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We present a new approach for establish-
ing correspondence for morphing between
two homeomorphic polyhedral models. The
user can specify corresponding feature pairs
on the polyhedra with a simple and intuitive
interface. Based on these features, our al-
gorithm decomposes the boundary of each
polyhedron into the same number of morph-
ing patches. A 2D mapping for each mor-
phing patch is computed in order to merge
the topologies of the polyhedra one patch
at a time. We create a morph by defining
morphing trajectories between the feature
pairs and by interpolating them across the
merged polyhedron. The user interface pro-
vides high-level control, as well as local
refinement to improve the morph. The imple-
mentation has been applied to several poly-
hedra composed of thousands of polygons.
The system can also handle homeomorphic
non-simple polyhedra that are not genus-
zero (or have holes).
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Image and object morphing techniques have gained
increasing importance in the last few years. Given
two objects, metamorphosis involves producing
a sequence of intermediate objects that gradually
evolve from one object to the other. The techniques
have been used in a number of applications, in-
cluding scientific visualization, education, entertain-
ment, and computer animation. Morphing, whether
in two or three dimensions, generally consists of two
basic phases that establish a correspondence between
the images or objects and interpolate between them,
in conjunction with blending their colors or textures.
We present a new approach for establishing corre-
spondence for morphing between two homeomor-
phic polyhedra. Initially, the user selects some cor-
responding elements calledfeature pairs. Although
we borrow this term from previous morphing algo-
rithms for images or 3D volumetric models [4, 31],
our concept of a feature is closer to the sparse control
mesh used in [14]. Our algorithm includes a simple
and intuitive user interface for feature specification
and automatically generates afeature net. Based
on the feature nets, the algorithm decomposes the
boundary of the polyhedra into morphing patches,
computes a mapping for each morphing patch to
a 2D polygon, merges them, and constructs amerged
polyhedronwith a topological connectivity that con-
tains both of the input polyhedra. In order to create
a morph, the merged polyhedron has amorphing
trajectory for each vertex to move along from one
input polyhedron to the other. The overall com-
plexity of the algorithm isO(K(m+n)), where
K is a user-defined constant andm and n corre-
spond to the number of vertices in the two input
polyhedra. Some of the principal attributes of our
approach are:

• Simple user interface. The users only need to se-
lect a few corresponding pairs of vertices on the
two polyhedra to define the feature nets. The tra-
jectories along which these features travel dur-
ing morphing are currently represented as Bézier
curves.
• Fine user control. The algorithm not only pro-

vides the user with high-level control in terms
of specifying the features and trajectories, it also
provides a mechanism to locally refine the morph
or the animation sequence.
• Generality. The algorithm is applicable to all

genus-zero polyhedra and makes no assumptions
about convexity or star shape. Furthermore, it
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can also be applied tonon-simplehomeomorphic
polyhedra, that are not genus-zero.

Organization. The rest of the paper is organized
in the following manner. In Sect. 2, we survey re-
lated work in this area. We give an overview of
our approach in Sect. 4, present the algorithm to
compute the correspondence in Sect. 5, and ad-
dress the morphing trajectories and other inter-
polation issues in Sect. 6. We describe the user
interface in Sect. 7. Then, we discuss the imple-
mentation in Sect. 8 and also highlight its perfor-
mance on various models. We analyze the algorithm
in Sect. 9 and mention areas for future research
in Sect. 10.

2 Related work

The problems of establishing correspondence be-
tween graphical objects for shape transformation and
morphing have been widely investigated in com-
puter animation, graphics, and computational geom-
etry for more than a decade. Most of the earlier work
in the area focused on image metamorphosis, though
a number of approaches have also been proposed for
3D volumetric models and 3D polyhedral models.
Surveys of some of these techniques can be found in
[17, 29]. An extended abstract of this paper appears
in [18].

2.1 Two-dimensional morphing

Given two images, the problem of constructing
a metamorphosis from one image to the other
has been extensively studied in computer graph-
ics and image processing. The set of algorithms
can be classified into those that operate on raster
images [4, 13, 30, 47, 48] and those that operate
on vector-based or geometric representations [19,
40, 42, 45]. Feature-based image morphing can be
achieved by energy minimization [40] or feature-
based constraints [42]. Beier and Neely presented
an elegant feature-based approach [4]. The features
may be points or lines [4, 44] or to snakes [30].
Mappings that have been used include (bi)linear
mappings [4, 44] and spline-based mappings or
free-form deformations [30] in conjunction with
a weighting function that effectively controls the
range over which a feature has influence. Ranjan and

Fournier [37] presented an approach which uses cir-
cles to partition the objects. Other algorithms for
transforming one image into another are based on 2D
particle systems to map the pixels [39].
It is possible to generate 2D images from a 3D model
and apply 2D morphing algorithms to these. In this
case, the intermediate stages of the morph are im-
ages. For many applications in animation and de-
sign, the 3D models themselves not their images,
should be transformed [9, 25]. Furthermore, if the
viewpoint or the lighting parameters are changed,
the 2D morph has to be recomputed. However, 3D
morphing is independent of viewing or lighting pa-
rameters. Having a 3D representation also allows
the use of computer animation techniques such as
keyframing.

