
Managing Latency in Complex Augmented Reality Systems

Marco C. Jacobs* Mark A. Livingston Andrei State

University of North Carolina at Chapel Hill
*Delft University of Technology, the Netherlands

{jacobs|livingst|state}@cs.unc.edu

Abstract

Registration (or alignment) of the synthetic imagery with
the real world is crucial in augmented reality (AR) sys-
tems. The data from user-input devices, tracking devices,
and imaging devices need to be registered spatially and tem-
porally with the user’s view of the surroundings. Each device
has an associated delay between its observations of the world
and the moment when the AR display presented to the user
appears to be affected by a change in the data. We call the
differences in delay the relative latencies. Relative latency is
a source of misregistration and should be reduced. We give
general methods for handling multiple data streams with
different latency values associated with them in a working
AR system. We measure the latency differences (part of the
system dependent set of calibrations), time-stamp on-host,
adjust the moment of sampling, and interpolate or extrapo-
late data streams. By using these schemes, a more accurate
and consistent view is computed and presented to the user.

CR Categories and Subject Descriptors: I.3.7 [Three-
Dimensional Graphics and Realism]: Virtual Reality; I.3.1
[Hardware Architecture]: Three-dimensional displays; I.3.6
[Methodology and Techniques]: Interaction Techniques.

Additional Keywords: Augmented Reality, Latency
Management, Ultrasound Echography.

1 INTRODUCTION

Augmented reality (AR) is the term used to describe systems
in which the user is presented with an enhanced view of the
surroundings. This view is created by compositing computer
graphics with a view of the real world. The graphics must
be generated in such a way that the user believes that the
synthetic objects exist in the environment. Azuma [2] gives
an introduction to the field of AR, the technology that can
be used to achieve it, current existing applications, and the
potential of the paradigm.

1.1 Motivation

As has been recognized in previous AR systems, registration
(or alignment) of the synthetic imagery with the real is cru-
cial. AR systems have a variety of input streams (tracking
devices, real-time imaging devices, user input devices and
others), which differ in accuracy, bandwidth, dynamics and

frequency. The devices need to be both spatially and tem-
porally registered.

Consider the example of a movie in which sound effects are
overdubbed. The illusion suffers if a crash is not heard at the
precise time an object is seen to hit the ground. Although
both the video and audio signal may have considerable delay,
it is the difference in delay that is noticed1. The differences
in latency between data streams or external signals cause
misregistration. In the rest of this paper, we call the dif-
ference in latency between two streams the relative latency.
We concentrate on minimizing relative latencies since they
are sources for misregistration.

1.2 Contribution

We develop methods for measuring relative latency and a va-
riety of techniques for managing latency to reduce the mis-
registration it causes. We introduce these methods while
keeping in mind that we are building a complete system,
and thus must focus on our goal–providing a convincing and
accurate illusion. We apply these methods to a previously
described AR system for real-time ultrasound visualization
[13] and demonstrate improved registration and visualization
resulting from our latency management techniques.

1.3 Latency sources

The following sources of delay have been classified [8][16][14]:

Off-host delay: Duration between the occurrence of a
physical event and its arrival on the host. (Toffhost)

Computational delay: Time elapsed while the data is in
the host system and while the system is doing compu-
tations. (Tcomp)

Rendering delay: Time elapsed while the graphics engine
is generating the resulting picture. (Trender)

Display delay: Time elapsed between sending images to
the display and the display actually showing them.
(Tdisplay)

Synchronization delay: The time in which data is wait-
ing between stages without being processed. (Tsync)

Frame-rate-induced delay: Between two frames the dis-
play is not updated, causing the user to see an outdated
image stream. This delay can also be considered a spe-
cial case of synchronization delay between the display
system and the human eye.

Relative latency has its source in off-host delay, computa-
tional delay and synchronization delay. The data from sepa-
rate external devices follow different paths in the system and
each path has its own latency. The relative latency between
the different data paths causes misregistration. Rendering

1Although this example considers a non-interactive system, it

shows the importance of temporal synchronization

delay and display delay do not contribute to misregistration
because all the data follows one path2. Delay in this path
will result in a lower frame rate and in higher latency be-
tween real-world events and the displayed image, but will not
cause any misregistration since the relative latency between
streams here is constant. Figure 1 explains the symbols and
terms used.

