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ABSTRACT

This paper describes VOL2, an interactive general-purpose volume
renderer based on ray casting and implemented on Pixel-Planes 5,
a distributed-memory, message-passing multicomputer.  VOL2 is
a pipelined renderer using image-space task parallelism and
object-space data partitioning.  We describe the parallelization and
load balancing techniques used in order to achieve interactive
response and near-real-time frame rates.  We also present a
number of applications for our system and derive some general
conclusions about operation of image-order rendering algorithms
on message-passing multicomputers.

1    INTRODUCTION  AND PREVIOUS WORK

Volume rendering is a widely used visualization method.  Due to
the large number of graphics primitives (voxels) which must be
visited during the image generation process, real-time (or even
interactive) frame rates are difficult to achieve, even on highest-
performance graphics engines.  Previous work that addressed this
computational expense problem includes [9], in which a number
of parallelization and load balancing techniques for the special
case of a shared-memory architecture were presented; the
rendering algorithm used was ray casting with parallel projection.

We describe an equivalent system, VOL2, for a distributed-
memory architecture.  It uses ray casting with perspective
projection, a general volume rendering method suitable for a
variety of visualization tasks.  Ray casting is an image-order
algorithm in which volume data is traversed and sampled by rays
emanating from the viewpoint; the rays intersect the image plane;
they accumulate (integrate) information about the volume data
during traversal.  The algorithms and principles used as the basis
for VOL2 are outlined in [2,4,5,8,10,13,19].  An early

experimental precursor of VOL2 was mentioned in [12,19].  An
early version of this paper was published as [11].

The remainder of this work is organized as follows: brief overview
sections on the hardware platform used and the type of display
presented to the user are followed by a detailed description of the
internal pipelined-parallel system layout.  We then describe the
types of visualization modes and graphics primitives supported by
VOL2.  The largest section is devoted to methods used to obtain
interactive and real-time performance levels; these include a
technique derived from “frameless rendering” [1].  We conclude
with an overview of applications for our system.

2    HARDWARE PLATFORM

VOL2 is implemented on Pixel-Planes 5, a high-performance
graphics engine with general-purpose computing nodes (called
Graphics Processors or GPs) based on the Intel i860
microprocessor, and special-purpose rendering nodes based on
massively parallel SIMD processor-enhanced memories [3].  Each
GP has 8 Megabytes of local memory.  Each rendering node can
execute pixel operations in parallel on a 128x128 pixel raster,
which corresponds to 1/20 of the final 512x640 pixel image.  All
nodes are interconnected via the system's internal 5 Gigabit/sec
token ring network.  Also connected to the token ring are frame
buffers and the Sun-4 host computer.

3    PRESENTED DISPLAY

VOL2 produces successively refined displays by rendering a
coarse image while the view parameters are changing, and by
gradually increasing the image quality during interaction pauses
(Plate 1).  Kinetic depth effect is provided by appending to such a
successive refinement sequence a series of seven highest-
resolution frames; these cyclically displayed cineloop frames
present the visualized structures in animated oscillatory rotation
(rocking).  The user will observe gradually increasing image
resolution, followed by increasingly smooth left-right rocking of
the displayed high-resolution structures (as each successive
cineloop frame is being computed, it is immediately included in
the rocking sequence).  Additional depth cues are provided by
directional lighting with diffuse and specular reflections.

4    RENDERING PIPELINE

The rendering pipeline has six components (Fig. 1): the host, the
master GP, ray casters, compositors, splat processors (for screen
interpolation), and the frame buffer.  The host provides UNIX
services and allows users real-time control through an X-window
interface and other input devices (joysticks, trackers).  The master
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GP is responsible for system synchronization and for load
balancing the ray casters.  Most of the i860 nodes are allocated as
ray casters which compute image samples.  Eight i860 nodes are
used as compositors which combine the image samples into a final
image.  This image is sent to rendering nodes operating as splat
processors which interpolate the image over the full display
resolution and write the result to the frame buffer.