2.2 Three-dimensional volume morphing

Given two volumes, 3D volume morphing involves
producing a sequence of volumes to transform
them. A number of approaches have been pub-
lished [8, 11, 20, 31, 36]. These include the use of
Fourier transforms that warp linearly in Fourier
space [23]. This is a simple approach and requires
minimal user specification, but inhibits intuitive un-
derstanding of the morph. Lerios et al. [31] have
presented a 3D extension of Beier and Neely’s [4]
approach. It allows the user to specify a set of fea-
tures and permits fine user control. Cohen-Or et
al. [12] introduce a technique based on distance field
interpolation.
Three-dimensional polyhedral models can be vox-
elized to enable the use of 3D-volume morphing.
However, the intermediate stages of the morph are
volumes, and converting them into geometric mod-
els produces topologically complex objects. Given
a geometric surface description of the model, we
can use current graphics systems for fast render-
ing, and we can also use various geometric algo-
rithms for applications such as physically based sim-
ulation or 3D object manipulation. Moreover, for
feature-based approaches, it is simpler and more in-
tuitive to design a user interface based on the geo-
metric model as opposed to the volumetric model.
For example, a user can pick any vertex, edge, face,
or contour of the original polyhedron as a feature,
which is not easy with a voxel-based representa-
tion. Therefore, approaches based on voxelization
followed by 3D volume morphing have limitations
as well.
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2.3 Three-dimensional shape
transformations and metamorphosis

Several approaches related to establishing corre-
spondence between 3D polygonal objects for shape
transformation and metamorphosis have been pro-
posed. Physically based modeling techniques based
on deformations [3, 41] and particle systems [38]
can be used for object metamorphosis. Hong et
al. [22] present an approach for polyhedral mod-
els that matches the faces with closest centroids.
Chen and Parent [7] present an algorithm to trans-
form piecewise linear 2D contours and extend it
to 3D cylindrical objects. Bethel and Uselton [6]
add degenerate vertices and faces to two polyhe-
dra until they have a common vertex neighborhood
graph. Kaul and Rossignac [25] transform a pair of
polyhedra by using their Minkowski sums. Hodgins
and Pollard [21] have presented an algorithm for
interpolating between control systems of dynamic
models. Wyvill [49] has described an approach for
implicit surfaces. Parent [34] has presented an ap-
proach that splits the surface of the model into pairs
of sheets of faces and recursively subdivides them
until they have the same topology. Parent [34, 35]
has also described a method for deformation of poly-
hedral objects based on implicit functions. Kent et
al. [26, 27] have presented a shape transformation al-
gorithm for genus-zero polyhedra that involves pro-
jecting the models onto a sphere. Chen et al. [9] have
produced 3D morphs of cylindrical images. Galin
and Akkouche [16] have presented an algorithm
for blob metamorphosis based on Minkowski sums.
Lazarus and Verroust [28] have proposed a method
based on skeletal curves. Shapiro and Tal [46] pro-
pose a polyhedron realization algorithm for shape
transformation. Alexa [1] presents a technique for
merging two genus-zero polyhedra. Kanai et al. [24],
as well as Bao and Peng [2], have presented al-
gorithms for shape transformation of genus-zero
polyhedra using harmonic maps. DeCarlo and Gal-
lier [14] have proposed a morphing technique that
establishes correspondence by allowing the user to
divide the surface into triangular and quadrilateral
patches that can be projected onto a plane. Our over-
all approach shares their theme. However, we im-
prove upon several restrictions in their technique,
making it easier for the user to specify correspon-
dence between complicated models. For example,
we remove the requirement that the user-specified

surface patches must be triangular or quadrilat-
eral, and that each can be directly projected onto
a plane.

3 Terminology

The term polyhedron refers to an arrangement of
polygons such that two and only two polygons
meet at each edge. It is possible to traverse the sur-
face of the polyhedron by crossing its edges and
moving from one polygonal face to another until
all polygons have been traversed by this contin-
uous path [33]. Furthermore, each vertex is adja-
cent to at least three edges. Topology refers to the
vertex/edge/face connectivity of a polyhedron. Sim-
ple polyhedra are all polyhedra that can be contin-
uously deformed into a sphere. Non-simple poly-
hedra are topologically equivalent to a solid object
with holes in it. In this paper, we assume that each
face of a polyhedron is homeomorphic to a closed
disk. The genusg of a polyhedron is the maxi-
mum number of non-intersecting loops that do not
divide its surface into two regions. Moreover, poly-
hedra satisfy the Euler-Poincaré formula:v−e+ f−
2(1− g) = 0, wherev, e, f , andg are the number
of vertices, edges, faces, and genus of the polyhe-
dron, respectively. The genus of a simple polyhedron
is zero.

4 Overview

Given two homeomorphic polyhedra, our goal is to
generate a morph that results in a smooth and gradual
transition from one polyhedron to the other. One key
aspect of our system is to allow the user to identify
the important features of each polyhedron and spec-
ify a correspondence between them. The rest of the
algorithm consists of a combination of techniques
that can produce the desired result from the given
user input.
Our algorithm decomposes the problem of mor-
phing two polyhedra into morphing corresponding
pairs of surface patches. Given the user’s specifi-
cation, the algorithm automatically partitions each
polyhedron into a series of morphing patches, each
of which is homeomorphic to a closed disk. Based
on this decomposition, our approach is applicable
to non-simple polyhedra as well. There are many
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Fig. 1. Overview of the polyhedral morphing algorithm

other advantages to this approach. It is simpler to
compute a 2D parameterization for one patch at
a time. We use such mappings to merge the topolo-
gies of the polyhedra. Moreover, it allows us to
use a number of algorithms from computational ge-
ometry. These include computing arrangements of
lines, triangulations of polygons, and planar straight-
line graphs, and determining point locations in
planar subdivisions. All these techniques are used
for establishing correspondence between the two
polyhedra.
Geometric algorithms are prone to robustness and
accuracy problems. These involve dealing with de-
generate configurations and inaccuracy problems
due to finite precision arithmetic. Since an important
component of the morphing algorithm is to merge the
topologies of two polyhedra, we need to make sure
that the algorithm maintains valid data structures and
topology at each stage. In order to develop a robust
implementation of the algorithm, we have, at times,
opted for simpler geometric algorithms, which may
not have the best asymptotic performance.
An overview of our approach is given in Fig. 1.
Given the user input, the algorithm consists of two
phases: establishing a correspondence between the
two polyhedra and interpolating corresponding ver-
tex locations.

