest repre-
sentation of motions of the lattice. This result implies that
the resulting control set is the most efficient search space
satisfying the original constraints applied to its construc-
tion. However, given that we make no assumptions about
the nature of paths, verifying that a control set is indeed
minimal requires comparing it to all possible templates,
which is intractable.
Nevertheless, in Section 4 we discuss control set generation
algorithms that operate on a finite, but large, subset of the
lattice, use realistic vehicle parameters, and generate near-
minimal motion templates. Such templates were shown to

Figure 6: Isolating a minimal set of motions in a 4-connected
grid. The minimal set of motions, a control set, can be used to re-
generate the entire grid. 

Figure 7: An illustration of path decomposition.

δe

κmax
δe

Figure 8:  An illustration of identifying a control set in the
lattice. The same set of motion options (top left corner) is
centered at every node. This set is repeated at the nodes in
the lattice in order to generate the path (thick black curve).

[Image source: Pivtoraiko 2006]



A*

• Provably optimal 

• What if graph changes during the search?  
(e.g., dynamic environment) 

• O(bd)  d = solution length, b = branching factor. 
           (polynomial if search space is tree*)



Minimin
1. Depth-limited 

horizon search 

2. A* metric frontier (S) 

3. Take step towards 
best frontier node 

4. repeat.

• Assign 

• Prune search when

𝛼-Pruning+
↵ = min

x2S
f(x)

f(x) � ↵

f(x) = g(x) + h(x)

[Korf 1988]

Real-Time Heuristic Search



Real-Time A*

[Korf 1988]

• Use Minimin w/ 𝛼-Pruning in “planning mode” 

• RTA* used in execution. 

RTA*: At     , what is         ? 

1. Choose  

2. Store second best                        for

xi xi+1

x

i+1 = argmin
x

02neighbors of xi

g(x0) + h(x0)

g(x0) + h(x0) xi



Partitioned-Learning RTA*

• Start w/ RTA* 
(depth-limited search) 

• Take step towards best path 

• “Learn” h(x) of all frontier 

• Split f(x) into dynamic and 
static components 

AUTHOR  C
OPY
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0.5 meters of the actual goal state and with any head-
ing and any speed to be considered a goal. Figure 5(b)
shows the log of the number of nodes taken to solve
a collection of small problems with random start and
goal states and no obstacles both with and without the
relaxed goal condition. The relaxed goal condition re-
duced the mean number of nodes expanded to solve the
problems by over a factor of 7. This relaxed goal con-
dition allows RTR∗ to solve subproblems much more
quickly.

6. A real-time search approach: LSS-LRTA∗

In the previous section, we developed RTR∗ by al-
tering a leading motion planning search algorithm to
be real-time. In this section, we pursue the opposite ap-
proach: adapting a state-of-the-art real-time search al-
gorithm, LSS-LRTA∗ [7], to the problem of robot mo-
tion planning with dynamic obstacles.

Recall the basic RTA∗ algorithm from Section 3.4: it
performs a depth-limited lookahead to assess the value
of each next action, then updates the heuristic value
of the current state as it transitions to the next state.
Local Search Space Learning Real Time A∗ (LSS-
LRTA∗) extends these ideas into a state-of-the-art real-
time heuristic search algorithm. Pseudo-code for the
algorithm is sketched in Algorithm 2. It works by first
performing a node-limited A∗ search [4] from the cur-
rent state towards the goal, in contrast to RTA∗’s depth-
bounded lookahead. This is illustrated graphically in
Fig. 6. The search frontier contains all nodes that have
been generated but not yet expanded. Once the node
expansion limit has been reached, the first action along
the path to the lowest f node on the open list is re-
turned. Next, a variant of Dijkstra’s algorithm is per-
formed from the nodes on the open list back to all the
nodes on the closed list to update all their h values, this
is the part of the algorithm responsible for “learning”

Algorithm 2. Local search space learning real-time A∗

LSS-LRTA∗(sstart, lookahead)
1. open = {sstart}
2. closed = {}
3. ASTAR(open, closed, lookahead)
4. g′ ← peek(open)
5. LEARN H VALUES(open, closed)
6. return first action along path from sstart to g′

Fig. 6. The local search space and frontier of an iteration of
LSS-LRTA∗. The best node on the frontier and the corresponding
action to take are shown. (Colors are visible in the online version of
the article; http://dx.doi.org/10.3233/AIC-140604.)

the improved h values. This is in contrast with RTA∗,
which only updates one h value per iteration.

