
1

Modeling Real Objects Using Video See-through Augmented Reality

Joohi Lee, Gentaro Hirota, Andrei State
University of North Carolina at Chapel Hill
{lee|hirota|andrei}@cs.unc.edu

Abstract

This paper presents a method for creating 3D models
of real objects using video see-through augmented
reality. We use a tracked probe to sample the objects’
geometries and video images acquired from the head-
mounted cameras to capture textures. Our system
provides visual feedback by overlaying the model onto
the real object in the user’s field of view. This visual
feedback makes the modeling process interactive and
intuitive.

1 Introduction

Modeling is one of the most time-consuming tasks in
computer graphics applications. Models are sometimes
created from scratch, but in many cases, the objects to be
modeled already exist in the real world. For example, in
CAD applications, designers often want to reverse
engineer real products. When creating computer
animation, it is quite common for artists to model
characters using clay. The clay models are then digitized
as computer models so that they can be animated. Thus,
creating digital copies of real objects is an important
technology, often referred to as 3D digitizing.

1.1 Related Work

Most (but not all) 3D digitizing techniques fall into
three major categories:
1. 3D Reconstruction from 2D Images. These

methods exploit computer vision techniques such as
structure from motion, stereo triangulation, and
structure from shading [21]. They try to mimic
human vision by reconstructing 3D information from
2D images. Typical strategies such as structure from
motion recover 3D geometry of objects (and
sometimes camera motion as well) from images taken
from different viewpoints. Detecting and matching
common features among multiple images is crucial
for such methods [14]. (Some simple commercial
products require manual assistance [13][15].) There
is no specific requirement for the light sources that
illuminate the objects, but specularity and

transparency of the object surfaces pose significant
problems for feature detection. Highly concave
objects are also difficult to handle. For example, if an
object has a deep hole, surface points inside the hole
can only be seen from a very narrow angle (i.e. not
from all camera viewpoints), making it difficult to
recover accurate coordinates for those points.

2. Structured light projection. Instead of using natural
light sources, one can project light patterns onto the
real world objects [2][4][6][8]. In camera images,
such patterns can be easier to detect than natural
features. In most cases, the position of projectors and
cameras are known, and points on object surfaces can
be determined by triangulation. Widely used
commercial systems [11] utilize laser stripes. In
addition to using the camera for acquiring geometric
patterns, a color CCD camera is often used to capture
RGB colors on the objects’ surfaces. The major
advantage of these techniques is the high acquisition
speed; some systems can sample nearly one million
points per second. The acquired data is then passed
on to a surface reconstruction algorithm.
Since this method relies on the reflection of light, it
cannot easily digitize specular or transparent objects.
Furthermore, the concavity is even more problematic
for this class of methods. A sample point can be
visible (unoccluded) not only from the cameras but
also from the light source (projectors).

3. Point sampling with tracked probes. Points are
sampled by physically touching the surface of the
object with a probe whose position is measured by a
3D tracking system [16]. Mechanical, electro-
magnetic, ultrasonic, optical and inertial trackers can
be used to measure the position of the probe.

Due to the large number of points acquired, (1) and (2)
typically use a reconstruction algorithm [5] to build
surface models. In the third method, points are sampled
manually, hence typically fewer points than in the other
methods are collected. Thus, surface models may be
constructed by manually connecting the sample points.

1.2 Motivation and Contribution

Methods (1) and (2) above work well for objects with
relatively simple geometry and diffuse reflective and

opaque surfaces. (2) is particularly efficient and has been
used successfully in many areas. But as mentioned,
neither can handle highly specular or transparent
surfaces. In addition, they fail to sample points on highly
concave areas.

Method (3) is immune to specularity and transparency
problems since it does not rely on image sensors.
Furthermore, it is suitable for sampling concave parts
since it is easy to stick a thin probe into a concave area
to sample a point.

However, digitizing with a tracked probe is often
challenging in terms of hand-eye coordination. When
collecting sample points, the user carefully touches a real
object, looking at the probe’s contact point on the object
surface. On the other hand, one would like to see
immediate visual feedback about the sampled point. But
such information is usually available only on a computer
screen, which one cannot see without looking away from
the real object. After sampling many points, the user sees
clouds of points on the computer screen, and it is hard to
determine where on the real object each sampled point
lies. Thus, even though the object exists in the user’s real
workspace, the user has to deal with extraneous virtual
spaces in which the digitized models reside.