Local memory on each GP can hold only a limited number of
voxels (about 6M in 8-bit voxel mode and 1.5M in 32-bit voxel
mode).  If the data set is too large to be replicated on all ray
casting nodes, it is partitioned into slabs at system startup time; the
ray casting GPs are partitioned into groups [8].  Each group of ray
casting GPs is assigned to a slab of the data set (object-space
partitioning, Fig. 2).  During rendering, ray casters sample their
assigned slabs on an image-space grid, compute partial screen
region images (i. e.,  arrays of partially composited ray segments)
and send these to the compositors.  The latter combine the partial
image samples into final image samples.  This is accomplished by
front-to-back compositing of the ray segments.  Typically 8 nodes
are allocated to the compositing task, each responsible for a
640x64 pixel horizontal band of the final 640x512 pixel image.
The actual resolution of the computed image varies due to the use
of successive refinement; the array of composited image samples
sent to the splat processors to generate the fixed resolution
(640x512) final image is thus of variable size.

The SIMD rendering nodes are used as splat processors due to
their availability and efficiency at this task [10].  Composited
image samples are convolved with a 2D filter kernel to resample
the image at frame buffer resolution.  Several user-selectable filter
kernels are implemented, among them box, bilinear, biquadratic,
piecewise quadratic and bicubic filters (Plate 2). The resampled
values are sent to the frame buffer for display.

5    RENDERING OPTIONS

The ray caster code implements a number of rendering modes,
such as isosurface rendering, direct rendering with and without
shading, and maximum intensity projection (MIP).  Plate 3
illustrates the visualizations obtained by these modes from the
same data.  Adding a new rendering mode to VOL2 amounts to
writing a new ray caster core function; ray caster core functions
are used in the innermost ray casting loop to sample the data set at
a specific position along a ray and interpret the sample in a
specific way (isosurface search, opacity accumulation, etc.).  This
modular design allows for easy prototyping and experimentation
with new rendering modes without overburdening the programmer
with the intricacies of Pixel-Planes 5 multiprogramming.

VOL2 supports wireframe line segments and flat-shaded triangles
as graphics primitives.  The (antialiased) lines are Z-buffered
against isosurfaces and against each other.  They are added by the
splat processors (Fig. 3) after the image is resampled to frame
buffer resolution (lines are only visible within fully transparent
areas of the data set).  Triangles can be used to add reference
geometry to the scene and may penetrate into the volume data set.
They are rendered by the ray casting GPs since they must be
composited properly with the volume data.  Since there are
typically few triangles in our applications, their rendering cost is
minimized by testing their individual bounding boxes against each
screen region to ascertain if rays cast on a particular ray casting
GP (i. e., through a specific screen region) will hit any triangles;
ray setup involves computing the intersection distance to the
polygons to eliminate intersection tests at every ray step.

A cut-plane for the volume data set is also provided.  It is textured
with the volumetric data (visible in Plate 5).  The cut plane can be
moved by the user to examine any arbitrarily positioned or
oriented cross-section of the volumetric data set.
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Fig. 1.  VOL2 visualization pipeline.
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6    OBTAINING INTERACTIVE PERFORMANCE

The generality of ray-casting  (for example, in isosurface
rendering the surface thresholds can be changed on-the-fly, since
no intermediate geometric primitives have to be generated).  has
its price.  Ray casting is computationally expensive, even for
relatively small data sets (1M voxels).  We therefore attempted to
identify and remove or alleviate VOL2’s performance bottlenecks.

6.1    BY-PASS CODE

In order to obtain timing measurements, by-pass code was
implemented in the master GP, ray casting and compositing nodes.
By-pass code is derived from the code normally executing on the
computing nodes by removing all compute-intensive operations
and retaining only the message-passing instructions, thus
preserving a computing node’s ability to operate in the system (by
essentially “fooling” the nodes it communicates with).

By selectively activating by-pass code for certain nodes, one can
determine how fast the rest of the system can be operated.  For
example, by activating by-pass code for all nodes, we can
determine the maximum obtainable system performance for our
image generation pipeline layout (Fig. 4); by activating by-pass
code for all nodes except the master GP, we can determine at what
frame rates the master GP becomes overburdened during system
operation (Fig. 5); by activating by-pass code for the ray casters
and the master GP, we obtain the maximum speed at which the
compositing/splatting/display back-end can operate—compositing
performance is fairly independent of image content; it depends
mostly on image resolution and the number of object partitioning
slabs (Fig. 6).