To our knowledge, LSS-LRTA∗ had previously been
tested only on simple grid world path finding tasks.
However, we believe real-time search should also find
applicability in more realistic motion planning. There
are two problems with LSS-LRTA∗ that prevent it from
being effectively applied to our problem. First, after
an iteration of search, LSS-LRTA∗ moves the agent
along the path to the best node found, until that node
is reached or until costs along the path rise. Only then
will LSS-LRTA∗ run another iteration of search. This
means that LSS-LRTA∗ will be incapable of recogniz-
ing when shorter paths become available, e.g. from a
dynamic obstacle moving out of the way [1]. Second,
the h values learned for nodes will never decrease [7].
This means that if LSS-LRTA∗ learns that a node has
a high h value by backing up a high g value due to a
dynamic obstacle, it is unable to later discover that the
node has low h cost if the dynamic obstacle were to
move away. In this way, the g values in this domain
can be seen as inadmissible, breaking a fundamental
assumption of previous heuristic search algorithms. To
see this, note that the g values along a path are esti-
mates of the costs for future actions, which can be over-
estimates if they include costs due to predicted colli-
sions with dynamic obstacles that might move away
before the agent reaches their location. This makes this
problem domain fundamentally different than the do-
mains these algorithms have been applied to in the past.
As we show in the evaluation below, LSS-LRTA∗ can
struggle in motion planning.

[Cannon et. al. 2014]

f(x) = gs(x) + gd(x) + hs(x) + hd(x)



Real-Time R* (RTR*)
R* ≈ RRT + A* 
RTR* 
• fixed # of node expansions 

• choose best frontier node  
(path and min g(x) + h(x)) 

• geometric expansion limits for 
difficult nodes 

• path reuse

[Cannon et. al. 2014]
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Fig. 4. Path saving across iterations of RTR∗. (Colors are visible in the online version of the article; http://dx.doi.org/10.3233/AIC-140604.)

Fig. 5. The log of the number of nodes needed by weighted A∗ to solve problems with and without a goal radius allowed. The x axis is the
distance between the start and goal locations.

5.5. Making easily solvable subproblems

One of the key insights of the R∗ algorithm is that di-
viding the original problem up into many smaller sub-
problems makes it generally easier to solve than solv-
ing the original. During node expansion, R∗ generates
successors by randomly sampling the state space at
some specified distance ∆ away from the node being
expanded. Likhachev and Stentz [15] do not mandate a
certain distance metric, although Euclidean distance or
heuristic difference are often used. In certain domains,
such as robot motion planning, shorter distance does
not necessarily correspond to easier problems. Due to
the constraints of the vehicle, it could actually be quite
difficult to move to a state that is only a small Eu-
clidean distance away. (An intuitive example of this

phenomenon is the task of parallel parking a car.) We
found that requiring RTR∗ to plan paths to the exact
nodes in the sparse graph was prohibiting the search
from exploring further into the search space. The rea-
son is that, although the start and goal nodes of these
subproblems were close, it was often very hard to ma-
neuver the robot precisely onto a given state. To illus-
trate this, we ran an experiment in a small world with-
out any static or dynamic obstacles. Despite these ideal
conditions, these problems were still quite difficult to
solve, with only minuscule correlation between the dis-
tance from the start to the goal node and how many
node expansions were required to solve the problem
(Fig. 5(a)). To make these problems easier, the goal
condition used for the low-level weighted A∗ searches
was relaxed to allow any state within some distanceAUTHOR  C

OPY
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Fig. 3. The nodes in Γ (large, white) and the nodes in the low-level
state space (small, yellow) that are explored by an R∗ search with
k = 3. (The colors are visible in the online version of the article;
http://dx.doi.org/10.3233/AIC-140604.)

level graph, where the higher level states are generated
randomly and sparsely over the state space. To com-
pute the cost and the actual path between two high-
level states, a low-level search is performed in the
original state/action space. This has the advantage of
splitting the problem up into smaller, easier to solve
subproblems, while not forfeiting the guaranteed fea-
sibility provided at the low-level search space.

When expanding a node s at the top level, R∗ selects
a random set of k states that are within some distance ∆
of s. These states will form a high-level, sparse graph
Γ that is searched for a solution. The edges computed
between nodes in Γ represent actual paths in the under-
lying state space. To find the cost between two nodes
s and s′ in Γ , R∗ does a weighted A∗ search from s
to s′ in the underlying state space (see Fig. 3). If the
low-level weighted A∗ search does not find a solution
within a given node expansion limit, it gives up, label-
ing the node as AVOID, and allowing R∗ to focus the
search elsewhere. R∗ will only return to these hard-to-
solve subproblems if there are no non-AVOID labeled
nodes left. In this way, R∗ solves the planning problem
by carrying out searches that are much smaller than
the original problem, and easier to solve. Note that R∗

finds complete paths to the goal on every search, and
the time that this takes is not bounded.

Pseudocode of the R∗ algorithm is shown in Algo-
rithm 1. The main loop of the R∗ algorithm is similar
to a best-first search such as A∗. First, the best node
on the open list is removed (line 5). The ordering func-
tion for the open list first prefers nodes that have not
been labeled AVOID. It then prefers nodes with lower
f value, with ties broken on lower h value.