To alleviate the hand-eye coordination problem, one
could set up a video camera at a carefully calibrated
position and overlay the digitized models onto the
captured video images of the real objects. The user will
then see the correspondence between real and digitized
models. However, if the user constructs a model by
looking at the computer screen while manipulating the
tracked probe and the real object, the user still has to
mentally fuse two workspaces that differ in translation,
rotation and scaling; thus hand-eye coordination
continues to be impaired.

We propose an augmented reality (AR) based
modeling system that removes the mental separation
between real and virtual workspaces. The model being
created is overlaid directly onto the user’s view of the
real object. Therefore the user never has to leave the
(one and only) real workspace while modeling an object.

We use a head-mounted display (HMD) with video
see-through AR technology, which enables virtual
objects and real objects to coexist in the real workspace.
Our user interface allows the user to modify (scale,
deform, etc.) digital copies of real objects. One can
assess the appearance of modified objects in the actual
surroundings. The user can also replicate parts of the
model to efficiently model objects whose shapes are
bilaterally, rotationally or cyclically symmetric.

In conventional 3D scanners, the object to be digitized
is usually rigidly mounted on a support. Our system
tracks the rigid body motion of the real object, so the
user can freely move the object undergoing modeling.

In video-see-through AR systems, video images are
readily available. Our system extracts textures of real
objects from video images. Using the known (tracked)

poses of the head-mounted cameras and the object being
modeled, the system automatically evaluates the image
quality of the area of the video image available to texture
each polygon of the model, and acquires only high-
quality textures.

2 System Overview

Our current AR modeling system (an earlier version
was described in [19]) integrates off-the-shelf
components: a head mounted display, miniature video
cameras, an optical tracking system, a 3D probe, foot
pedals, a high-end graphics workstation, and several rigs
equipped with infrared (IR) LEDs for tracking.

The following is a description of the hardware
configuration of our system (Figure 1).

Figure 1. System Configuration.

Video see-through HMD: We mounted two miniature
Toshiba IK-SM43H cameras on a stereoscopic Sony
Glasstron LDI-D100B head-mounted display with
SVGA (800×600) resolution. The two cameras are used
to provide a stereoscopic view of the real world. Three
IR LEDs are also mounted on it for the purpose of
optical tracking. [10][18]
Probe: The probe has two IR LEDs to track the position
of the probe tip.
Object trackers: Three IR LEDs are rigidly affixed to
each of the objects to be modeled.
Optical sensors: All IR LEDs are tracked by an Image
Guided Technologies Flash Point 5000 3D Optical
Localizer. The sensor consists of three 1D CCD arrays.
Pedals: We use two foot pedal switches to assist with
interactive operations.
Light: Various ambient light sources.
Graphics workstation: We use an SGI Onyx2 Reality
Monster Graphics Supercomputer with multiple DIVO
boards for real-time capture of HMD camera video
streams. Our system makes use of one multi-channel
graphics pipe and two R12000 CPUs.

3 System Operation

Our modeling process consists of three steps: sampling
points, constructing a triangle mesh, and capturing
textures. All of these are performed in an AR
environment by a user wearing a HMD (Figure 2).

We first describe how points are sampled and a
triangle mesh is generated. Then we discuss the use of
video cameras on the HMD to obtain the textures of
triangles. Generally, the user follows these three steps in
this order. However, one can move back and forth
between the steps. This allows the user to construct a
complete model by incrementally adding small portions
consisting of fully textured and z-buffered triangles.

Figure 2. User with AR HMD, modeling
teapot with handheld probe. Probe,
teapot and HMD are equipped with IR
LEDs for opto-electronic tracking.

3.1 Point Sampling

The first step of modeling in our system is to sample
the object geometry.

This step is quite simple. The user picks points on the
object by physically touching the surface of the real
object with the (optically) tracked probe and depressing
a pedal (Figure 3). When a point is sampled, the point in
probe coordinates is transformed into the object’s
coordinate system. The object is also continually tracked
by the optical tracker. As a result, the newly acquired
point is “attached” to the object’s surface.