���������
���������

time

relative
latency

frame
production

maximum end-to-end
latency

FendFstart

s2s1

Data stream 1

Data stream 2

r1r2

compute render

Figure 1: Acquiring data and producing a frame. si

is the time a real-world sample was taken by the external
device and ri is the time it arrived on host. ri−si is the off-
host latency (Toffhost) for stream i. Fstart and Fend denote
the start and end times for the generation of the frame.

2 PREVIOUS WORK

Many authors have examined latency and have tried to
reduce its effects. Previous efforts can be categorized as
bounding latency, reducing latency, compensating for la-
tency, and achieving registration despite latency.

Time-critical computing [5][4][15] is a technique in which
quality is traded for speed. The application is constantly
aware of time. Reducing latency here means reducing com-
putation accuracy, which might not be always advisable.

Most real-time graphics system are aimed at high
throughput instead of low latency. High throughput is
achieved through pipelining which results in latency. Olano
et al. [9] specifically discuss a low-latency rendering sys-
tem and a technique to reduce errors caused by delays
in the display system. Parallelization reduces latency
for Tcomp , Trender and Tsync by increasing throughput.
Wloka [16] dedicates a processor to sample the external data
streams at a high frequency.

Prediction of future head position and orientation can be
used in order to reduce perceived delay [1]. This position
and orientation is estimated by extrapolation of current and
older values. This predicted value can then be used to gener-
ate an image for the time when the image will be displayed.
Since Trender is not a constant, it may be difficult to deter-
mine the extrapolation interval.

Image generation delay can be reduced by using a post-
rendering warp. Rendering starts with an initial guess for
the head position. This process results in a data structure
from which an image can quickly be computed based on a

2Our system captures the live video on host in order to mix

it with graphics. In some other AR systems, the live video never

enters the host. The graphics and video are mixed by chroma or

luminance keying. This can introduce misregistration caused by

relative latencies. An optical-see-through setup also suffers from

the relative latency between the latent rendered images and the

zero-latency real world.

newer head position. This newer head position can be ac-
quired after rendering or be approximated through predic-
tion. Mark et al. [7] use a warping mechanism to reduce
latency caused by bandwidth limitations. Regan et al. [10]
render the scene on the faces of a cube. A head rotation
causes an address offset for the final image to be taken from
this cube.

State et al. [12] and Bajura et al. [3] synchronize a
video stream with head-tracking data by reducing the head-
tracking error with the use of videometrically tracked land-
marks. Bajura et al. [3] temporally synchronize the output
of a rendering system and a video stream by buffering the
lower latency video.

3 METHODS

The naive way of writing an AR application is to sample
all the data streams at the start of a frame after which the
application starts computing and rendering (Figure 2). This
implies that those sources whose data is not required imme-
diately will have extra computational delay associated with
them, and leads to large relative latency values (si−sj) caus-
ing misregistration and a large maximum end-to-end latency
(Fend −min(si)).

time
FendFstart

s3s2s1

Data stream 1

Data stream 2

Data stream 3

r1=r2=r3

compute render

Figure 2: Naive order of acquiring data. The applica-
tion samples all data streams at the beginning of a frame,
then computes and renders the output. This leads to high
maximum end-to-end latency and high relative latency.

If we know the moment in time that the data was sampled
(si), or the difference in time between the samples of two
streams, we can adapt the program to reduce the effects
of the known relative latencies. Unfortunately, most data
streams are not timestamped at the source. However, we
can measure the relative latency between data streams with
experiments (see section 4.1). Timestamping upon arrival
on host enables us to measure the dynamic computational
delay (Tcomp).

Once we know the relative latencies, we can reduce the
effects by adjusting the moment of sampling. Sampling a
higher latency stream later than a lower latency stream will
reduce the relative latency between the two streams. An-
other method is to use interpolation and extrapolation to
compute a value for a data stream for any moment in time
based on previously sampled data values. These techniques
reduce relative latency and therefore improve registration.

3.1 Adjusting the moment of sampling

Perhaps the simplest technique to reduce relative latency
is to adjust the moment of sampling the incoming data
stream. This requires no computation or special hardware,
and proves to be a useful method for reducing relative la-
tency.