In R∗, there are two types of nodes in Γ that can be
popped off the open list: the node can either be lack-

Algorithm 1. Pseudo-code for the R∗ algorithm

R∗(sstart, sgoal)
1. OPEN ← ∅, CLOSED ← ∅
2. g(sstart) ← 0
3. insert sstart into OPEN
4. while OPEN ̸= ∅ and

pri(sgoal) ! arg mins′∈OPEN (pri(s′))
5. remove s with the smallest priority from OPEN
6. if s ̸= sstart and path(pred(s), s) = null
7. reevaluate(s)
8. else
9. expand(s)
10. return incumbent solution if found,

impossible otherwise

Re-evaluate(s)
11. path(pred(s), s) ← wA∗(pred(s), s)
12. if path = null or

g(pred(s)) + path.cost) > w · h(sstart, s)
13. avoid(s) ← true
14. pred(s) ←

arg mins′|s∈SUCCS(s′) (g(s′) + pathcost(s′, s))
15. g(s) ← g(pred(s)) + pathcost(pred(s), s)
16. insert/update s in OPEN

Expand(s)
17. if is_goal(s) and g(s) < g(incumbent)
18. incumbent ← s
19. insert s into CLOSED
20. SUCCS(s) ← k random states a distance ∆ from s
21. if distance(s, sgoal) " ∆
22. SUCCS(s) ← SUCCS(s) ∪ sgoal
23. SUCCS(s) ← SUCCS(s)−

SUCCS(s) ∩ CLOSED
24. for all s′ ∈ SUCCS(s)
25. pathcost(s, s′) ← h(s, s′)
26. if s′ hasn’t been generated before or

g(s) + h(s, s′) < g(s′)
27. pred(s′) ← s
28. g(s′) ← g(s) + pathcost(s, s′)
29. insert/update s′ on OPEN

ing a low-level path from its parent or already have one
computed. In the first case, in which a path hasn’t been
found, R∗ uses a bounded weighted A∗ search to find
one (line 11). If the search succeeds, then the g cost of
the node is updated to reflect the cost of the path that
was found (line 15), the node is updated in OPEN, and



Hard-Real-Time 
Rapidly-exploring Randomized Trees

procedure HRT_PLANNER 
  t_next = current_time() 
  loop 
    yield until t_next 
    t_next = t_next + T_p 
    B = updated map 
    q_init = current vehicle state 
    q_goal = current goal states 
    T = BUILD_RRT(q_init, q_goal, n) 
    path = EXTRACT_PATH(T) 
    publish path

CHAPTER 5 Hard Real-Time Rapidly-exploring Random Trees

xinit

xnear

xtarget

Figure 5.5: A demonstration of the approach used for extending the RRT search trees

the size of the search tree is the factor which will have the most significant effect on execution
time.

This formulation makes a number of simplifying assumptions. Primarily, the time required
to extend the search tree must be constant. This in turn requires that only a constant number of
collision detection tests. For sampling based collision detection strategies this can be achieved
by limiting the time step used for each tree extension.

The number of nodes added to the search tree RRT is a measure of search effort. If the
search is terminated before a solution is found, the problem is considered to be infeasible. Con-
sequently, the task of finding an efficient hard real-time equivalent to RRT can be addressed
by finding the relationship between n and the WCET.

5.2 Execution Time Estimation

Selection of an appropriate technique for execution time measurement for hard real-time plan-
ners depends on a number factors including the required accuracy and the target hardware.
Many of the techniques presented in the catalogue of execution time estimation methods in
Section 3.4 could be used to solve this problem. For the purposes of verification of the RT-
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[Walker, 2011]

Execution period

number of samples  
(WCET analysis)

solution
or

“safe”
path



WCET 
Estimation 
Tool-chain

CHAPTER 5 Hard Real-Time Rapidly-exploring Random Trees

Source Code

Instr.  Source Code

Flow Facts

Object Code

Compilation

Execution Trace

Execution

Control Flow Graph Basic Block Exec. Times

Integer  Linear  Program

WCET

Figure 5.6: The tool-chain used for WCET Estimation

optimisations which reorder basic blocks.
A critical aspect of the validation of the execution time estimation process is to ensure that

all branches in the program have been adequately measured. This can be achieved by perform-
ing either coverage testing, or by comparing a representation of the observed CFG with one
produced directly from the disassembled object code of the planner. These processes can then
be used to guide the introduction of additional instrumentation statements, or to selectively
re-execute the planner in different initial conditions so as to improve the coverage of execution
traces.
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Empty 
Workspace

[Walker, 2011]

CHAPTER 5 Hard Real-Time Rapidly-exploring Random Trees

because of the under-sampling of the set of control actions. These results indicate that when
the problem is easy, a solution tends to be found quickly, relative to the worst-case execution
time.
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Figure 5.15: Comparison of predicted WCET and observed execution time in the empty
workspace

The results of the execution time profile of the RRT planner running in the infeasible
workspace are shown in Figure 5.16. This demonstrates a clear difference to the empty
workspace. This occurs because it is not possible to find a path to the goal, the planner will
continue searching until the available storage resources are exhausted. This results in the ob-
served execution times being tightly clustered just below the theoretical WCET curve.

The results for the obstructed workspace are shown in Figure 5.17. They show that the
distribution of observed execution times for a problem that is more difficult than the empty
workspace, and easier to solve than the infeasible case. The observed execution times, re-
gardless of search tree size, are more skewed toward the WCET curve than for the empty
workspace.