Since we render the points on top of the object in the
video image, the user sees both the real object and the
points through the HMD. Overlaying points on the
object helps the user to figure out which points have
been added, to determine which part of the object needs
more sampling, and finally to sample the exact point
desired. Some confusion may occur if two points happen
to be rendered close to each other on the screen while
one point is on the front of the object and the other is on

the back of the object. (At this stage in the modeling
process we only have a collection of points and no
polygons that could be used to occlude the back points
via z buffering.) However, since points are displayed in
stereo like everything else, the user can still see which
one is in front. However, it is confusing if the points on
the back face are not occluded properly by the object.

Figure 3. Sampling object geometry with
the probe. The arrow indicates one of
the acquired points.

As mentioned, our system allows the user to build a
model incrementally, which can reduce the possible
confusion. Instead of defining triangles after all points of
the object have been collected, the user can work on a
small area at one time. By creating triangles for part of
an object before moving on to other parts, the system
acquires partial information about the object geometry.
Hence, when the system renders triangles into the z-
buffer, points behind the triangles can be occluded. As
long as the triangle mesh is incomplete, not all points on
the back of the object can be occluded; nevertheless this
technique provides a better sense of depth to the user and
is therefore helpful when modeling complex objects.

Figure 4. Modeling the concave part
(handle) of a teapot.

Figure 4 demonstrates that our system can handle
concave objects without difficulty. Because both the real

object and the probe are tracked, the user can rotate the
object and easily reach points with the probe. However,
the user must be aware of the limitation of the optical
tracking system, and not turn the object’s or the probe’s
LEDs away from the optical sensors. One also needs to
be cautious not to occlude the LEDs from optical sensors
with body parts such as hands or fingers. Although we
cannot eliminate this problem (typical for all opto-
electronic trackers), we alleviate it using visual/audio
feedback. The system does not accept a sample point if
either the object or the probe loses tracking, and warns
the user of the tracking problem, thus preventing him/her
from acquiring erroneous points.

3.2 Triangle Formation

After collecting points, the user is ready to create
triangles by connecting the sampled points. The point
closest to the probe tip is added to a selection set when
the user depresses the pedal. Once three points are
selected, the system automatically adds a triangle to the
model. The order of the three points is changed
automatically to force the triangle to be
counterclockwise from the user’s point of view. Keeping
every triangle in counterclockwise order is required to
determine visible triangles for texture acquisition (see
below) and for backface culling when rendering the
finished model.

The triangle mesh is overlaid on the real object in the
HMD view in the same fashion as the sampled points are
drawn (Figure 5). This interactive feedback gives a good
idea about how the model is being formed.

It is also possible to apply an automatic reconstruction
algorithm [5] rather than manually constructing the
triangle mesh. The user can invoke such an algorithm
off-line and then continue on to texture acquisition with
the automatically created mesh.

Figure 5. Wire frame model of a 60-
degree segment of the lamp overlaid on
the video image of the lamp.

3.3 Texture Acquisition

Taking advantage of the video-see-through HMD, we
use video images to capture the textures of the model’s
triangles. Accurate registration between real objects and
models in the AR view (which requires precise tracking
of the real object as well as of the user’s head) is crucial
during this process.

To acquire textures for one or more visible triangles, a
video image must be selected from the stream of
incoming video images. In other words, a decision must
be made as to when to acquire a triangle’s texture. The
user can either specify the image (or rather, moment in
time) manually or let the system choose one using its
own heuristics. Usually it is impossible for all triangles
to receive their textures from a single image. Therefore,
the user typically changes viewpoints and angles (i.e.
typically rotates the object in front of the HMD’s “eyes”)
until all textures of the model are acquired.

The triangle textures are also rendered transparently
on top of the model in the HMD view. This allows the
user to determine if each triangle already has a texture
and assess the quality of each texture. The user can
control the degree of transparency to see the real object
through the textured model. Aside from the model
superimposed onto the object, a copy of the model (with
opaque textures) is also rendered. This copy is rendered
next to the real object. The real object and its virtual
copy move and rotate together. The copy is useful for
examining how much texture data has already been
acquired, and for comparing the overall appearance of
the real object and the model being created (Figure 6).

Figure 6. Model with texture. The
textured model is overlaid onto the real
lamp on the left. A copy of the model is
on the right.

3.3.1 Texture Acceptance Criteria

For a given video image, the system computes image
coordinates of triangles that are possibly visible in that
image. The poses of HMD cameras and triangles

influence image coordinates of triangle vertices as well
as triangle visibility. As mentioned earlier, all triangle
vertices are ordered counterclockwise, which allows the
system to detect back-facing (invisible) triangles.