6.2    LOAD BALANCE AND ADAPTIVE SAMPLING

Unlike the other system components, the ray casting nodes do not
exhibit a maximum speed behavior.  Their performance depends
largely on data set size and image content.  While master GP and
compositing back-end have to be able to keep up with the ray

casters for the types of data sets and displays VOL2 is normally
used for, the ray casters themselves have to be load balanced with
respect to each other.  To that end, ray casters are dynamically
assigned screen regions for image generation processing.  Two
assignment methods are implemented and are user-selectable.  In
the sample rows approach the master GP assigns sequential rows
of samples (Fig. 7, left) to the ray casting nodes on a first-come-
first-serve (FCFS) basis.  The rows are distributed in order,
starting at the top of the image.  This provides good load balance,
but precludes adaptive sampling since a 2D context is required for
it on each ray caster.
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Fig. 3.  Algorithm for combining wireframe line segment primitives
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Fig. 4.  Rendering pipeline throughput, measured with by-passed
image generation code in all pipeline stages; this shows the
maximum speed supported by the message-passing framework at
different image sampling resolutions.  These numbers are
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In the second load balancing approach (sample squares) the
master GP distributes a total of eighty 65x65-pixel square screen
regions (Fig 7, right) on a FCFS basis to the ray casting nodes.
The square region size (1/80th of the final image) includes two
edges of replicated rays to support adaptive sampling without
seams.  Squares are distributed in order of descending cost, where
cost is the time taken to render the region in the previous frame
(0th order cost prediction).  Typically, assignment of squares on
the basis of descending cost provides approximately 10-20%
increase in frame rate over distribution in screen order.

The sample squares approach is combined with adaptive sampling,
implemented as a modified form of recursive square subdivision.
It requires fewer rays and provides similar results to that used in
[6].  The conventional approach (Fig. 8, left) fully subdivides a
square area by computing five new samples  when any pair of four
corner values exhibit variance above a user-defined threshold.
Our partial subdivision approach (Fig. 8, right) computes new
samples only between varying sample pairs with the center sample
taken if any samples within a square vary.  The example shows
that the new approach requires fewer samples than the full
subdivision method.  A triangular subdivision method [15] has
similar economy, but is less well suited to square regions.

For the isosurface ray caster, an additional optimization technique
is used in combination with adaptive sampling: the ordered
sequence of isosurfaces encountered along each ray is encoded in
the ray sample.  The encoded values are also compared during
adaptive sampling; differences between neighboring rays trigger
adaptive sampling along contours and isosurface intersection
curves even if the threshold criterion is not met, thus enforcing
accurate edge and intersection curve display.

Plate 4 shows a bar graph of the ray casting GP workloads
normalized to the highest load (these and other types of test
displays have proven very useful for observing the behavior of our
system).  Both the sample rows and sample squares approaches

produce good load balance with the former giving better
performances for images with low screen coverage and the latter
approach giving better performance for full-screen images, as well
as more consistent frame rates over varied image sizes (Fig. 9).

6.3    PARTIAL UPDATING

In addition to the multiple successive refinement levels, the user
can select a partial updating mode to increase the frame rate.
Partial updating is loosely based on the frameless rendering
technique described in [1].  This causes a new frame to be
displayed as soon as a user-selected fraction of the image samples
have been updated. Update levels of 25%, 50%, and 100% are
currently implemented. For example, if the partial updating
fraction is 25%, each sample is updated once every 4 frames.
When user interaction pauses, an image at the lowest successive
refinement level will have filled in after four frames.

Rather than updating a randomly distributed set of samples, we
update the samples on a regular grid, which has the benefit that the
bookkeeping required to ensure every sample eventually gets
replaced if samples are chosen randomly all but disappears; a
simple modulus of the sample coordinates with the frame number
tells whether to cast a ray for a given sample on a given frame.

Partial updating implies incremental image modification, requiring
the array of screen samples to be preserved from one frame to the
next.  In our implementation, this array is stored on the
compositing nodes.  Note that due to image partitioning for
dynamic load balancing of the ray casters, it would be difficult to
preserve the (fragmented) images on the ray casters; the existence
of a compositing step in our pipeline proved advantageous for the
implementation of partial updating.
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Fig. 7.  Image space partitioning for load balancing by sample rows
(left) and sample squares (right).