Significantly, this result also highlights the clear dependency between search tree size,
and the amount of execution required to find a solution in the worst case. By considering a
series of planning problems with varying obstacle placement demonstrated that there is also a
correlation between the difficulty of a planning problem and how much time is required to find
a solution.
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The locations of obstacles within the workspace are a factor which can have a signifi-
cant influence on the execution path followed by the RRT algorithm. This observation can be
exploited to ensure that the coverage of instrumentation is adequate. To achieve good mea-
surement coverage three basic workspaces were considered: the empty environment (with no
obstacles); the infeasible workspace (with a single obstacle obstructing any path to the goal);
and a further obstructed workspace, designed to be feasible, but more difficult than the empty
workspace.

The empty, infeasible and obstructed workspaces, along with sample search trees produced
using RRT in each are shown in Figures 5.9, 5.10 and 5.11. The boundaries of these images
denote the shape of the workspace, the dark grey circles denote the obstacles, the red circles
are the location of the goal configurations, and black lines are indicative of the search trees
produced by the RRT algorithm during the experiments.

Figure 5.9: The Empty Workspace

Figure 5.10: The Infeasible Workspace
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[Walker, 2011]

Obstructed 
Workspace

CHAPTER 5 Hard Real-Time Rapidly-exploring Random Trees

Figure 5.11: The Obstructed Workspace

The empty workspace exercises the branches in the RRT algorithm that deal with suc-
cessfully finding the goal. This means that only the constraints on the motion of the vehicle
can prevent a solution from being found. In a workspace of this shape, this environment is
effectively the best possible case.

The infeasible workspace is an example of a problem that is close to the pathological
worst-case. The presence of an obstacle preventing access to the goal results in the search tree
expanding, without early termination because a goal is found. This case is expected to result
in near worst-case performance.

The obstructed workspace was selected to represent a more typical case. The narrow pas-
sages around the obstacle result in an interleaving of expansions, and collisions that would
indicate whether any micro-architectural effects were having a significant contribution to the
final result.

Within each of the workspaces, 100 trials were conducted to produce a composite execution
trace. Additional trials could be conducted to improve the quality of the execution time fits for
each edge in the CFG, but these values tended to converge with many fewer than 100 trials.
Similarly, a much smaller number of trials could have been used to identify all of the edges
within the CFG.

An example of a subset of the Control Flow Graph produced by analysing the combined
execution trace, with calls to functions omitted, is shown in Figure 5.12. This highlights that
the key branches within the RRT algorithm all appear within the CFG 3. For example, The
cycle of vertices 8, 9, 3, 4 and 7 are a result of the main loop within the RRT, and the branch
between 9 and 10 is caused by the early exit of the planner when a solution has been found.

In order to ensure that an edge is measuring an approximately constant time operation, it
3The labels on the CFG in Figure 5.12 are a function of the instrumentation process, and are only shown to

assist in describing parts of the algorithm
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Figure 5.16: Observed execution times in the infeasible workspace
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Figure 5.17: Observed execution times in the obstructed workspace

These results also show that no overruns of the predicted WCET were observed, even using
an optimistic measure of execution time for edges in the CFG. While this does not preclude an
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Figure 6.6: Probability of finding a solution as a function of search tree size in the empty
workspace

Figure 6.7: Probability of finding a solution as a function of search tree size in the obstructed
workspace

6.2.3 Slack Time

The aim when designing a real-time system is typically to ensure that a particular combination
of tasks are schedulable. In the case where the execution time, and quality of results, of a
task can be modified by a parameters the problem of real-time scheduling becomes one of
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Figure 6.6: Probability of finding a solution as a function of search tree size in the empty
workspace
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Figure 6.7: Probability of finding a solution as a function of search tree size in the obstructed
workspace

6.2.3 Slack Time

The aim when designing a real-time system is typically to ensure that a particular combination
of tasks are schedulable. In the case where the execution time, and quality of results, of a
task can be modified by a parameters the problem of real-time scheduling becomes one of
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Real-Time Motion Planning 
for Autonomous Vehicles

Reduce dimensionality of planning problem.  
Typically around 4: e.g., (x, y, 𝜃, v) 

Discretization and sampling-based approaches



DARPA Urban Challenge 1st place:  
Tartan Racing (CMU)

local planner at 10 Hz fixed 

lattice planner at 10 Hz (nominally) 

• Difficult scenarios take “up to a couple of seconds” 
(motivation for their pre-planning) 

• Anytime planner example: 
first solution in 100 ms, optimal at 650 ms. 

• Time for replanning “few ms” for small adjustments to 
“few seconds” for drastically different trajectories

[Likhachev 2008] & [Ferguson 2008]



h2D(s) are admissible and consistent, the combined heuristic
is also admissible and consistent [26]. This property implies
the bounds on the suboptimality of the paths returned by
AD* [16]:

Theorem 2: The cost of a path returned by Anytime Dy-
namic A* is no more than ✏ times the cost of a least-cost path
from the vehicle configuration to the goal configuration using
actions in the multi-resolution lattice, where ✏ is the current
value by which Anytime Dynamic A* inflates heuristics.