One method to do this would be to schedule the polling
of input devices at relative intervals that correspond to the

relative latency between the various devices (Figure 3), and
wait between readings. Processing begins after all input has
been received. However, this would increase the end-to-end
latency of the frame produced from this data and reduce the
frame rate to 1

max(ri)−min(ri)+Tcomp+Trender
.

���������
���������

times1=s2=s3

Data stream 1

Data stream 2

Data stream 3

r3 r2 r1

wait

Fstart Fend

compute render

Figure 3: Deferred acquisition of data. The data
streams are sampled in order of increasing latency. The wait
times are equal to the respective relative latencies. This re-
sults in zero relative latencies, but very high maximum end-
to-end latency.

A compromise that does not increase maximum latency in
order to decrease relative latency is just-in-time acquisition
of the data while interleaving computation with the data
acquisition (Figure 4). This reduces both relative latency
and maximum end-to-end latency, since wait time is filled
with useful work.

���������

times3s2 s1

Data stream 1

Data stream 2

Data stream 3

r3 r2 r1

Fstart Fend

compute render

Figure 4: Just-in-time acquisition of data. Polling of
data streams is delayed until the data is required for compu-
tation to continue or when the relative latency is zero. This
reduces relative latencies and maximum end-to-end latency.

3.2 Temporal interpolation and extrapolation

The next method is to store multiple readings and either
interpolate or extrapolate these readings to simulate new
readings. The value of a data sample for each moment in
time can now be computed.

For example, if a tracking system’s acquisition path has
lower latency than the video camera’s acquisition path, we
can buffer readings and interpolate the position and orien-
tation reported.

On the other hand, if a tracking system’s acquisition path
has higher latency than the video camera’s acquisition path,
we can use predictive tracking methods [1] to compensate
for the difference.

4 CASE STUDY: AR ULTRASOUND

SYSTEM

Our testbed AR system is the ultrasound visualization sys-
tem currently being developed at the University of North
Carolina at Chapel Hill [13]. This system is a video-see-
through AR system designed for the medical procedure
known as ultrasound-guided needle biopsy. The physician

wears a head-mounted display fitted with two video cam-
eras. A Flock of Birds (FOB) magnetic tracker from As-
cension Technology Corporation is used to track the head-
mounted cameras. Ultrasound image data is acquired from
a Pie Medical Scanner 200. A Metrecom IND-01 (Faro) me-
chanical arm from Faro Technologies, Inc. tracks the ultra-
sound probe. The system runs on a Silicon Graphics Onyx

Reality Engine2. It is equipped with Sirius VideoTM unit

for video capture and Multi-Channel OptionTM for stereo
display. The data from the four input streams is captured
asynchronously on a per-frame basis from the four input
devices under CPU control. The ultrasound images are ren-
dered and merged with a view of the patient.

4.1 Relative latency measurements

We first determined by visual tests that the real-world cam-
era video is the lowest latency stream. For the external
device trackers, we determined relative latency by rendering
a model in the coordinate system of the tracker that should
be aligned with the real-world object. It was then easy to
visually determine whether the tracker lagged behind the
camera video by moving the tracked object and checking
whether the virtual or real copy appeared to move first in
the AR view. Table 1 summarizes the results.

Rel. Lat. (ms) Cameras Faro FOB Ultrasound
Cameras - 30 30 250

Faro - 0 220
FOB -

Ultrasound -

Table 1: Measured Relative latency between the
data streams. Relative latency between the different data
streams. These measurements were made at a frame rate of
10Hz.

The tests showed that both the Faro and the FOB have
higher latency than the real-world video. We applied lin-
ear predictors to compensate for this latency. By adjusting
the prediction interval until the rendered coordinate system
matches the tracker image in the video, we measured the
latency. Plate 1, center, and Plate 4, center, show the result
for the Faro tracker without prediction and with partially
improved registration via prediction. We could buffer the
video over an interval, but video is high bandwidth and ex-
pensive to store and move in memory. Also, the end-to-end
latency of the video would slow the response to the user’s
head movements, thereby diminishing the AR illusion.

In order to measure the relative latency between the cam-
era video and the ultrasound video, we used a single live
video signal sent into both video paths. By positioning the
ultrasound image data in the AR view, we visually aligned
the “ultrasound data” with the real world. By imaging a
rotating drum with a regular pattern of vertical bars, we
determined the latency between the two streams by align-
ing the vertical bars in one image to be exactly one pattern
width behind the other image (Plate 2). We computed the
relative latency from the rotational velocity of the drum.

