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This work focuses on the simulation of me-
chanical contact between nonlinearly elastic
objects, such as the components of the hu-
man body. In traditional methods, contact
forces are often defined as discontinuous
functions of deformations, which leads to
poor convergence characteristics and high-
frequency noises. We introduce a novel
penalty method for finite-element simula-
tion based on the concept of material depth,
which is the distance between a particle in-
side an object and the object’s boundary.
By linearly interpolating precomputed mate-
rial depths at node points, contact forces can
be analytically integrated over contact sur-
faces without raising the computational cost.
The continuity achieved by this formulation
reduces oscillation and artificial accelera-
tion, resulting in a more reliable simulation
algorithm.
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1.1 The problem

In animal bodies, adjacent components, such as skin,
muscles or bones, are not necessarily attached to
each other. As body posture changes, organs push
and slide against each other, changing the shape of
the body. As a joint bends, the skin surface around it
may stretch or fold, creating complicated geometry.
Such sliding contact creates challenging problems.
The regions of the boundary surface that are in
contact are called contact surfaces. The traction
forces acting upon contact surfaces are called con-
tact forces. The contact forces deform the objects.
As a result of the deformation, new parts of bound-
ary surfaces may come into contact, or some parts
of boundaries previously in contact may be sepa-
rated. At the beginning of the simulation, the contact
surfaces (or contact forces) are unknown. They are
usually determined by the iterative recomputation of
push-back forces (Fig. 1).
In the final stable configuration, the contact forces
are the same as the push-back forces. In conventional
methods, the direction of a push-back force, or the
normal, is chosen as the direction from a penetrat-
ing surface point to the closest projection. Finding
a closest projection is quite an expensive operation.
Furthermore, in the presence of self-penetration and
multiple penetrations (three or more bodies occupy
the same position), or if a more suitable projection is
found farther than the closest one, it is no longer easy
to define mathematically the push-back force based
on projections alone.
To use the finite-element methods (FEM), the con-
tact forces must be applied to each nodal point of
the finite-element mesh. Because of the difficulties in
finding the projection, conventional methods evalu-
ate contact forces only at a limited number of points
(typically only at nodal points), which leads to a dis-
continuity problem. This discontinuity does not dis-
appear even if the surface normal is smooth, be-
cause the closest projection may jump from one
place to another as the object deforms. The discon-
tinuity causes oscillation problems (a phenomenon
known as contact chatter [12, 13]) and unnatural,
abrupt accelerations in simulations (Fig. 2).

1.2 Proposed solution

We propose an algorithm that significantly reduces
the discontinuity of contact forces. The novelty of
our algorithm is summarized in two points:
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Fig. 1. Typical steps for solving the contact problem.
First, the penetrating regions are found. Then, push-back
forces are applied to reduce the amount of penetration.
These steps are repeated until a stable configuration is
achieved
Fig. 2. An example of contact chatter. A stick (right) in-
trudes into an object (left) at a concave location. There is
a discontinuity in the push-back direction between upper
(A) and lower (B) regions. The contact force is sampled
at a nodal point (squares). If the stick swings to the up-
per region, the sampled force pushes the stick downward.
If the stick swings to the lower region, the sampled force
pushes the stick upward. As a result, the stick oscillates
between the two states

• Approximate normals derived from material
depth. To avoid the complication of projections,
we derive contact force directions (normals)
from material depth, the distance from the object
boundary in the material (reference) configura-
tion (see Fig. 13). In the material configuration,
objects are not deformed yet, so there is no self-
penetration. Therefore, the material depth can
be determined without ambiguity. Furthermore,
the material depth is evaluated only at the nodal
points of FEM meshes, and then it is linearly in-
terpolated throughout the object.

• Analytical area integration of contact forces. The
simplicity of the material-depth computation en-
ables the analytical integration of contact forces
over intersecting areas.

The definition of material depth is very simple: it
does not have the ambiguity problems that projection
has. Area integration provides contact-force continu-
ity, which improves the convergence characteristics
of the finite-element analysis.
The algorithm has been applied to anatomical mod-
els. The large movement of a musculoskeletal system
complete with bones, muscles, and surrounding con-
nective tissues has rarely been simulated. We demon-
strate the robustness of our method with a simulation
of a large flexion of a human knee.