IV. OPTIMIZATIONS

Typically, one of the most computationally expensive parts
of planning for vehicles is computing the cost of actions, as
this involves convolving the geometric footprint of the vehicle
for a given action with a map from perception. In our applica-
tion, we used a 0.25m resolution 2D perception map and the
(x, y) dimensions of our vehicle were 5.5m ⇥ 2.25m. Thus,
even a short 1m action requires collision checking roughly 300

cells. Further, the specific cells need to be calculated based on
the action and the initial pose of the vehicle.

To reduce the processing required for this convolution, we
performed two optimization steps. First, for each action a we
pre-computed the cells covered by the vehicle when executing
this action. During online planning, these cells are quickly
extracted and translated to the appropriate position when
needed. Second, we generated two configuration space maps
to be used by the planner to avoid performing convolutions.
The first of these maps expanded all obstacles in the perception
map by the inner radius of the robot; this map corresponded to
an optimistic approximation of the actual configuration space.
Given a specific action a, if any of the cells through which the
center of the robot executing action a passes are obstacles in
this inner map, then a is guaranteed to collide with an obstacle.
The second map expanded all obstacles in the perception map
by the outer radius of the robot and therefore corresponded
to a pessimistic approximation of the configuration space. If
all of the cells through which the center of the vehicle passes
when executing action a are obstacle-free in this map, then a is
guaranteed to be collision-free. Only those actions that do not
produce a conclusive result from these simple tests need to be
convolved with the perception map. Typically, this is a severely
reduced percentage, thus saving considerable computation. To
create these auxiliary maps efficiently, we performed a single
distance transform on the perception map and then thresholded
the distances using the corresponding radii of the robot for
each map.

V. EXPERIMENTAL RESULTS

We have implemented our approach on an autonomous pas-
senger vehicle (lower-left image in Figure 5) where it has been
used to drive over 3000 kilometers in urban environments,
including competing in the DARPA Urban Challenge. The
multi-resolution lattice planner was used for planning through
parking lots and into parking spots, as well as for geometric
road following in off-road areas, and in error recovery sce-
narios. During these scenarios, the vehicle traveled speeds of

(a) anytime behavior

lattice states time
expanded (secs)

high-res 2,933 0.19
multi-res 1,228 0.06

heuristic states time
expanded (secs)

h 2,019 0.06
h2D 26,108 1.30
hfsh 124,794 3.49

(b) effect of multi-res lattice (c) effect of heuristic

Fig. 4. An example highlighting our approach’s anytime behavior and the
benefits of the multi-resolution lattice and the combined heuristic function.

up to 15 miles per hour while performing complex maneuvers
and avoiding static and dynamic obstacles.

In all cases, the multi-resolution lattice planner searches
backwards out from the goal pose (or set of goal poses) and
generates a path consisting of a sequence of feasible high-
fidelity maneuvers that are collision-free with respect to the
static obstacles observed in the environment. This path is also
biased away using cost function from undesirable areas such
as curbs and locations in the vicinity of dynamic obstacles.

When new information concerning the environment is re-
ceived (for instance, a new static or dynamic obstacle is
observed), the planner is able to incrementally repair its
existing solution to account for the new information. This
repair process is expedited by performing the search in a
backwards direction, as in such a scenario updated information
in the vicinity of the vehicle affects a smaller portion of the
search space and so less repair is required. The lattice plan is
typically updated once per second, however in trivial or very
difficult scenarios this time may vary.

As mentioned earlier, the lattice used in this application does
not explicitly represent curvature. Theoretically, this means
that the paths produced over this lattice are guaranteed feasible
only if we allow the vehicle to stop at each lattice state
and re-orient its steering wheel. However, in practice we
reduce (by a small fraction) the maximum curvature used

DARPA Urban Challenge 1st place:  
Tartan Racing (CMU)

Anytime planner behavior

solution found  
<100 ms 

optimal solution 
< 650 ms

solution 
improved

[Likhachev, et. al. 2008]
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States  
Expanded

Time  
(seconds)

h

h2D

hfsh

2,019

26,108

124,794

0.06

1.30

3.49

Effect of heuristic on A* search

[Likhachev, et. al. 2008]

Implies much 
higher WCET



– Ferguson, Howard, and Likhachev 

“One of the important lessons learned during 
the development of this system was that it is 

often extremely beneficial to exploit prior, offline 
processing to provide efficient online planning 

performance.” 

DARPA Urban Challenge 1st place:  
Tartan Racing (CMU)



• Sensors at 10 Hz 

• RNDF¹ editor at 10 Hz 

• Full replanning: 50 to 300 ms 
1. hybrid A* (unnatural swerves) 
2. conjugate-gradient descent smooth (0.5 m) 
3. interpolation (5 to 10 cm)

[Montemerlo et. al. 2009] [Dolgov et. al. 2010]
¹ route network definitions file

DARPA Urban Challenge 2nd place:  
Stanford Racing

Grid: 160 m ⨉ 160 m ⨉ 360° 
Resolution of 1 m ⨉ 1 m ⨉ 5°
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Fig. 5. Hybrid-A* and CG-smoothed paths for a complicated
maneuver, involving backing out of and into parking spots. The
Hybrid-state A* path is the wavy red line and the CG solution
is the smooth blue line.