4.1 Correspondence

• Feature net specification. The user specifies
a network of corresponding chains on the sur-
faces of the two input polyhedra by specifying
the vertices of their endpoints as shown in Figs. 2
and 3. The interior edges of the chains are then
computed as the shortest path along the edges be-
tween the specified endpoints. The feature net is
a subgraph of the vertex/edge connectivity graph
of each polyhedron.
• Decomposition into morphing patches. Based on

the feature nets, the algorithm decomposes the
surface of each polyhedron into the same number
of morphing patches, each being homeomorphic
to a closed disk.
• Mapping. A pair of corresponding morphing

patches are mapped to a 2D polygon.
• Merging. The algorithm merges the topologi-

cal connectivity of morphing patches in the 2D
polygon.
• Reconstruction. Using the results from merging,

the algorithm reconstructs the facets for the new
morphing patch and generates a merged polyhe-
dron with the combined topologies of the original
two.
• Local refinement. The user can make local

changes to the feature net, such as splitting
chains, moving extremal vertices, deleting chains
or extremal vertices, or adding new ones, and then
recompute the merged polyhedron.

4.2 Interpolation

• Trajectory specification. The user specifies the
trajectories for the vertices of the feature net to
follow during the morph. The morphing trajec-
tories for the remaining vertices of the merged
polyhedron are computed from these.
• Morph generation. The algorithm makes use of

the trajectories and interpolates the surface at-
tributes to generate a morph.
• Local control. The user can modify the trajecto-

ries and generate a new morph. This step does
not involve recomputation of the merged poly-
hedron, as shown in the shaded “feedback loop”
of Fig. 1.
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3

Fig. 2. Input polyhedra with user-specified correspon-
dences
Fig. 3. User interface for igloo-house morph showing
completed feature net (red) with morphing patches

5 Correspondence between
polyhedra

In this section, we present the algorithm that com-
putes the correspondence between two polyhedra.
Given two homeomorphic polyhedra,A and B, we
represent their vertices asV A = V A

1 , V A
2 , . . . ,V A

m
and V B = V B

1 , V B
2 , . . . , V B

n , respectively. Super-
scripts represent the corresponding polyhedron. The
edges and faces of the polyhedra are represented
asEA, EB, F A andF B, respectively. The output is
a merged polyhedron with the topology of both input
models, for which each vertex has a location on the
two input models.
The system ensures that each face of the input and
output polyhedra is a triangle. Otherwise, the system
triangulates the face. The boundary and topology
information for each polyhedron is represented by
an adjacency graph. Given the polyhedra, the sys-

tem computes a circularly ordered set of edges for
each vertex. For each edge, the system stores inci-
dent vertices as well as left and right adjacent faces.
Each facet contains a counterclockwise-ordered list
of three vertices and three edges. The vertices and
edges of the adjacency graph represent the ver-
tex/edge connectivity information of the polyhedron.
We will use the symbolsGA and GB to represent
the adjacency graph of two polyhedra. Furthermore,
we assign a weight to each edge of this graph. The
weight corresponds to the euclidean distance be-
tween the two vertices defining the edge. Based on
the user’s specification, the correspondence algo-
rithm marks some of the vertices and edges in these
graphs. To start with, each edge and vertex in these
graphs is unmarked.
To illustrate the correspondence algorithm described
in this section, we will make use of Figs. 2–4 and
6–11. In our illustration, polyhedronA corresponds
to a model of an igloo and polyhedronB corresponds
to a model of a house (Fig. 2). Upper case letters de-
note 3D objects, and lower case letters represent 2D
objects.

5.1 Specifying corresponding features
The user selects a pair of unmarked vertices on
each of the input polyhedra to be in correspondence
denoted by{V A

i1, V A
i2} and {V B

i1, V B
i2}, respectively

(Fig. 2). The algorithm computes a shortest path be-
tween these vertex pairs in the adjacency graph using
only unmarked vertices and edges. Let the shortest
paths correspond to{V A

i1, V A
j 1, . . . , V A

jk, V A
i2} and

{V B
i1, V B

j 1, . . . , V B
jl , V B

i2}, as shown in Fig. 2. All the
intermediate vertices and edges on the shortest paths
in each graph are marked. We call such a shortest
path achain. Moreover, the user-selected vertices are
referred to as theextremal verticesof a chain. The
selected vertices and chains are used to formulate
a feature net for each polyhedron. We will represent
the feature nets asNA andNB. They are subgraphs of
GA andGB, respectively. The user needs to specify
a sufficient number and arrangement of chains to par-
tition the boundaries of the polyhedra. The algorithm
imposes some constraints on the user. Each extremal
vertex must be adjacent to at least two chains, and
each chain must have a connected patch on each
side. As a result,NA and NB have the same num-
ber of chains and extremal vertices, and the user has
specified a mapping between each extremal vertex
and chain. In this way, the two feature nets define
a bijection.
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Fig. 4. Two selected morphing patches

5.2 Decomposition into morphing patches

The feature nets are used to decompose the boundary
of each polyhedron into the same number of mor-
phing patches. A morphing patch (Fig. 4) is simply
a subset of a polyhedron that is homeomorphic to
a closed disc, thus simplifying the geometric com-
putations necessary to compute a morph. The ver-
tices and edges are partitioned into exterior and in-
terior vertices and edges. The exterior vertices of the
morphing patches are those on the specified feature
net (Fig. 4).
The decomposition algorithm has two steps. First,
the perimeters of the morphing patches are computed
by traversing the feature nets. Second, the interiors
of the morphing patches are computed. Here is an
overview of the algorithm to partition the feature net
into morphing patch perimeters.