We next measured the latency between the FOB and the
Faro. We did this by rigidly fixing the two to each other
via an intermediate plastic rod. The rod reduces magnetic
interference of the FOB by the Faro’s stainless steel mount
plate. Using wooden blocks, we created a track for moving
this assembly back and forth. By moving the assembly in

an oscillating pattern, we determined the latency between
the two trackers by examining a graph of their respective
positions versus a global timer. The relative latency between
the two streams proved to be small and dependent on Tsync .
More precisely, the difference in frequencies at which the
devices operate caused a variable delay in the signal. Neither
the Faro nor the FOB was consistently ahead of the other.

Finally, we measured the relative latency between the ul-
trasound image data and the mechanical tracker by holding
the tracker stationary until the image data catches up, then
setting a marker at the location of a bolt being imaged. We
then swept the probe in an oscillating pattern, and progres-
sively increased the delay added to the mechanical tracker
readings until the ultrasound image data did not appear to
waver from the known location of the bolt.

It appeared that the ultrasound image has higher latency
than the tracking data. We decided to buffer the tracking
data over an adjustable interval. We again made a sweep-
ing motion over the bolt and adjusted the interval until the
imaged object did not lag behind and appeared in the same
place as the real object. The relative latency between the
ultrasound image data and the Faro was 220ms at a frame
rate of 10fps. The reason for such a high value is the long
video format conversion path from the ultrasound machine
to the host. This path could be shortened with hardware
solutions currently not available to us.

4.2 End-to-end latencies

In addition to knowing and managing the relative latency,
we wanted to know the end-to-end latencies of the streams in
the system–that is, the latencies between the data streams
and the real world. We measured the latency of the cam-
era to the real world. To do this, we used an LED blink-
ing at a rate of 5Hz, set with a pulse generator. We used
the LED as one trigger for an oscilloscope. We pointed our
video-see-through camera at the LED. We taped a photo-
electric sensor to the monitor where the image of the LED
appeared, and connected it to the oscilloscope as a second
trigger. (Figure 5) This allowed us to see the two signals on
the oscilloscope screen simultaneously: one with negligible
latency that came directly from the pulse generator and one
that came from the photoelectric sensor. We measured the
latency between the real world event (LED blinks) and the
time the photosensor “saw” that event by measuring the dis-
tance of the two signals on the oscilloscope. For our system,
this value was 40ms, and ranged between 30ms and 60ms.
We took these measurements with computation turned off,
so that the latency was Toffhost + Tdisplay + Tsync .

We measured the end-to-end latency of the camera
(40ms). Adding the relative latency between these two
streams (30ms), we conclude that the results of the exper-
iments are consistent with the Faro specification. The off-
host latency of the Faro is specified as 67ms [11].

4.3 Results

First, we arranged the order of polling the devices to reflect
the latencies measured in the previous section.

1. Read Faro and FOB trackers for prediction.
2. Capture camera video.
3. Read FOB tracker again.
4. Invoke vision-based hybrid tracker [12].
5. Read Faro tracker again.
6. Capture ultrasound video.
7. Render world.

VGA output
SGI

Oscilloscope

Pulse Generator

Camera

Photometer

Latency

Figure 5: System diagram of camera latency experi-
ment. We measured the end-to-end latency of the camera
video stream. The pulse generator triggers the LED, which
in turn triggers the oscilloscope. The LED blinks and is
seen in the camera image, which is subsequently seen by
the photosensor. The photosensor also triggers the oscillo-
scope. This causes two traces to appear on the screen of the
oscilloscope. By reading the scale of the oscilloscope and
measuring the distance between the traces, we measured the
latency.

We placed the reading of the Faro tracker (5) directly after
the (expensive) vision-based tracking computation (4), and
the acquisition of ultrasound video data (6) directly after
the reading of the Faro tracker. We would have liked to
have placed the reading of the FOB tracker (3) later as well,
but it is necessary for the initial guess for the hybrid tracker.
This arrangement significantly decreased the relative latency
in our system.

By predicting every stream to match the environment the
user is in, the system would behave as if it had no latency.
Only errors in the prediction can spoil the illusion. However,
video streams are hard (or impossible) to predict since they
have high bandwidth and are dynamic in behavior.