Fig. 6. Anchoring waypoints to guarantee smoother safety.

does not guarantee that the solution is collision free. The rea-
son is that the potential attempts (within its effective range)
to maximize the distance between every vertex of the trajec-
tory and the nearby obstacles. However, this is not always the
right solution. For example, when approaching a narrow gap
between obstacles at an angle (as illustrated in Figure 6), the
trajectory for the center of the rear axle of the vehicle stays
closer to one side of the gap, allowing the car to safely turn into
the gap. Unfortunately, because the collision-potential used in
the smoother does not model the shape of the vehicle, it is un-
able to do such precise collision detection and will center the
trajectory within the gap, resulting in an unsafe maneuver.

While it is possible to model precise collision detection
within the smoother, it is computationally prohibitive. In par-
ticular, computing the derivative of the collision cost with re-
spect to the coordinates of the path of the rear axle is a compu-
tationally intensive task which has to be performed within the
inner loop of CG optimization.

Therefore, we opt for a computationally simpler (albeit
less elegant) solution that guarantees that smoother output is
collision-free. We use an iterative approach that works, as fol-
lows. We run the CG smoother and check its output for colli-
sions. If we find any unsafe states, we anchor them to the A*
solution (the smoother is not allowed to modify the coordinates
of anchored states) and re-run the smoother. This process is re-
peated until the smoother output is collision-free. It is guaran-
teed to converge because A* path is guaranteed to be safe. In
the worst case, the smoother will return the same solution as
A*, which will only happen under extreme circumstances.

Figure 6 illustrates the process. As before, the wavy red
curve shows the path produced by A*, while the straight blue
line is the output of the smoother. The circles designate states
that ended up being anchored to the A* path (i.e., not allowed
to move). Notice that in this rather constrained problem, only
a few states are locked down, while the rest of the trajectory is
successfully smoothed.

A video corresponding to the situation in Figure 6 is
available from the following URL: http://ai.stanford.edu/
%7Eddolgov/gpp/anchors.avi.

3.3. Navigation Potential Using the Voronoi Field

One issue that we have omitted from our discussion of path
planning so far is the trade-off between proximity to obstacles
and trajectory length. A weakness of the path-planning algo-
rithm as described in the previous sections is that it tends to
“hug walls”, i.e., it will choose the minimal-length trajectory
that is collision free, often causing the robot to drive at the
minimal collision-free distance to obstacles.

A common way of penalizing proximity to obstacles is to
use a potential field (see, e.g., Andrews and Hogan (1983(@),
Pavlov and Voronin (1984), Miyazaki and Arimoto (1985) and
Khatib (1986)). However, conventional potential fields have
a couple of important drawbacks. First, as has been observed
by many researchers (see, e.g., Tilove (1990) and Koren and
Borenstein (1991)), conventional potential fields create high-
potential areas in narrow passages, which can make the cost
of traversing these passages prohibitively high. Second, which
plays an even more important role in our approach, is compu-
tational efficiency. A straightforward potential around an ob-
stacle is typically defined as a function of the distance to the
obstacle. This means that in order to compute the value of such
a potential field at a given !x! y" point, we need to compute the
contributions of the potentials from all obstacles that contain
!x! y" within their effective radius. This can be computation-
ally expensive. A common technique to avoid this issue is to
approximate the potential by using only the contribution of the
potential from the nearest obstacle, which can be computed
much more effectively. However, this introduces another prob-
lem. Since we will use the potential within the CG smoother,
we need the potential to be smooth and have a well-defined

Hybrid A* 
CG Smoothed
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Fig. 13. Left: Trajectory driven in simulation using the free-space version of our planner. The robot had to replan in response to
obstacles being detected by its sensors! this explains the apparent sub-optimality of the trajectory. Right: re-planing times for the
maze-like environment (total time ! A* time " smoothing time.)

shows Junior driving through a parking zone, while two other
cars are present in the same zone.

Figure 12(i) is interesting because Junior had to navi-
gate around other cars near the entrance into the zone. A
video of the parking task in Figure 12(a) is available at
http://ai.stanford.edu/%7Eddolgov/gpp/duc_nqe_park.mpg.

Figures 12(c)–(f) show U-turns on blocked roads that
were performed using the free-space planner. Videos of Ju-
nior performing U-turns are available at http://ai.stanford.edu/
%7Eddolgov/gpp/duc_nqe_uturn.mpg and http://ai.stanford.
edu/%7Eddolgov/gpp/duc_nqe_uturn2.mpg.

Figure 12(h) shows a parking task during the DUC race!
the maneuver was straightforward, because there were no ob-
stacles in the parking lot. After parking in the designated spot,
in accordance with the DUC rules, Junior backed out of the
spot before proceeding to the parking-lot exit.

Figure 12(i) shows the start of one of the missions dur-
ing the DUC race! each DUC mission started with a free-
navigation zone, which was traversed using the free-space
planner described in this paper.