Partition polyhedron into morphing patch
perimeters(){

For each extremal vertex in the feature
net Vi {

For each chain Cj adjacent to Vi
that does not already have an adjacent
patch clockwise from Vi {

1. OppVert = the extremal vertex at
the other end of Cj from Vi

CurrentChain = Cj
While (OppVert != Vi ){

2. CurrentChain =the next
clockwise chain
adjacent to
OppVert from
CurrentChain

3. OppVert =the extremal vertex at
the other end of
NextChain from OppVert

}
}

}
}

The computation of the perimeter, as detailed in
the pseudo-code above, uses the circular ordering of
edges at each vertex. Beginning at a vertex and chain
of the feature net, the algorithm walks through the
tightest clockwise loop of extremal feature net ver-
tices it can find. From the first extremal vertex and
chain, it moves to the extremal vertex at the other end
of the chain (step 1). Next it uses the circular order-
ing of edges at that vertex to proceed to the closest
clockwise chain (step 2). Then it follows that chain
to the vertex at the other end (step 3). This process
continues until it comes back to the original vertex,
hence traversing the perimeter of a morphing patch.
Note that this is possible because the chains may not
cross. Since there is a bijection between the feature
nets, this process is performed simultaneously on
both of the input polyhedra. For example, in step 2,
the next corresponding pair of clockwise chains can
be determined by examining the underlying graph of
only one of the input models.
The interior of a morphing patch is computed with
a depth-first searchalgorithm modified to traverse
through faces of the graph instead of vertices. It starts
with an arbitrary edge on the perimeter of the mor-
phing patch, and determines which adjacent face is
interior to the patch by choosing the one with the
same ordering as that of the exterior vertices. Then it
crosses the face that is on the interior of the morphing
patch and recursively branches out to the faces on its
other two edges. The recursion stops at an edge that
has already been traversed or is part of the perimeter.
This process is repeated until all vertices, edges, and
faces of the original polyhedra have been partitioned
into morphing patches. These morphing patches are
represented byPA

1 , . . . , PA
K and PB

1 , . . . , PB
K . The

system checks that the interior of each patch is home-
omorphic to a closed disk, requiring additional spec-
ification from the user if that is not the case.
For a genus-zero polyhedron, no morphing patch
could contain a hole. If the input polyhedron has a
genus greater than zero, the user needs to specify the
features in such a manner that each morphing patch
is homeomorphic to a disk. Such a decomposition is
always possible, as we will see later for a cup and
torus example.

5.3 Mapping

Given a morphing patch, our goal is to compute
a parameterization over a convex polygonal region in
two dimensions. Construction of a parameterization
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for complex shapes over a simple domain is an im-
portant problem that occurs in various applications.

5.3.1 Desiderata

A mapping algorithm requires a parameterization
that is intuitive from the user’s point of view. When
the user describes a pair of corresponding morph-
ing patches on the input polyhedra, s/he should be
able to intuitively imagine how the interiors will be
mapped without any detailed understanding of the
system. After some experimentation, it appears that
we want the mapping to have the following prop-
erty. Given any two triangular facesF A

i and F A
j of

a morphing patch, let them map to the trianglesf A
i

and f A
j , respectively, in the 2D polygon. The ratio

of the areas betweenF A
i andF A

j should be close to
that of f A

i and f A
j . Individual triangles are not as

important here as the fact that the mapping mini-
mizes the distortion of the area across the patch as
a whole. This leads to a more predictable morph for
the interiors of corresponding morphing patches. For
example, in Fig. 5, one would not expect that the
corresponding morphing patches to split apart during
the morph, but instead one patch should bend into the
other. The solution is equivalent to taking a uniform
coordinate system on the 2D polygon as if it were
composed of rubber sheets with no potential energy,
and placing it on the surface of the 3D morphing
patch so that the energy is minimized.

5.3.2 Previous approaches

A number of algorithms have been proposed by Kent
et al. [26], Maillot et al. [32], and Eck et al. [15].
One possible solution is to use harmonic maps. They
minimize the metric distortion and preserve the as-
pect ratios of the triangle, but can introduce area
compression [15]. In Fig. 5, it is area compression
that causes the intermediate model, HP, to have two
peaks instead of one. A harmonic map may not pro-
duce a desirable mapping. It would treat the morph-
ing patch as if it were composed of triangular rubber
sheets with no potential energy in three dimensions,
and minimize their total energy after being placed
into two dimensions.

5.3.3 Our approach

We currently use a divide-and-conquer approach
with an area preservation heuristic. An example
is shown in Fig. 6. Note that, if the ear had been
mapped with a harmonic map, all the triangles would

Fig. 5. Comparison between the area-preservation and
harmonic mappings. A corresponding pair of morphing
patchesA andB are mapped to a 2D polygon using both
a harmonic mapping, and an area preservation mapping.
The two mappings are then merged and reconstructed,
and the resulting fifty percent morphs are shown for the
patch,HM and AM, respectively. Note that, from a user
standpoint one would expect the intermediate patch to
look more likeAM than HM . During the morph ofAM,
patchA appears to bend over into patchB, whereas dur-
ing the morph ofHM the tip of patchA shrinks into the
patchB’s side while the tip of patchB grows out of patch
A’s side

be very small in the middle; instead, the areas are
more uniform at the expense of distorting the shape.
Given a pair of morphing patches,PA

i and PB
i , we

compute a mapping from the surface of the patch to
a regular 2D polygon. Let these morphing patches
consist ofmi extremal vertices. We map the morph-
ing patch into a regular 2D polygon, inscribed in the
unit circle, withmi edges. We represent the regular
2D polygon aspi .
To compute a mapping, our algorithm first estab-
lishes a bijection between the chains of the two
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Fig. 6. A morphing patch containing an ear mapped to a 2D
polygon with our algorithm

feature nets by splitting edges on the respective
chains on the two models. The splitting criterion is
based on edge lengths. The splitting of edges does
not require the splitting of triangles. After splitting,
the algorithm has ensured that the corresponding
patches have the same number of exterior edges and
vertices.
The extremal vertices of the morphing patches are
mapped to the vertices ofpi . Each chain of the mor-
phing patch is mapped to an edge ofpi . All the
external vertices lying in the interior of a chain are
mapped onto the edges ofpi . The 2D coordinates of
the vertices along the chains are interpolated on the
basis of the arc length of the chain.
The next step is to compute a mapping for the inte-
rior vertices ofPA

i andPB
i . We use a simple recursive

technique that tries to preserve the ratio of areas of
the triangles and is based on a greedy heuristic. The
algorithm divides a morphing patch by selecting two
exterior verticesV A

i and V A
j that do not lie on the

same chain. Next, it computes a shortest path across
the interior of the morphing patch. This path is then
adjusted so that the ratio of the surface area on each
side is as close as possible to the ratio that it will
have once mapped to the 2D polygon. The vertices
and edges lying on this path are mapped to the in-
terior of pi , along the segment connectingV A

i and
V A

j . On the basis of this path, the algorithm recur-
sively divides the morphing patch and maps the sub-
patches topi . This process is then repeated forPB

i .
A pseudo-code description of the algorithm to map
the interior of a morphing patch to a 2D polygon is
given here.