Fig. 8.  Conventional adaptive subdivison (left) causes 51 samples
to be taken while partial subdivision (right) requires only 29
samples.  Samples taken at successive levels of subdivision are
represented by progressively finer circles.  The curve boundary
triggers the subdivision criterion.

Viewpoint Distance [cm]

F
ra

m
e 

R
at

e 
[H

z]

0

5

10

15

20

0 5 9.8 13 19.8 24 33.5 42.9 52.4 57.1

8x8

4x4

sample rows

16x16 -> 4x4

sample squares

Fig. 9.  Frame rate comparison between sample rows and sample
squares for varying volume data set size in image space.  (Full
screen images are produced by 5 cm viewpoint distance, 60 cm
distance produces approximately 1/16 screen coverage.)  Line
partitions cast rays every 8x8 or 4x4 pixels.  Square regions are
adaptively sampled initially at one ray per 16x16 pixels and refined
up to one ray per 4x4 pixels.  These measurements were taken on
a system containing a total of 21 GPs, of which only 4 were
allocated as compositors.  Figures for larger systems with 8-
compositor allocation are slightly higher.



6.4    OTHER OPTIMIZATIONS

A number of standard techniques are used to speed up ray casting.
The voxels are stored with 13-bit pre-computed normals.  A
shading table is computed at the start of every frame that encodes
the Lambertian coefficient for the given light direction(s) as a
function of the surface normal.  Voxel shading is efficiently
performed by lookup into this table.  Pre-computed threshold bits
at each voxel accelerate ray processing by flagging whether an 8-
voxel cell has “interesting” material within it.  The highest value
in each cell is also pre-computed and used to speed up ray casting.
Rays are terminated when an opacity threshold is reached.

7    APPLICATIONS

VOL2 has been used as a rendering engine (both as a separate
stand-alone server and embedded in a more complex system) for a
number of research projects:

7.1    INTERACTIVE RADIATION THERAPY PLANNING

VOL2 is used as a visualization tool within VISTAnet, a
collaborative project whose principal application is interactive
radiation therapy planning (IRTP); the goal is to deliver lethal
radiation to cancerous tissue, while keeping the doses received by
healthy tissue at non-lethal levels.  The treatment strategy is to
intersect multiple treatment beams onto a predetermined 3D target
region of a patient's anatomy, a complex task requiring
comprehension of shape and sensitivity of the anatomy.
VISTAnet is an experimental tool enabling 3D IRTP through
rapid radiation dose computation (on a Cray Y-MP™
supercomputer) combined with interactive radiation dose
visualization.  Cray and Pixel-Planes 5 are linked by a near-gigabit
communication network.

During an interactive session, a physician user specifies anatomy
data sets and defines or modifies treatment beam parameters.
These are transmitted to the Cray, which computes the dose
distribution produced within the anatomy by the current treatment
beam configuration and sends the dose data over the high-speed
network to Pixel-Planes 5, where a combined image of anatomy,
treatment beams, and resulting dose is generated; the physician
examines the rendering and continues to adjust the parameters.
The current processing rate is several such adjustments per second
for anatomy data sets containing about 1M voxels.  The display
(Plate 5) must hence be able to quickly convey the treatment plan's
characteristics to the user.

A special ray caster core function was added to VOL2 for
operation under VISTAnet; it performs isosurface rendering of
anatomy and dose data sets.  For the anatomy, user-defined
thresholds in the CT data and pre-defined organ or tumor
segmentation data are both used for on-the-fly isosurface search
during ray traversal; simultaneously, the radiation dose data set is
traversed in search of up to three radiation dose isosurfaces, also
with user-defined thresholds.  Proper compositing of the dose,
anatomy and organ or tumor surfaces must be ensured, especially
when multiple surfaces lie between ray samples (Fig. 10); each
surface's distance from the previous sample point along the ray is
computed and sorted to establish the correct order for
compositing.  Wireframe outlines for the radiation treatment
beams are rendered using VOL2's line segment primitives.