Even though a triangle is visible in the image, it is not
always a good idea to capture its texture. If the normal
vector of the triangle is almost orthogonal to the viewing
direction, the texture is not captured.

As mentioned, the user can select automatic or manual
texture capture. In the automatic capture mode, the
system calculates the visibility and viewing angle of each
triangle at every frame, and captures and assigns textures
to selected triangles. This mode is computationally
expensive. In manual mode, the system performs the
computations only when the pedal is depressed. The
smaller computational load is better for interactivity.

It is also possible to select a group of triangles (an
active group) and restrict the system to capture textures
for those triangles only. Manual mode and active group
selection give the user better control when dealing with
occlusion and inconsistent lighting conditions. These
issues are discussed below.

3.3.2 Occlusion

There are two kinds of occlusions. The first kind is
caused by the object to be modeled itself. If the object is
concave, parts of the object may occlude other parts as
seen through the HMD cameras. No textures should be
acquired for (fully or partially) occluded triangles.
Occlusion could be automatically detected by comparing
depth values of triangles in the z-buffer. However, if the
user does not first complete triangle definition before
going on to texture capture, this technique does not
work. We therefore adopted a heuristic method that
relies on human intervention. As described in the
previous section, the user can select a group of triangles
and prevent others from taking any texture. It is easier to
avoid this kind of occlusion when the number of
triangles being modeled is smaller. By selecting only a
few triangles for acquisition, concave objects can be
easily managed.

The other type of the occlusion is caused by physical
objects whose geometry is unknown. The user’s hand is
a typical example. It is inevitable to hold or touch an
object while capturing the texture, because one needs to
acquire several different video images to get all textures,
in particular for highly concave objects. The user should
therefore pay attention to the position of the hands.
Other researchers have investigated this issue [7][9][20].

3.3.3 Lighting Conditions and Inconsistent
Color

Adjacent triangles do not necessarily receive their
textures from the same video image. For example, only a

specific set of triangles may be included in the active
group, or the textures for the one set of triangles are
accepted by the system while adjacent triangles receive
their textures at different timeswhen the acceptance
criteria described above are met. In such cases, adjacent
triangles will receive textures from two different video
images. If the lighting conditions are different for the
two images, the border of the two triangles will be
clearly visible as shown in Figure 7.

The lighting conditions include position and
brightness of the light and the orientation of the triangle.
We use as many light sources as possible to make the
lighting uniform within the working area. It also helps if
the user uses consistent lighting for all triangles when
selecting the video images.

Specular objects require more attention due to the
view-dependent effects. In our system, texture is
supposed to provide view-independent colors only.
Hence the user should choose a viewing direction that
minimizes highlights. If a triangle uses an image with a
highlight, and an adjacent triangle uses an image without
a highlight from a different viewing direction, the
discontinuity of intensity also reveals the border between
the two triangles; such cases should be avoided.

Figure 7. The effect of different lighting
conditions during texture acquisition.
The lower right triangle in the front is
darker than most other triangles.

3.3.4 Interlacing

The video camera captures odd and even fields at
different points in time. The digital video capture
however uses non-interlaced frames. Therefore, when
the user or the object move, the digitally captured video
image exhibits staggered artifacts as shown in Figure 8.
In our system, it is inevitable to move the object or the
camera to acquire textures for all triangles in the model.
It is also hard for the user to keep object and head
absolutely still when capturing textures. Hence, using
interlaced images degrades the quality of the texture.

Figure 8. Two staggered fields in an
interlaced video image (enlargement).

This problem is handled by using only one video field
in the texture acquisition phase. The half resolution
image is doubled by duplicating all scan lines. To reduce
the latency, we use the latest field available, which is
either even or odd. We shift the image half a scan line up
or down depending on which field is used. This shifting
operation compensates for vertical translation due to the
scan line duplication, and reduces the slight texture
discontinuity at the border between any two triangles
which receive their textures from different fields.

3.3.5 Storing textures

There are numerous techniques to store textures of
arbitrarily shaped triangles [3][17]. Our system uses a
very simple method: We find the bounding boxes of the
triangles in the image and copy the pixels within the
bounding boxes into a large texture array. The texture
array is an aggregate of texture tiles with the same
dimension (Figure 9). When copying a texture from the
image, we make the bounding boxes one pixel larger in
every direction so that during rendering, bilinear texture
interpolation does not sample texels outside a texture.