MapInterior(Perimeter){
if Perimeter surrounds any vertices
(encompasses > 1 facet){

1 SplitPath = the shortest path between two
Perimeter vertices
that approximately divides
the Perimeter in half ;

2 If there is no subdividing path between
Perimeter vertices , then split the
Perimeter edges until there is one ;

3 Optimize SplitPath to preserve the area
ratio ;

4 Interpolate the 2D coordinates at the
endpoints of SplitPath along its
interior ;

5 LPerimeter =SplitPath + part of
Perimeter on its left ;

RPerimeter = SplitPath + part of
Perimeter on its right ;

6 MapInterior(LPerimeter) ;
MapInterior(RPerimeter) ;

7 Remove any extra vertices and edges added
in step 2.

}
}

The shortest path found in steps 1 and 2 tends to
preserve the area ratio on each side from the 3D
model to the 2D polygon if the portion of the mor-
phing patch enclosed by the perimeter does not have
much curvature. Otherwise, the algorithm modifies
the path betweenV A

i andV A
j in step 3, until the ra-

tio of the surface area of the morphing patch on either
side of the 3D path is as close as possible to the
areal in the 2D polygon on either side of the line it is
mapped to.
At this point, the algorithm has computed a pa-
rameterization for each morphing patch such that
each triangular faceF A

j andF B
k has been mapped to

a corresponding triangle,f A
j and f B

k , respectively,
in pi . The next step of the algorithm is to compute
a mapping for each interior vertex ofPA

i to PB
i (and

vice versa).
Given an interior vertex ofPA

i , the algorithm locates
the triangle, sayf B

k , that contains the image of that
interior vertex. Furthermore, the algorithm computes
the corresponding point inf B

k and represents it with
barycentric coordinates in terms of vertices off B

k .
The barycentric coordinates are then applied to the
vertices ofF B

k to compute the corresponding point
on PB

i .
This process is repeated for all the interior vertices
of PA

i and PB
i . The time complexity of this part of

the algorithm depends on the complexity of locating
the triangle for each interior vertex ofPA

i . A simple



A. Gregory et al.: Interactive surface decomposition for polyhedral morphing 461

search procedure would be linear in the number of
triangles. However, using efficient data structures for
planar point location [5], which involves linear time
preprocessing, this search time can be reduced to be
logarithmic in the number of triangles.

5.4 Merging

The algorithm has so far produced mappings into
pi such that the verticesV A

j ⇒ vA
j , V B

j ⇒ vB
j , and

edgesEA
j ⇒ eA

j , EB
j ⇒ eB

j . The edgeseA and eB

will in general intersect. We compute the intersec-
tions, split the intersecting edges, and create new
vertices (Fig. 7).
Let ne be the total number of edges, and letke be
the number of edge pairs that actually intersect. In
the worst case,ke can beO(n2

e). Efficient and op-
timal algorithms of complexityO(ne logne+ke)
have been proposed by Clarkson and Shor [10]
to compute the intersections. However, we are
not aware of any robust implementations of these
algorithms.
In our application, we encounter many degenerate
edge configurations. These include almost coinci-
dent edges and vertices. Motivated by simplicity
and robustness, we used an algorithm of complexity
O(n2

e), which checks all edge pairs for overlap. Since
the intersection computations can fail on edges that
are coincident, we handle the case in which edges lie
on the same mapped path separately. To avoid cre-
ating an invalid topology, we first calculate all the
edge intersections, and sort the intersection points on
each edge before creating the output edges. After in-
tersection computation and splitting, we denote the
set of all vertices and edges inpi by xAB andgAB,
respectively.

5.5 Reconstruction

After computing the intersection of all the edges,
the algorithm produces a planar straight-line graph
(PSLG) [5] from those intersections. The PSLG is
constructed from thexAB andgAB. The next step is
to compute a triangulation of these PSLGs. Though
good theoretical algorithms of linear complexity are
known [43], it is unclear if they can handle PSLGs
(Fig. 8) that have almost collinear edges or have very
small angles between them. To handle such cases
robustly, we use a simple divide-and-conquer algo-
rithm. From the counterclockwise ordering of the

Fig. 7. The 2D polygons are combined into one polygon
with merged topology

winged edge data structure of one of the input mod-
els superimposed on the other, we recursively sub-
divide the connected edges and vertices from the
merging step into the smallest counterclockwise cy-
cles possible. Since the nature of the intersections
in the merging step guarantees these cycles are con-
vex, from this point we can triangulate the regions.
After this step has been performed on all the morph-
ing patches, we get a merged polyhedron, as shown
in Figs. 9 and 10.

6 Interpolation

At the end of the correspondence process, the
merged polyhedron has the combined topological
connectivity of polyhedraA and B. Each vertex on
polyhedronA has a corresponding vertex on poly-
hedronB. In this section, we discuss issues for in-
terpolating between the two polyhedra to generate
a morph.