Our second option is to buffer and interpolate lower
latency streams to match the higher latency ultrasound
stream. Buffering the real-world video is expensive. We
can only store the video directly in the frame-buffer. Also,
the perceived delay of the system would grow since the real-
world video gives the most visual cues to the user. We
therefore decided to define two synchronization points, rep-
resented by the ultrasound and real-world video streams. We
had to synchronize the tracker information with these two
points (sUS , sCamera). (Figure 6)

time
FendFstart

sus

Ultrasound

sFaro

Faro

sFlock

Flock

rCamera

compute render
sCamera

IFaro
PFaro

rFlock

rFaro

rUS

PFlock

Cameras

CFlock

Figure 6: Extrapolation, Interpolation and Just-in-
time Sampling. Just-in-time sampling is used to reduce
relative latency. The FOB is predicted to match the video
after which it is corrected with a vision-based algorithm.
The Faro is buffered and interpolated to match the ultra-
sound video stream, and predicted to match the cameras.

We used linear extrapolation based on the last two values
for the ultrasound probe’s position and orientation. (PFaro)
The prediction interval is based on the relative latency be-

tween the Faro and the cameras. Both streams are time-
stamped as they arrive on the host (rFaro , rCamera). Time-
stamping is done by reading a system clock before and after
sampling and averaging these values in order to compensate
for the time it takes to sample the stream. The extrapola-
tion interval for the probe relative to the last Faro reading
is:

rFaro − rCamera + RelativeLatency

The rendered model of the probe is now registered with the
video image of the probe. The model’s depth values are used
in order to achieve correct occlusion.

We have eliminated a relative latency of 30ms in the track-
ing of the ultrasound probe. In analyzing registration error,
Holloway [6] found that 1ms of latency can cause 1mm of
registration error, so we have eliminated a potential source
of up to 30mm of registration error. We of course introduce
error in the prediction, but this is a small price.

We also use a linear extrapolation scheme for the cam-
era position and orientation (PFlock , Figure 6) in order to
synchronize with the real-world video stream. However, due
to the noise and inaccuracy of the magnetic tracker signal
the linear predictor is not precise enough. We therefore ap-
ply a vision-based corrector (CFlock , Figure 6) that relies
on color-coded landmarks visible in the image [12]. This
corrector typically eliminates relative latency (and inaccu-
racies in the tracking report), since its tracking information
comes from the video image, to which we are synchronizing
(sCamera) (Plate 1, left; original, Plate 4, left; method ap-
plied). We have thus eliminated a relative latency of 30ms
in head tracking. Again, this was a potential source of up
to 30mm of registration error.

Finally, we need a solution for the relative latency between
the ultrasound video stream and the probe tracking data.
The latency would otherwise cause misregistration (Plate 1,
right and Plate 3). Since the Faro has lower latency than the
ultrasound video, (and we cannot predict the video) we store
and interpolate (IFaro , Figure 6) the tracking information.
Again, upon arrival on host we timestamp the video image
and the tracking data. This tracking data is then stored in
a buffer. The interpolation interval for the probe relative to
the last Faro reading is :

rFaro − rUltrasound + RelativeLatency

A linearly interpolated value is computed from the previ-
ously stored data for the probe’s position at the time the ul-
trasound image was taken. This computed position and ori-
entation is then used for rendering the ultrasound slices. By
applying this interpolation technique, we align ultrasound
slices spatially with (the video of) the patient. This de-
taches the slice from the visible probe (in particular when
the probe is moving), but eliminates relative latency between
the ultrasound image data and the probe tracking data. This
eliminates the relative latency as a source of up to 220mm
of registration error between the location of the acquired
ultrasound slices and the patient.

5 CONCLUSIONS

We have given general methods for handling multiple data
streams. These methods are applicable to AR systems that
have multiple input streams with different latencies. By
eliminating relative latency, we remove a potential source of
registration error. While latency-based misregistration often
goes unnoticed or is considered unimportant, performance
can be improved with simple synchronization schemes.

Relative latency can be managed by measuring the la-
tency differences (part of the system-dependent set of cal-
ibrations), on-host timestamping, adjusting the moment of
sampling, and interpolation or extrapolation of these data
streams.