The (dynamically changing) radiation dose data set is received
asynchronously from the Cray (via the Network Interface Unit or
NIU, also attached to the Pixel-Planes 5 token ring and providing
access to the external VISTAnet Gigabit network)  An  incoming

radiation dose preempts ongoing rendering for the current frame
and switches context to a different task which distributes the new
radiation dose to all ray casters as it is received.  The distribution
scheme follows the data set slab partitioning scheme described.

VISTAnet is described in more detail in [12,15].

7.2    INTERACTIVE 3D ULTRASOUND VISUALIZATION

The dynamic data set updating capabilities developed for
VISTAnet are also used in an experimental augmented-reality
ultrasound visualization system (Plate 6).  For this system we have
allocated a number of computing nodes to a volume reconstruction
task: video images from an ultrasound machine are resampled into
a volume data set, which is then transmitted to the ray casters for
near-real-time image generation [17].  This system also required
the incorporation of virtual-reality-type head and hand tracking
support.

7.3    STEREOSCOPIC DISPLAY

Support for stereoscopic visualization using field-sequential stereo
display on a large rear-projection screen was added to VOL2 for
virtual reality experiments, as was the capability to generate such
displays for head tracked viewing; this includes off-center
perspective projection and the ability to position the viewpoint
inside the volumetric data set.

7.4    OFF-LINE IMAGE GENERATION

Finally, VOL2 has also been used as an off-line rendering tool for
simulated augmented-reality ultrasound visualization [17] and as
an image precomputation tool for an experimental head-motion
parallax visualization system [16].

8    CONCLUSIONS

The methods used to obtain the current performance (pipelined
system layout, load balance between pipeline stages as well as
between parallel nodes of individual pipeline stages) were
successful—VOL2 has even been used as a skeleton for other
Pixel-Planes-5-based parallel image-order renderers: polygon-
based interactive ray tracing and interactive image-based
morphing; both take advantage of the sophisticated, finely
tuneable control over the performance/image quality tradeoff
provided by the VOL2 framework.

We consider the by-pass code method one of the most useful
lessons learned while building this system.  This technique is
generally applicable to the design of parallel/pipelined image-
order renderers and has proven extremely useful as a tool to detect
and eliminate performance bottlenecks in a complex
multicomputer-based real-time rendering system.
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Fig. 10.  Isosurfaces between samples along a ray are encountered
in algorithmic order but must be sorted for compositing.  Surfaces
detected in <1,2,3>-order must be composited in <2,1,3>-order.



9    FUTURE WORK

It has been extremely difficult to achieve VOL2's current frame
rates and interactive response characteristics.  The
performance/resolution tradeoff is particularly unsatisfactory since
it weakens kinetic depth cues.  The system does indeed provide
both interactive frame rates and strong kinetic depth, but not
simultaneously (and hence not interactively), due to insufficient
computational power.  We expect significant performance
improvements from an implementation of a general-purpose
volume rendering algorithm on next-generation graphics
multicomputers [7].
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Plate 1.   Isosurface rendering of human pelvis.
Bottom: adaptive sampling from every 16th
down to every 4th pixel, 10 frames/sec.  Top:
adaptive sampling from every 4th down to
every pixel, 1 frame/sec.

Plate 2.   Top half: low resolution ray casting
samples computed every 8 pixels.  Bottom
half: the result of splatting the samples onto a
512x640 image using a Gaussian kernel.

 
Plate 3.  Rendering modes.  Top left: twin
isosurfaces.  Top right: maximum intensity
projection.  Bottom left: direct rendering with
shading (Levoy rendering).  Bottom right: direct
rendering without shading.

Plate 4.  Load balancing in sample squares
image partitioning method.  The bar graph at
the upper left shows load balancing among the
ray casting GPs.  The red/blue background
shows the sample squares.

 
Plate 5.  Visualization for interactive radiation
therapy planning.  The wireframe treatment
beams intersect in a tumor located behind the
right ear.  The textured cut plane shows
radiation dose isocurves.  The blue isosurface
shows a user-specified radiation dose
threshold.

Plate 6.  Augmented-reality ultrasound system
(view within head-mounted-display).  Several
GPs perform volume reconstruction (on-line
resampling of 2D ultrasound slices into a 3D
volume).  The ultrasound probe, shown in
wireframe, appears to emit volume material as
it is being moved through the box.