6.1 Aligning the input models

In many cases the location, orientation and size of the
input polyhedra are quite different. For example, in
Fig. 11, the igloo is much smaller than the house and
has been positioned centrally on the ground, against
the back wall of the house. The user must do the
scaling, positioning, and orienting the input poly-
hedra with respect to each other in preparation for
3D morphing. This influences the appearance of the
morph directly. This requirement is quite similar to
the preparation required for 2D image morphing [4].
Note that if the user changes the relative scale, posi-
tion, or orientation of the two input polyhedra, only
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Fig. 8. The morphing patches are mapped to regular 2D polygons
Fig. 9. The output after merging and reconstruction steps
Fig. 10.The reconstructed merged polyhedron has the combined topology of the two input polyhedra

the morphing trajectories must be re-specified and
interpolated (shaded feedback loop in Fig. 1); the
correspondence specifications remain valid.

6.2 Morphing trajectories

During morphing, the vertices travel from their po-
sitions onA to their respective positions onB along
morphing trajectories. Kent and colleagues [26] sug-
gest using Hermite interpolation between the corre-

sponding vertices with the tangents pointing along
normal directions. Similarly, we allow the user to
represent the trajectory as a Bézier curve for each
pair of extremal vertices. Initially, the trajectories are
specified by the user for each extremal vertex. The
trajectories are represented as cubic Bézier curves
and denoted byBV(t) for each vertexV. The two
endpoints lie onA and B, respectively. The user
specifies the tangent directions at each endpoint.
Based on the tangents, the algorithm computes the
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control points for each B́ezier curve using Hermite
interpolation. The user can modify the tangents for
each trajectory belonging to an extremal vertex of
the feature net, as shown in Fig. 11 (which shows
the tangent vectors as green line segments). Starting
from the morphing trajectories of the extremal ver-
tices, the system computes trajectories for all other
vertices of the merged polyhedron. Various methods
are used for interpolating between chain vertices and
interior vertices:

1.Chain vertices. For each chain vertex of a mor-
phing patch, only the two adjacent extremal ver-
tices of the chain are used. The algorithm com-
putes weighting factors based on their distances
along the chain (or arc length) from the chain ver-
tex.

2.Interior vertices. For each interior vertex of
a morphing patch, all extremal vertices lying on
the boundary of that morphing patch are used.
The algorithm computes weighting factors for
each extremal vertex based on their distances
along shortest paths toward the interior vertex.
The weighting function is similar to that of Beier
and Neely [4].

In both these cases, the weighting factors are ap-
plied to the tangent vectors at each endpoint of
a trajectory. For trajectory endpoints on polyhe-
dron A, the endpoint vectors onA are averaged.
For trajectory endpoints onB, the endpoint vec-
tors on B are averaged. This process results in in-
terpolated tangent vectors for trajectories at each
vertex, which are then used to compute the two in-
ner B́ezier control points (also shown in green in
Fig. 11). Note that this may result in morphing tra-
jectories that are not straight lines, even if the user
specifies all extremal vertex trajectories as straight
lines.
The speed at which a vertex travels along the mor-
phing trajectory is determined by sampling based on
the “frame” number in the morphing sequence. For
example, if the morph is to have 100 frames, then
at frame 30, each pointV will be at the position
BV(0.3). Beyond this, the user may want to specify
a nonlinear mapping between the frame number and
the value oft, in order to control the speed at which
morphing takes place. The algorithm also allows the
user to individually modify this mapping for individ-
ual extremal vertices, in order to make some parts of
the polyhedrons morph sooner or later than others.

This is analogous to the techniques used for 2D im-
age morphing [4].

6.3 Interpolating surface attributes

In addition to the morphing trajectories required by
the algorithm, other attributes of the input polyhe-
dra need to be interpolated to generate a good morph.
These include vertex colors, lighting coefficients,
normal vectors, etc. Interpolation of these surface
attributes occurs during the mapping and merging
steps. Separate values are computed for the attributes
of A as well as for the attributes ofB. During mor-
phing betweenA and B, the attributes are linearly
interpolated between their values corresponding to
each polyhedron.
Normals are a case that requires special attention.
They are problematic, not only because they can be
used to represent a smooth surface, but because they
can also define creases or hard edges in a model.
This case is handled by storing four normals for each
edge: one for each vertex for the face on each side
of the edge. Hence, the merged polyhedron will have
eight normals per edge (four for each source model).
Now, by simply interpolating, a crease can be mor-
phed into a smooth surface. This can be observed
in Fig. 12.

7 User interface

The user interface is one of the most important as-
pects of a morphing system. Although it is easy for
the user to conceptualize a morph between two ob-
jects, it can be rather difficult to design a system
that allows the user to express this easily. Our sys-
tem achieves this goal by allowing the user to draw
the key correspondences on the surfaces of the input
models, and to specify the paths that the correspond-
ing features will follow during the morph, taking
advantage of graphics hardware to allow real-time
interaction.
The user specifies corresponding chains of the fea-
ture nets for input modelsA andB by selecting the
chains’ endpoints. In order to enforce a bijection be-
tween the two feature nets, the system requires the
user to specify the feature net vertices in correspond-
ing pairs. The interior of a chain is computed as the
shortest path of unmarked vertices and edges be-
tween its endpoints, which are then marked so that
another chain cannot cross or overlap it. In the case
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Fig. 11. S-shaped morphing trajectories for the extremal ver-
tices of the feature nets. The highlighted (white) trajectory is
shown with its B́ezier control points, which are the fixed end-
points of the trajectory. Thegreencontrol points can be moved
by the user
Fig. 12.Morph of the igloo into the house

that a path of unmarked vertices and edges between
a chain’s endpoints is not available, the system cre-
ates new vertices and edges by splitting the necessary
face(s).
As a simple extension to creating a single pair of cor-
responding chains, we also allow the user to create
multichainsandloops. When creating a multichain,
after the user has specified the first corresponding
feature vertex pair, each additional vertex pair s/he
specifies makes a pair of chains connecting to the last
vertex pair. A loop is simply a multichain with the
property that the last pair of corresponding vertices is
connected to the first pair with an additional pair of
chains.
Once the corresponding pairs of chains have been
specified, we allow several techniques forlocal re-
finement. These include splitting a chain into two
chains at a selected vertex on one of the input mod-
els, removing a chain, and moving extremal vertices
of the feature net. Figure 3 shows the user interface
and the feature nets on the two input models.
After a corresponding pair of extremal vertices have
been specified on polyhedronA and polyhedron
B, the user can control the morphing trajectory.
The user can position the tangents of the trajec-