3.4 Interactive User Interface

Many 3D modeling applications have complicated
interfaces because they deal with 3D models in 2D
displays. Using the tracked AR video see-through HMD,
we overlay the model onto the real object. This allows
the user to manipulate the model in 3D together with the
real object to be modeled, thus making the modeling
process highly intuitive.

Using direct 3D manipulation via the tracked probe,
the user can select, copy, translate, and rotate a point or
a group of points. The user can also select a group of
triangles and move, rotate or mirror them (Figures 10
and 11). When copying a triangle to a new position, our
system automatically merges two vertices if they are in
close proximity to each other. If copied triangles already

Figure 9. Stored texture array. These are
the textures used to render the model
interactively. Each rectangular texture
corresponds to the bounding box of a
triangle.

Figure 10. Selecting a number of
triangles (darker color) with the probe.

Figure 11. Copied triangles (darker
color) are being rotated with the probe.
Some of copies overlap with original
triangles (shaded strip in the middle)

have textures, the texture coordinates are also copied to
the new triangles so that they use the same texture as the
original ones. The user can also reassign the textures of
copied triangles using the active group method described
above. Finally, the user can also deform the object by
moving individual vertices (Figure 12).

Figure 12. Deforming the model by
translating selected vertices.

Figure 13. Selecting a menu item with
the probe. (The grid on the left is used
to calibrate our system.)

Figure 13 shows an interactive menu. The user can
choose one of the modeling modessampling points,
constructing a triangle mesh, acquiring textures and
deforming or copying the modelby pointing at the
menu with the probe and depressing the pedal. The menu
is placed on the desktop working surface (table), which
provides haptic feedback. It also avoids additional
fatigue caused by holding the probe still in the air in
menu selections. The user simply touches the table with
the probe tip when picking an item from the menu.

4 Results and Discussion

Figure 14 shows a complete model of a Tiffany lamp.
The lamp is illuminated by its own light bulb. Because
the lamp is rotationally symmetric, we made a polygonal
model of 1/6 of the lamp and acquired texture for the

part. A rotation axis was defined as follows; First, we
selected three points on the lamp defining a triangle. The
rotation axis is perpendicular to this plane and passes
through the center of the triangle’s circumscribing circle.
After defining the rotation axis, we copied and pasted
the 1/6 part five times, each time with a 360/6 degrees
rotation around the axis, to make a complete model.
Since the lamp is not exactly symmetric, the texture
shows a subtle seam between original and copied
triangles. (There are no cracks however.)

The model contains 96 vertices and 156 triangles. It
took about 5 minutes to create it.

Figure 14. Complete lamp model

Figure 15 shows a model of a shiny teapot. The handle
and spout demonstrate our system’s ability to deal with
concave objects. Because these parts can be easily
occluded or occlude other parts of the model, we worked
with small parts of the object and added them to the
model one at a time. Taking advantage of the symmetry
of the teapot, only one side of the model was modeled
manually and then mirrored to the other. The color of
this teapot is sensitive to lighting conditions because it is
made of shiny china. We tried to keep the lighting
conditions similar for every triangle, with some (limited)
success. Figure 15 shows some visible seams between
triangle textures.

The teapot model consists of 111 vertices and 206
triangles. It took 30 minutes to create this model
including texture, longer than for the lamp because the
teapot requires special attention for the handle, the spout
and variations in lighting conditions. Nevertheless, these
results show that a trained user can create good photo-
textured models of real objects in a short amount of time.

The frame rate was 20 frames per second during point
sampling and triangle construction. During texture
capture, the frame rate slows down significantly,
depending on the number of triangles, especially in the
automatic mode (down to 2 frames per second). In
manual mode, there is only a momentary slowdown
(glitch) when the capture is activated.

Figure 15. Complete teapot model.

5 Conclusions

We have presented a video-see-through augmented
reality system for modeling real objects. Our system
allows the designer to work in the same space as the real
object, providing an intuitive and user-friendly interface.

By using a 3D probe, the user samples points of a real
object and constructs triangles using these points.
Textures are then extracted from video images in an
interactive manner. We also provide interactive methods
to manipulate the model, to create new models or to
deform existing models.

 Methods to handle issues such as occlusion,
inconsistent lighting and interlaced video capturing are
also discussed.