Most of the path-planning tasks in the DUC were fairly
simple. As an example of the performance of our free-space
planner in a more complex environment, consider the tra-
jectory shown in Figure 13. This example was generated in
simulation! the simulated vehicle was equipped with a sin-
gle planar laser range finder mounted on the front of the car.
Such intentionally poor (simulated) sensing led to frequent
replanning as obstacles were incrementally detected! this is
the source of the apparent sub-optimality of the path shown
in Figure 13. A video showing the robot driving through the
environment and replanning as it detects new obstacles and
builds an obstacle map in scenario of Figure 13 is available at
http://ai.stanford.edu/%7Eddolgov/gpp/maze.mpg.

Figure 14 illustrates the benefits of using the Analytic
Reed–Shepp expansions described in Section 2.2. The graph

Fig. 14. Comparison of A* with and without Reed–Shepp an-
alytic node expansions. The graph shows data for a typical run
in units of relative time, normalized by the average planning
time when using Reed–Shepp expansions. The red solid line is
the re-planning time without Reed–Shepp expansions, while
the blue dashed line is the re-planning time with Reed–Shepp
expansion.

shows re-planning time for a representative run in a parking lot
with and without the Reed–Shepp expansions. The units are
relative time normalized by the average planning time when
using Reed–Shepp expansions. As was mentioned earlier in
Section 2.2, Reed–Shepp expansions are not strictly guaran-
teed to improve planning time (because of the constant-time
overhead), but in practice lead to noticeable efficiency gains.



• Drivability map updated 10 Hz 

• Controller ran at 25 Hz 

• RRT at 10 Hz 

• 700 samples per second

[Kuwata, et. al. 2009]

DARPA Urban Challenge 4th place:  
MIT
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procedure RRT_execution_loop 
repeat 
  update vehicle states and env 
  while  
    EXPAND_RRT_TREE() 
  repeat { 
      = EXTRACT_BEST_SAFE_PATH() 
    if NO safe path 
      E-STOP! & restart 
  } until  
  send   to controller

(t < t0 +�t)

⌧

⌧
(clear(x) 8x 2 ⌧)

hard real-time
constraint

“take
appropriate

action”

[Kuwata, et. al. 2009]
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Fig. 7. Lane following on a high speed curvy section. The vehicle speed is
10 m/s. The green dots show the safe stopping nodes in the tree.
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Fig. 8. Prediction error during this segment

B. Race Results

The following subsections present results from the National
Qualification Event (NQE) and the final Urban Challenge
Event (UCE). NQE consisted of three test areas A, B, and C,
each focusing on testing different capabilities. During NQE,
the CL-RRT algorithm was not tuned to any specific test area,
showing the generality of the approach. UCE consisted of three
missions, with a total length of about 60 miles. Talos was one
of the six vehicles that completed all missions, finishing in 5
hours 35 minutes.

In Talos, the motion planner was executed on a dual-core
2.33 GHz Intel Xeon processor at approximately 10 Hz. The
time limit �t in Algorithm 2 is 0.1 second and the algorithm
uses 100% CPU by design. The average number of samples
generated was approximately 700 samples per second and the
tree had about 1200 nodes on average. Notice that because
the controller input is the parameter that is sampled, a single
sample could create a trajectory as long as several seconds.

1) High speed behavior on a curvy road: Figure 7 shows
a snapshot of the environment and the plan during UCE.
The vehicle is in the lower left, going towards a goal in
the upper middle of the figure. The small green squares

Fig. 9. Tree consisting of many unsafe nodes in the merge test.

represent the safe stopping nodes in the tree. The vehicle
is moving at 10 m/s, so there are no stopping nodes in the
close range. However, the planner ensures there are numerous
stopping points on the way to the goal, should intermittently
detected curbs or vehicles appear. Observe that even though the
controller inputs are randomly generated to build the tree, the
resulting trajectories naturally follow the curvy road. This road
segment is about 0.5 mile long, and the speed limit specified
by DARPA was 25 mph. Figure 8 shows the speed profile
and the lateral prediction error for this segment. Talos reached
the maximum speed several times on straight segments, while
slowing down on curvy roads to observe the maximum lateral
acceleration constraints. The prediction versus execution error
has the mean, maximum, and standard deviation of 0.11 m,
0.42 m, and 0.093 m respectively. Note from the plot that the
prediction error has a constant offset of about 11 cm, making
the maximum error much larger than the standard deviation.
This is due to the fact that the steering wheel was not perfectly
centered and the pure-pursuit algorithm does not have any
integral action to remove the steady state error.

Note that when the prediction error happens to become
large, the planner does not explicitly minimize it. This occurs
because the vehicle keeps executing the same plan as long as
the repropagated trajectory is feasible. In such a scenario, the
prediction error could grow momentarily. For example, during
a turn with a maximum steering angle, a small difference
between the predicted initial heading and the actual heading
can lead to a relatively large error as the vehicle turns. Even
with a large mismatch, however, the repropagation process in
Section V-C ensures the safety of the future path from vehicle’s
current state.