2 Previous work

This section analyzes various algorithms for contact
problems. Since the complexity of a contact prob-
lem depends on the type of contact, it is important
to examine what kind of problems each algorithm
can handle. There are two distinct classes of prob-
lems: the two-body contact problem and the self-
contact problem. The two-body contact problem oc-
curs when an object (body) only comes into contact
with other objects; that is, the object never comes
into contact with itself. The self-contact problem,
however, covers all contact scenarios, including two-
body contact and contact between two parts of the
same object.

2.1 Master-slave approach
and contact detection

The concept of slave nodes and master surfaces (or
master segments in 2D cases) is used in almost all
algorithms. Consider two colliding objects. Nodal
points on the surface mesh of one object are des-
ignated as slave nodes, whereas master surfaces are
selected from the surface mesh of the second object.
If a slave node penetrates a master surface, a con-
tact force is applied to push the node back toward the
outside of the master surface. Thus the contact force
points toward the master surface’s normal direction.
To solve two-body contact problems, it is not diffi-
cult to assign the master and slave roles to objects’
boundary surfaces. Benson and Hallquist propose
the single-surface algorithm, which is a master-slave
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method that can also handle self-contact cases [6].
This algorithm dynamically assigns the master-slave
roles based on the result of a neighborhood search.
Benson and Hallquist also addressed the asymme-
try problem of the master-slave strategy by perform-
ing two passes at every time step: the first pass is
followed by the second pass with reversed master-
slave assignments. This algorithm is used in well-
known finite-element software systems (DYNA [17]
and NIKE, developed at Lawrence Livermore Na-
tional Laboratory).
The most difficult task in master-slave algorithms
is finding the master-slave pairs. This task is of-
ten called contact detection. A slave node is almost
never located exactly on the master surface. It is
impossible to identify master-slave pairs unambigu-
ously. (This problem is discussed in detail in Sect. 4.)
Therefore, the pairing has to rely on some estima-
tion method. The single-surface algorithm uses the
nearest-node strategy: for each slave node, the clos-
est node is found and the surface element that con-
tains the closest node is considered to be the master
surface. This strategy often fails when complex self-
contact occurs. The algorithm tries to detect adverse
situations by examining surface normals, but it can-
not handle all geometrically complex cases.
The splitting-pinball method is a unique algorithm
proposed by Belytschko and Neal [4, 5]. This method
uses repulsive forces between hierarchical bound-
ing spheres around or near individual surface el-
ements. The contact detection is simplified to an
interference check between the spheres. Therefore,
this method does not suffer from the problem of
contact-detection ambiguity found in master-slave
approaches. However, the algorithm’s applicability
to complex contact is not clear. The fine details of
a surface, such as folding skin, would require that the
bounding spheres be repeatedly subdivided, result-
ing in high computational cost.
Heinstein et al. proposed a more sophisticated con-
tact-detection method that approximates trajectories
of slave nodes and master surfaces by linearly in-
terpolating two successive time steps and then com-
putes the exact time of collision [12, 13]. They use
heuristics based on the history of master-slave pair-
ings in previous steps to alleviate problems in com-
plex self-contact cases. Their heuristics also reduce
the normal-discontinuity and contact-chatter prob-
lems. This algorithm is used at Sandia National Lab-
oratories as a part of a dynamic code (PRONTO) and
a quasistatic code (SANTOS). The parallelized ver-

sion of PRONTO was used to simulate very large
scale impact problems [9].