In our ultrasound system, synchronizing the probe track-
ing data with the ultrasound video data and prediction of the
probe model’s position and orientation reduced errors signif-
icantly. The vision-based tracking scheme reduces latency-
based misregistration by reducing the error.

These schemes show the importance of thinking about la-
tency early in the design phase. Sampling a stream once per
frame might not be sufficient if prediction is used. Adjust-
ing the moment of sampling requires rearranging code which
might be difficult to adjust later in the design phase.

6 FUTURE WORK

The sampling frequency of the data streams in our system is
currently proportional to the frame rate. We would like to
have autonomous sampling processes for each stream [16].
Every stream could then have its own (higher) sampling fre-
quency making it possible to have more accurate interpo-
lation and extrapolation functions. For video images this
is hard, since video has high bandwidth and moving video
around in memory costs time, but for tracking information
this is easily feasible. Having more knowledge about the
frequency and phase of the external device also holds the
potential for further adjusting the moment of sampling.

Our assumption of off-host relative latency being static
would not be necessary if manufacturers of the data-
gathering devices would timestamp the data with a real-
world clock value. We think and hope it will be more com-
mon in the future for data gathering devices to have real-
world clock timestamping mechanisms. For the video sig-
nals, we could have a hardware device inserting a bit pattern
at the source, representing the real-world time. This bitpat-
tern could then be read on host. If all devices had time-
stamping mechanisms, latency measurement experiments
and on-host timestamping would not be necessary. This
would allow dynamic measurement of relative latency and
thus more accurate compensation using the techniques we
described.

Our hardware platform uses the Unix operating system.
In Unix there are no accurate timing guarantees. The pro-
gram is written in the C language. A better suited operat-
ing system and programming language to real-time actions
would be useful. Even on such a machine one could not
guarantee constant end-to-end latency due to lack of syn-
chronization between input and output video streams. This
could be remedied by applying a generator lock (genlock)
to both the input and the output video streams. A simi-
lar level of control could be achieved by timestamping the
vertical retrace events of input and output video streams.

7 ACKNOWLEDGMENTS

We would like to express our gratitude to Henry Fuchs, Bill
Garrett, Todd Gaul, David Harrison, Gentaro Hirota, Erik
Jansen, Kevin Jeffay, Bill Mark, Mark Mine, Etta D. Pisano,
Stephen M. Pizer, Frits Post, Paul Rademacher, Allen
Sajedi, Mary Whitton, and the anonymous reviewers,

This work was supported in part by the ARPA DABT63-
93-C-0048 (”Enabling Technologies and Application Demon-
strations for Synthetic Environments”), the NSF Science and

Technology Center for Computer Graphics and Scientific Vi-
sualization, and PIE Medical Corporation. Approved by
ARPA for Public Release–Distribution Unlimited.

References

[1] Azuma, R., and Bishop, G. A Frequency-Domain
analysis of head-motion prediction. In SIGGRAPH
95 Conference Proceedings (Aug. 1995), R. Cook, Ed.,
Annual Conference Series, ACM SIGGRAPH, Addison
Wesley, pp. 401–408. held in Los Angeles, California,
06-11 August 1995.

[2] Azuma, R. T. A survey of augmented reality. In Com-
puter Graphics (SIGGRAPH ’95 Proceedings, Course
Notes #9: Developing Advanced Virtual Reality Appli-
cations) (Aug. 1995), pp. 1–38.

[3] Bajura, M., and Neumann, U. Dynamic registra-
tion correction in video-based augmented reality sys-
tems. IEEE Computer Graphics and Applications 15, 5
(Sep 1995), 52–60.

[4] Funkhouser, T. A., and Séquin, C. H. Adaptive dis-
play algorithm for interactive frame rates during visual-
ization of complex virtual environments. In Computer
Graphics (SIGGRAPH ’93 Proceedings) (Aug. 1993),
J. T. Kajiya, Ed., vol. 27, pp. 247–254.

[5] Holloway, R. L. Viper: A quasi real-time virtual-
environment application. Tech. Rep. TR92-004, De-
partment of Computer Science, The University of North
Carolina, 1992.

[6] Holloway, R. L. Registration errors in augmented re-
ality systems. Ph. D. Dissertation TR95-016, Depart-
ment of Computer Science, The University of North
Carolina, 1995.

