
Feature-based Surface Decomposition for Polyhedral Morphing

Arthur D. Gregory
Andrei State, Ming C. Lin, Dinesh Manocha, Mark A. Livingston

Department of Computer Science
University of North Carolina at Chapel Hill
{ gregory,andrei,lin,dm,livingst} @cs.unc.edu
http://www.cs.unc.edu/-georn/3Dmorphing

Abstract: We demonstrate a new approach for
establishing correspondence for morphing between two
homeomorphic polyhedral models. The user can specify
corresponding feature pairs on the polyhedra with a
simple and-intuitive interface. Based on these features,
our algorithm decomposes the boundary of each
polyhedron into the same number of morphing patches.
A 2D mapping for each morphing patch is computed in
order to merge the topologies of the polyhedra one patch
at a time. We create a morph by defining morphing
trajectories between the feature pairs and by
interpolating them across the merged polyhedron. The
user interface provides high-level control as well as local
refinement to improve the morph. The implementation
has been applied to several polyhedra composed of
thousands of polygons. We also demonstrate the
performance of our system two non-simple polyhedra.

1 Introduction,
Image and object morphing techniques have gained
increasing importance in the last few years. Given two
objects, metamorphosis involves producing a sequence
of intermediate objects that gradually evolve from one
object to another. The techniques have been used in a
number of applications, including scientific visualization,
education, entertainment, and computer animation.
Morphing, whether in 2D or 3D, consists of two basic
phases, establishing a correspondence between the
images or objects and interpolating between them, in
conjunction with blending their colors or textures.

We present a new approach for establishing
correspondence for morphing between two
homeomorphic polyhedra. Initially the user selects some

Permission to make digital or hard copies of all or part of this work for

pclsonal or classroom use is granted without fee provided that copies
are not made or distributed for profit or conmmercial advantage and that

copies bear this notice and the full citation WI the first page. To cOPY
otherwise, to republish, to post on servers or to redistrihutc to lists.

rcquircs prior specific permission and/or a fee.

SCG’W Miami Beach Florida
Copyright ACM 1999 I-581 13-068-6/99/06...$5.00

415

corresponding elements called feature pairs. Our
algorithm includes a simple and intuitive user interface
for feature specification and automatically generates a
feature net. Based on the feature nets, the algorithm
decomposes the boundary of the polyhedra into
morphing patches, computes a mapping for each
morphing patch to a 2D polygon, merges them, and
constructs a merged polyhedron whose topological
connectivity contains both of the input polyhedra. In
order to create a morph, the merged polyhedron has a
morphing trajectory for each vertex to move along from
one input polyhedron to the other. The overall
complexity of the algorithm is O(K(m+n)), where K is a
user-defined constant and m,n correspond to the number
of vertices in the two input polyhedra.

2 Overview
Our algorithm decomposes the problem of morphing two
polyhedra into morphing corresponding pairs of surface
patches. Given the user’s specification, the algorithm
automatically partitions each polyhedron into a series of
morphing patches, each of which is homeomorphic to a
closed disk. We compute a mapping for each patch and
eventually merge the topologies of the polyhedra.
Moreover, we use algorithms for computing
arrangements of lines, triangulations of polygons and
planar straight-line graphs, and determining point
locations in planar subdivisions. An overview of our
approach is given in figure 1. Given the user input, the
algorithm consists of two phases: establishing a
correspondence between the two polyhedra and
interpolating between corresponding vertex locations.

2.1 Correspondence
. Feature Net Specification: The user specifies a

network of corresponding chains on the surfaces of
the two input polyhedra by specifying the vertices of
their endpoints. The interior edges of the chains are
then computed as the shortest path between the
specified endpoints. The feature net is a sub-graph
of the vertex/edge connectivity graph of each
polyhedron.

. Decomposition into Morpbing Patches: Based on
the feature nets, the algorithm decomposes the
surface of each polyhedron into the same number of

.

.

Mapping: A pair of corresponding morphing
patches are mapped to a 2D polygon.
Merging: The algorithm merges the topological
connectivity of morphing patches in the 2D polygon
as a PSLG.

.

.

Reconstruction: Using the results from merging,
the algorithm reconstructs the facets for the new
morphing patch and generates a merged polyhedron
with the combined topologies of the original two.
Local Refinement: The user can make local
changes to the feature net, such as splitting chains,
moving extremal vertices, deleting chains or
extremal vertices, or adding new ones, and then re-
compute the merged polyhedron.

2.2
.

Interpolation

.

Trajectory Specification: The user specifies the
trajectories for the vertices of the feature net to
follow during the morph. The morphing trajectories
for the remaining vertices of the merged polyhedron
are computed from these.
Morph Generation: The algorithni makes use of
the trajectories and interpolates the surface attributes
to generate a morph.
Local Control: The user can modify the trajectories
and generate a new morph. This step does not
involve re-computation of the merged polyhedron as
shown in the shaded “feedback loop” of figure 1.

3 Implementation and Performance
We have implemented the algorithm in C++ using the

morphing patches, each being homeomorphic to a
closed disk.

OpenGL library and it runs on SGI workstations. It uses
various data structures to represent the models and their
topology, implements geometric and graph algorithms to
compute the correspondences, and features a graphical
user interface for specifying features and trajectories and
for refining the morph.
The input polyhedra are specified in a shared vertex
representation. The algorithm computes various data
structures to store the geometric information as well as
the adjacency graph for each polyhedron. Furthermore,
the system ensures that each polyhedron has valid
topology and that it satisfies the Euler-Poincare’ formula.
When the user specifies the extremal vertices of a chain
in the feature net, the system computes the path
connecting them using Dijkstra’s shortest path
algorithm. It starts with one of the extremal vertices as
the start vertex and incrementally computes shortest
paths to other vertices of the polyhedron. It stops when it
has computed the path to the other extremal vertex.
Since the endpoints of chains are typically close and the
shortest path consists of a few edges, the system can
compute these paths fast enough for interactive response.

Our implementation also utilizes a number of geometric
algorithms for triangulating planar straight-line graphs,
edge intersections and for point location. The system has
been applied to a number of complex polyhedral models,
as shown in the video. More details are given in [11.

Figure 1. Overview of the polyhedral morphing
algorithm.

4 Acknowledgement
This research has been supported in part by Sloan
Fellowship, AR0 Contract DAAHO4-96- l-0257, NSF
Career Award CCR-9625217, ONR Young Investigator
Award (NOOO14-97-1-0631) and Intel.

5 References
[l] A. Gregory, A. State, M. Lin, D. Manocha and M.
Livingston, “Feature-based Surface Decomposition for
Polyhedral Morphing”, Proc. Of Computer Animation,
1998.

416