Acknowledgments

We thank Henry Fuchs, Kurtis Keller, David G.
Harrison, Karl Hillesland and Jeremy Ackerman.
Funding was provided by NIH grant P01 CA47982 and
by NSF Cooperative Agreement no. ASC-8920219:
“Science and Technology Center for Computer Graphics
and Scientific Visualization.”

References

[1] Ronald T. Azuma, “A Survey of Augmented
Reality.” Presence: Teleoperators and Virtual
Environments 6, 4 (August 1997), 355 - 385.

[2] P. Besl, “Advances in Machine Vision, Chapter 1Active
optical range imaging sensors.” Springer-Verlag, 1989, 1-63.

[3] N. Carr, J. Hart, J. Maillot, “The Solid Map: Methods for
Generating a 2D Texture Map for Solid Texturing.” ACM
SIGGRAPH 2000 course notesApproaches for Procedural
Shading on Graphics Hardware.

 [4] G. Hausler, W. Heckel, “Light sectioning with large depth
and high resolution.” Applied Optics, Dec 1988, 5156-5159.

[5] H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, W.
Stuetzle, “Surface reconstruction from unorganized points.”
Proceedings of ACM SIGGRAPH `92, July 1992, 71-78.

[6] B. K. P. Horn, M. Brooks, “Shape from Shading.” MIT
Press, Cambridge, MA, 1989.

[7] M. Inami, N. Kawakami, D. Sekiguchi, Y. Yanagida,
“Video-Haptic Display Using Head-Mounted Projector.”
Proceedings of Virtual Reality 2000 Conference, March 2000,
233-240.

[8] R. A. Jarvis, “A perspective on range-finding techniques
for computer vision.” IEEE Trans. Pattern Analysis Mach.
Intell, March 1983. 122-139.

[9] M. Kanbara, T. Okuma, H. Takemura, N. Yokoya, “A
Stereoscopic Video See-through Augmented Reality System
Based on Real-time Vision-Based Registration.” Proceedings
of Virtual Reality 2000 Conference, March 2000, 255-262.

[10] K. Keller. http://www.cs.unc.edu/~keller/lapro/Augment
ed_Reality_HMDs/gallery.html, University of North Carolina
at Chapel Hill

[11] M. Levoy, K. Pulli, B. Curless, S. Rusinkiewicz, D.
koller, L. Pereira, M. Ginzton, S. Anderson , J. Davis, J.
Ginsberg, J. Shade, D. Fulk, “The Digital Michelangelo
Project: 3D Scanning of Large Statues.” Proceedings of ACM
SIGGRAPH 2000. (July 2000), 131-144.

[12] D. K. McAllister, L. Nyland, V. Popescu, A. Lastra, C.
McCue, “Real-Time Rendering of Real World Environments.”
Proceedings of Eurographics Workshop on Rendering, 1999.

[13] MetaCreations CANOMA, http://www.metacreations.com
/products/, MetaCreations Corp.

[14] J. Oliensis, M. Werman, “Structure from Motion using
Point, Lines, and Intensities.” CVPR 2000, 599-606 and
J.Oliensis, “Direct Multi-Frame Structure from Motion for
Hand-Held Cameras.” ICPR 2000.

[15] PhotoModeler, http://www.photomodeler.com/, Eos
Systems Inc.

[16] Kevin H. Martin, “The Sound and the Fury” Cinefex 74,
Valley Printers, INC. July 1998, 82-106.

[17] D. Stalling, “LIC on Surfaces”, ACM SIGGRAPH97
course notesTexture Synthesis with Line Integral
Convolution, 51-62.

[18] A. State. http://www.cs.unc.edu/~us/web/headmounts.htm,
University of North Carolina at Chapel Hill

[19] A. State, G. Hirota, D. T. Chen, W. F. Garrett, M.
A. Livingston. “Superior Augmented Reality
Registration by Integrating Landmark Tracking and
Magnetic Tracking.” Proceedings of ACM SIGGRAPH
96, (August 1996). 429-438
[20] N. Yokoya, H. Takemura, T. Okuma, M. Kanbara,
“Stereo Vision Based Video See-through Mixed Reality.”
Mixed Reality – Merging Real and Virtual Worlds, Ohmasha,
Ltd. & Springer-Verlag, 131-145.

[21] Z. Zhang, “Modeling geometric structure and illumination
variation of a scene from real images.” Proceedings of 6th Int’l
Conference On Computer Vision, 1998, 1041-1046