tory, whose endpoints are the location of the vertices
on the two input models as shown in Fig. 11. By
default, the morphing trajectory is a straight line.
After the user specifies the feature net, the rest of
the morph is calculated as explained in Sects. 5
and 6. Another additional feature of the interface
allows the user to easily adjust it by refining the
feature netlocally. As already mentioned, it is not
necessary to recalculate the merged polyhedron if
the user only edits the morphing trajectories shown
in Fig. 11.

8 Implementation and performance

We have implemented the system in C++ using the
OpenGL and Tcl/Tk libraries. It features a graphical
user interface for specifying features and trajectories
and for refining the morph.
The input polyhedra are specified in a shared vertex
representation. The adjacency graph of each poly-
hedron is stored so that each vertex has a list of
edges stored in counterclockwise order, each edge
contains the incident vertices and two facets, and
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each facet contains three vertices and three edges,
also stored in counterclockwise order. Furthermore,
the system ensures that each polyhedron has valid
topology and that it satisfies the Euler–Poincaré
formula.
When the user specifies the extremal vertices of
a chain in the feature net, the system computes the
path connecting them using Dijkstra’s shortest path
algorithm. It starts with one of the extremal vertices
as the start vertex and incrementally computes short-
est paths to other vertices of the polyhedron. It stops
when it has computed the path to the other extremal
vertex. Since the endpoints of chains are typically
close and the shortest path consists of a few edges,
the system can compute these paths fast enough for
interactive response.
Our implementation also utilizes a number of geo-
metric algorithms for triangulating planar straight-
line graphs, edge intersections, and point location.
As mentioned in Sect. 4, we have opted for simplicity
and robustness rather than efficiency or algorithms
with optimal asymptotic performance.

8.1 Performance improvement

The merging algorithm described in Sect. 5.4 com-
putes all intersections between the mapped edges
of each morphing patch. Based on the decomposi-
tion algorithm described in Sect. 5.2, a morphing
patch of a large polyhedron may consist of thou-
sands of edges. The number of intersections (and
thereby the combinatorial complexity of the merged
polyhedra) grows with the number of edges and,
in the worst case, is a quadratic function of the
number of edges. As a result, the merging and re-
construction steps can become a bottleneck in the
overall computation. To overcome this problem, we
subdivide each morphing patch into smaller sub-
patches such that each subpatch consists of at mostQ
edges. A typical value forQ in our implementation
is 100.
We subdivide the patches with a recursive divide-
and-conquer algorithm. It is quite similar to the map-
ping algorithm presented in Sect. 5.3 and starts with
computing a path between the external vertices of
a patch. The system computes a corresponding path
on the other patch, and tries to preserve the ratio of
the areas on either side of each chain. At the same
time, it maintains the bijection between the feature

nets. Hence it divides each patch into subpatches.
This procedure is applied recursively, till each sub-
patch has less thanQ edges.
The division of morphing patches into subpatches re-
duces the overall computation time, as well as the
size of the polyhedra that are obtained after the merg-
ing and reconstruction steps. Furthermore, it also
speeds up the interpolation algorithm.

8.2 Results

Our system has been applied to a number of com-
plex polyhedral models and used to create several
morphs successfully. These include simple polyhe-
dra (Fig. 10) as well as non-simple polyhedra corre-
sponding to a torus and a cup (Fig. 14). We present
the results in Table 1. It includes the complexity of
input and output models, their genus, the number of
extremal vertex pairs specified, and the number of
morphing patches. The table also reports the times
required on a SGI Onyx 2 with195 MHzR10 000by
a user to specify the features, the trajectories, and the
time to compute the merged polyhedra.

9 Analysis

In this section, we analyze our algorithm. We first
present an asymptotic bound on its running time and
then analyze the results produced by it.
Assume we have two polyhedra withm andn ver-
tices. The algorithms for checking the topology of
a polyhedra and constructing the adjacency graph
take at mostO(m+n) time. Let the number of
extremal vertex pairs specified by the user bek.
For large models,k is much smaller thanm and
n. The time to compute the feature nets is domi-
nated by the shortest-path computation algorithm. In
the worstcase, the shortest-path algorithm can take
O(km+kn+m log m+n logn) time, but in prac-
tice it is much less because the length of shortest
path is typically small. The number of morphing
patches can be at mostO(k). The computation of
feature nets and morphing patches involves use of a
depth-first search, and its overall time is bounded by
O(k(m+n)). After the subdivision algorithm, pre-
sented in Sect. 8.1, each morphing subpatch can have
up to Q edges and the number of morphing sub-
patches can beO((m+n)/Q). The complexity of
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Fig. 13. aHuman-heads morph. The male head consists of3426 triangles. The female head consists of4020 triangles. The feature
nets (red) consists of 134 extremal vertices on each of the two polyhedra. All morphing trajectories are straight lines;b The merged
polyhedron (computed in approx. 30 sec on an R10 000CPU) as it morphs between the heads
Fig. 14. aDoughnut-cup morph. The doughnut consists of8452triangles. The feature nets (red) consists of 63 extremal vertices on
each of the two polyhedra. Most morphing trajectories are straight lines, except for a few around the rim of the cup, where material
was “routed” along curved paths to avoid self-intersections;b The merged polyhedron (computed in approx. 1 min on an R10 000
CPU) as it morphs between cup and doughnut
Fig. 15. aHuman-triceratops morph. The human consists of17 528triangles. The triceratops consists of5660triangles. The feature
nets (red) consists of 185 extremal vertices on each of the two polyhedra. Most morphing trajectories are straight lines except a few
around the rather flat tail, which was made to “inflate” slightly to avoid self-intersections;b the merging polyhedron (computed in
approx. 2.5 min on an R10 000CPU) as it morphs from human to triceratops

merging and reconstructing each pair of morphing
subpatches isO(Q2). The interpolation algorithm
needs to compute the length of the shortest path from
each interior vertex of a morphing subpatch to each
extremal vertex of the morphing subpatch. We make
use of single-source shortest-path algorithms and
compute the paths for each extremal vertex on the
boundary of the morphing patch. In the worst case,
it can takeO((m+n)k log Q) time. As result, the
overall complexity of the algorithm isO(K(m+n)),
whereK =max{k log Q, Q}.