[7] Mark, W. R., Bishop, G., and McMillan, L.
Post-rendering 3-d warping for latency compensation.
In 1997 Symposium on Interactive 3D Graphics (Apr.
1997), ACM SIGGRAPH.

[8] Mine, M. Characterization of end-to-end delays in
head-mounted displays. Tech. Rep. TR93-001, Depart-
ment of Computer Science, The University of North
Carolina, 1993.

[9] Olano, M., Cohen, J., Mine, M., and Bishop, G.
Combatting rendering latency. In 1995 Symposium
on Interactive 3D Graphics (Apr. 1995), ACM SIG-
GRAPH, pp. 19–24. ISBN 0-89791-736-7.

[10] Regan, M., and Pose, R. Priority rendering with a
virtual reality address recalculation pipeline. In Pro-
ceedings of SIGGRAPH ’94 (Orlando, Florida, July
24–29, 1994) (July 1994), A. Glassner, Ed., Computer
Graphics Proceedings, Annual Conference Series, ACM
SIGGRAPH, ACM Press, pp. 155–162. ISBN 0-89791-
667-0.

[11] Sajedi, A. Private communication, October 1996.

[12] State, A., Hirota, G., Chen, D. T., Garrett,
W. F., and Livingston, M. A. Superior augmented
reality registration by integrating landmark tracking
and magnetic tracking. In SIGGRAPH 96 Conference

Proceedings (Aug. 1996), H. Rushmeier, Ed., Annual
Conference Series, ACM SIGGRAPH, Addison Wesley,
pp. 429–438. held in New Orleans, Louisiana, 04-09
August 1996.

[13] State, A., Livingston, M. A., Hirota, G., Gar-
rett, W. F., Whitton, M. C., and Fuchs, H.
Technologies for augmented-reality systems: Realiz-
ing ultrasound-guided needle biopsies. In SIGGRAPH
96 Conference Proceedings (Aug. 1996), H. Rushmeier,
Ed., Annual Conference Series, ACM SIGGRAPH, Ad-
dison Wesley, pp. 439–446. held in New Orleans,
Louisiana, 04-09 August 1996.

[14] Taylor, V. E., Stevens, R., and Canfield, T. Per-
formance models of interactive, immersive visualization
for scientific applications. In Proceedings of the In-
ternational Workshop on High Performance Computing
for Computer Graphics and Visualization (July 1995),
pp. 238–252.

[15] Wloka, M. M. Dissertation proposal: Time-critical
graphics. Tech. Rep. TR-CS-93-50, Computer Science
Department, Brown University, 1993.

[16] Wloka, M. M. Lag in multiprocessor virtual reality.
Presence: Teleoperators and Virtual Environments 4, 1
(Winter 1995), 50–63.

Plate 1. AR registration problems resulting from relative latency. Left: AR view of a mannequin from a moving camera.

The wireframe model lags behind due to relative latency in the magnetic tracker compared to the camera video. Center: AR
view of a moving ultrasound probe. The wireframe model of the probe and the probe’s ultrasound image data field lag behind
the real world video due to the relative latency in the mechanical tracker compared to the camera video. Right: AR view of a
volume of ultrasound data. Note how the needle trace in the volume (green arrows) curves due to the relative latency between

the ultrasound image data and the mechanical tracker.

Plate 2. Rotating drum used to measure relative latency in the ultrasound image data (black rectangular frame) compared to
the camera video (background). Despite correct static spatial registration (left), the framed image lags behind as we spin the

drum (center). We compute the latency from the measured rotational velocity and a known angular distance (right).

Plate 3. Left: Verifying the
accuracy of temporal interpolation for
the mechanical tracker by performing

a zig-zag ultrasound sweep of a
cylinder in a water tank. Center: The
reconstructed cylinder undulates due

to the relative latency between the
ultrasound image data and the
mechanical tracker. Right: A

sweep using the measured relative
latency yields a straight cylinder in

the volume data.

Plate 4. Left: AR view of mannequin from a moving camera. Vision-based tracking eliminates relative latency and

temporal registration error; cf. Plate 1, left. Center: AR view of the moving ultrasound probe. Predictive tracking of the
mechanical tracker reduces the effect of relative latency and temporal registration error; cf. Plate 1, center. Right: Applying

the relative latency measurement makes the ultrasound data lag behind the video image of the probe, but aligns the ultrasound
data with the inside of the breast.