2) Unsafe Nodes in the Dynamic Environment: Figure 9
is a snapshot from the merging test in NQE. Talos is in the
bottom of the figure, trying to turn left into the lane and merge
into the traffic. The red lines originating from Talos show the
unsafe trajectories, which do not end in a stopped state.

Before the traffic vehicle comes close to the intersection,
there were many trajectories that reach the goal. However, as
the traffic vehicle (marked with a green rectangle) approached,
its path propagated into the future blocks the goal of Talos,
as shown in Figure 9, which rendered the end parts of
these trajectories infeasible. However, the feasible portion of
these trajectories remain in the tree as unsafe nodes (see

DARPA Urban Challenge 4th place:  
MIT

Lane following on a curve at 22.4 mph.  
The green dots are safe stopping nodes.

[Kuwata, et. al. 2009]



• DNF.  Froze at entrance to traffic circle 
(who doesn’t their first time?) 

Software exception during mode switch 
Caught by error handler, and left hanging 
Not observable by watchdog module. 

• One of the few cars that drove collision-free 

• One of the authors Matthias Goebl from Institute for Real-
Time Computer Systems, Technical University of Munich 

[Kammel, et. al. 2008]

DARPA Urban Challenge finalist:  
AnnieWay (KIT)



• Multi-level control:  
A. Mission planning 
B. Maneuver planning 
C. Collision avoidance 
D. Reactive layer 
E. Vehicle control 

• Motion planning on discretized grid of 3D configuration 
space using A*. 

• Convolutional filters used to precompute free C-space.  

[Kammel, et. al. 2008]

DARPA Urban Challenge finalist:  
AnnieWay (KIT)
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In case b, AnnieWAY drives into the intersection
without stopping. If a priority vehicle is perceived
shortly after driving inside the intersection (point of
no return has not been passed yet) and the MTC turns
out negative, the state machine switches to Intersec-
tionPrioStop, which is equivalent to case c.

In case c, in IntersectionPrioStop AnnieWAY
stops before crossing the opposing lane, waits until
the MTC confirms that no danger comes from prior-
ity vehicles anymore, and turns left.

10. NAVIGATION IN UNSTRUCTURED
ENVIRONMENT AND PARKING
As was described in Section 8, paths can be gener-
ated in a straightforward way by sampling from the
geometric road network graph, when sufficient road
geometry information is available. However, Urban
Challenge regulations require navigating in unstruc-
tured environments (zones) that are described only
by a boundary polygon. In the Urban Challenge,
zones are used to outline parking lots and off-road
areas. In this kind of area, a graph for path planning
is not available. AnnieWAY’s navigation system com-
prises a path planning algorithm that transcends the
requirement for precise road geometry definition. It
has also proven to be useful to plan narrow turns and
as a general recovery mechanism when the vehicle
gets off track, the road is blocked, or a sensible local-
ization within the given road network is impossible.

10.1. Configuration Space Obstacles
We restrict search to the collision-free subset of
configuration space (the vehicle’s free space) by

calculating configuration space obstacles from an
obstacle map obtained from a 360-deg laser range
scanner (see Section 4.1). The discrete nature of this
obstacle map motivated dealing with configuration
space obstacles in a discrete way as well (Kavraki,
1995), as opposed to more traditional approaches
that require obstacle input in the form of polygonal
data (Schwartz & Sharir, 1983; Šwestka & Overmars,
1997). Figures 16(a) and 16(b) illustrate how the
robot’s free space can be generated for a discrete
set of orientations. By precomputing the free space
in discretized form, a collision check for a certain
configuration can be performed quickly in O(1) by a
simple table lookup.

10.2. Search Graph and A*
We define an implicit search graph in which all paths
are feasible. It is directly derived from a kinematic
model of the car and not only guarantees feasibility
of the generated path but also allows for straightfor-
ward design of a combined feed forward/feed back-
ward controller (see Section 11).

A node of the search graph can be completely de-
scribed by a tuple (x,ψ ,δ), with x, ψ , and δ denot-
ing position, orientation, and steering angle (i.e., the
deflection of the front wheels) of an instance of a kine-
matic one-track model [see Figure 17(a)]. Steering an-
gle δ is from a set of nδ discrete steering angles that
are distributed equidistantly over the range of feasi-
ble steering: D = {δ1 . . . δnδ}. To generate successors of
a node, the kinematic model equations are solved for
initial values taken from the node, a fixed arc length s,
and a constant steering rate ·

δ = (δp − δi)/s, spanning

Figure 16. Configuration space obstacles. (a) A 1-m safety distance is added to the shape of the vehicle. Subsequent rotation
and rasterization yields a convolution kernel for configuration space obstacle generation. (b) Result of convolving obstacle
map with kernel from panel a. If the robot has the same orientation as the kernel and is placed in the red area, it must
intersect with an obstacle. (c) Voronoi lines are generated as a set of eight connected pixels.

Journal of Field Robotics DOI 10.1002/rob
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Conclusions
• Real-time motion planning difficult 

• No guarantees on solution 

• Multiple levels of planning 

• Time-bounded computation 

• Generate “safe routes” 

• Keep around information between task cycles



Thank you