Our approach does not suffer from the ghosting prob-
lems seen in image and volume morphing [4, 31].
However, a similar scenario can occur: self-intersec-
tion. We can check for it automatically with colli-
sion detection algorithms, but this is prohibitively
expensive. Furthermore, self-intersection may be de-
sirable, and in some cases even necessary in order to
allow some part of a morphing object to reach its tar-
get position. Hence, it is currently the responsibility
of the user to “reroute” portions of a morphing poly-
hedron by controlling the morphing trajectories to
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avoid self-intersections. (For example, we prevented
the two sides of the triceratop’s flat tail in Fig. 15
from temporarily passing through each other in this
way.)
The visual quality of a morph created with our sys-
tem is quite subjective. As with conventional 2D
image morphing, it is influenced primarily by the
number of detailed feature correspondences. Beyond
that, controlling the morphing trajectory strongly
contributes to a smoothly flowing appearance dur-
ing morphing. Finally, similarly to 2D techniques,
morphs between objects that are similar in appear-
ance (for which one intuitively notices the corre-
sponding pairs of features by simple visual inspec-
tion) result in smoother transitions than morphs be-
tween vastly different objects (cf. the human heads
morph in Fig. 13 and the cup-doughnut morph
in Fig. 14).

10 Current limitations and future work

The specification of the feature net suffers from two
limitations. First, the feature net must be connected.
It would be nice to remove this restriction by au-
tomatically dividing the feature net into connected
components, then adding enough chains to connect
them so that each morphing patch is homeomor-
phic to a disk. Second, the chains connecting the
feature net vertices are currently restricted to lie on
the edges of the source models. It would be bene-
ficial to allow the user to draw on the surface in-
stead of the graph of the polyhedron. It would also be
useful to remove the restriction that the input mod-
els have to be homeomorphic – one could imagine
that the user merely specifies the correspondence,
and then the system creates a polyhedron that can
appear to have the topology of either of the input
models.

Table 1.Performance of our algorithm on four pairs of input polyhedra

Models Triangles Output Morphing User Time to compute
triangles patches specification merged polyhedron

time

House–igloo Fig. 3 82 40 214 10 ∼ 5 min < 1 s
Human–triceratops Fig. 15 5660 17 528 97 900 86 ∼ 6 h 2.5 min
Human–heads Fig. 13 3426 4020 32 520 67 ∼ 3 h 30 s
Donut–cup Fig. 14 4096 8452 61 701 50 ∼ 4 h 1 min

One of the largest limitations of the current system
is the user interface for controlling the morphing tra-
jectories. It can be very difficult to control the shape
of the intermediate models by positioning the tan-
gents of a cubic curve. We envision a vast improve-
ment that would allow the user to sculpt the inter-
mediate models and have the system automatically
calculate the morphing trajectories that include the
points for the intermediate models sculpted by the
user.
The performance of the mapping algorithm high-
lighted in Sect. 5.3 varies with the triangulation
of the morphing patch. Since it uses a greedy
heuristic, the algorithm may not be able to pre-
serve the area ratios. This can result in some no-
ticeable distortions in the morph, especially when
the mapping algorithm introduces area compres-
sion for one of the patches. Currently, the user can
work around this by adjusting the morphing tra-
jectories. There is considerable literature in Graph
Drawing on planar embedding of planar graphs.
We plan to apply some of those techniques to our
problem.
Texture coordinates can be interpolated with other
surface attributes of the input polyhedra. How-
ever, this will yield correct results only if both
the polyhedra use a common texture map. In such
a case, the mapped (unique) texture will seem to
flow smoothly across the surface of the polyhedron
during morphing. Our algorithm currently handles
this case. In many cases, each of the input poly-
hedra may have different texture maps. One pos-
sible solution is to use a weighted blend between
the textures ofA and B, controlled by the morph-
ing interpolation factort. This would result in an
effect similar to an image fade-over between the
textures of A and B. Our algorithm could easily
be extended to handle this situation. However, we
believe that a more powerful effect could be at-
tained by allowing the user to perform a controlled
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conventional 2D morph in texture space together
with the 3D polyhedral morph specified by our
algorithm.
Morphing between animated models. In traditional
2D morphing, an image sequence of a moving ac-
tor can be morphed into another sequence showing
a different moving actor. This is typically accom-
plished by (tediously) respecifying correspondences
for each pair (or at least for many pairs) of frames
within the image sequences [4]. An extension of our
approach could handle this problem in the follow-
ing way: once correspondences have been specified
for a computer-animated character, they can remain
attached to the character’s topology and carry over
throughout the animation sequence. In other words,
the correspondence features and the character are an-
imated together. As for the morphing trajectories,
they would have to be specified, at least for the first
and last frames of the animation, and would have to
be interpolated for all other frames.

11 Summary

We have presented a new approach for establishing
a correspondence for morphing between two home-
omorphic polyhedra, which includes a simple, in-
tuitive user interface. It has been successfully ap-
plied to a number of polyhedral models, including
ones that are not genus-zero. We believe it is versa-
tile enough to produce visually pleasing 3D morphs,
once it is coupled with an effective method for speci-
fying the interpolation between the two models.
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