2.2 Contact-force discontinuity
and surface smoothness

In master-slave methods, except for rare exceptions,
the normal of a master surface is used as the direc-
tion of the contact force applied to a slave node. The
boundary surfaces are usually triangulated, and the
normal is not continuous across the border of trian-
gles. The contact force, seen as a function of nodal
point positions, is not continuous. In static analysis,
this discontinuity sometimes means that the equilib-
rium state cannot be achieved. In dynamic analy-
sis, the discontinuity may introduce high-frequency
noise into the system. A typical problem is the con-
tact chatter already mentioned.
Padmanabhan and Laursen used a Hermite cubic
curve – their method is for 2D problems – for
smoothing [23]. Puso and Laursen use Gregory
patches for boundary-surface representation, in or-
der to smooth out the normals and thus the contact
forces [25]. However, the method seems to be limited
to two-body contact problems. Also, surface smooth-
ing has several problems. First of all, there are nu-
merical concerns in maintaining surface continuity.
If continuity is maintained as a set of constraints,
they introduce an artificial stiffness to the surfaces
and increase the discretization error. (In other words,
the surface smoothing decreases the realism of the
simulation, which might sound counterintuitive for
graphics researchers.) If automatically continuous
surfaces (such as NURBS) are used, the sparsity
of the stiffness matrices is compromised, raising
computational cost. Secondly, “smooth” surfaces,
including Gregory patches and NURBS, do not guar-
antee smoothness. If buckling occurs in the simu-
lation, normal discontinuity (in the form of cusps)
may also emerge. Finally, in many applications, the
smoothness of surfaces is not desirable. Surfaces of
many objects such as (wrinkled) skin and shock-
absorbing bellows in automobiles are not supposed
to be smooth.
Smooth-surface normals do not always mean contact-
force continuity. A small deformation may change
the master-slave pairing and cause the contact force
to switch from one direction to the other. The al-
gorithms mentioned above (except for the pinball
method) calculate contact forces at slave nodes only.
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Because of their point-sampling nature, the contact
force applied to a slave node becomes discontinu-
ous again. It is possible to resolve the problems of
point sampling by smoothing out contact force dis-
continuities using intermediate continuous contact
surface elements. Papadopoulos and Taylor propose
a method that projects contacting-surface elements
to an intermediate plane and defines contact ele-
ments as intersections of projected elements [24].
However, there is no mention of dynamically gen-
erating intermediate planes for high-curvature or
self-contacting surfaces. So the idea of intermediate
contact elements seems to be applicable to two-body
contact between relatively smooth surfaces only.

2.3 Issues in the strict prevention
of penetration

In the above discussion, it is assumed that the slave
node is often found penetrating other objects. One
might wonder why those algorithms do not simply
prevent such incidents. It is worth commenting on
the possibility of preventing penetration completely.
In Heinstein’s method [12, 13], even if the colli-
sion times are computed, some penetrations (at nodal
points) are tolerated for several time steps before
they are eliminated. To completely prevent penetra-
tions, the exact birth and death times of impenetra-
bility constraints for the master-slave pairs must be
computed at every simulation step. Such computa-
tion is so expensive that there does not seem to be
any algorithm that implements this strategy. Enforc-
ing zero penetration seems practically impossible.
Ideally, if two objects are in contact, they share a sin-
gle contact surface. However, because it is virtually
impossible for two independently discretized sur-
faces to have common surface geometry, even if the
penetration is completely eliminated, gaps (which
are equally inaccurate) emerge. A strict impenetra-
bility constraint does not make sense after the exact
shape of boundary is compromised by discretization.

2.4 Techniques used in entertainment
applications

Accurate physical simulation, which has been de-
veloped in the engineering community, can provide
a powerful tool for automatically generating real-
istic deformations for entertainment applications.

Many graphics researchers have demonstrated an-
imations created by techniques based on physical
principles [2, 3, 11, 22, 28, 29], but none of them ad-
dressed the issue of robustness in contact handling.
Recently, Bridson et al. proposed a robust treatment
of contacts for cloth animation [8]. The algorithm ap-
plies just enough impulses to nodal points to prevent
penetration. The drawback of such a strategy is that
they have to assume “inelastic” collisions regard-
less of the material properties. Furthermore, their im-
pulse method does not always resolve complicated
geometrical cases. Whenever the method fails, the
algorithm creates rigid impact zones: the deforma-
tions of the problematic parts are frozen, and the rela-
tive motions between sides in contact are prohibited.
Therefore, their method seems to be limited to cer-
tain types of high-friction cloth simulation.

3 Simulation of tissue deformation

3.1 Finite-element method

The macroscopic passive behavior of tissues is stud-
ied in the field of continuum mechanics. The rela-
tionship between the applied forces and the resulting
motions are encoded in partial differential equations
(PDE). A typical PDE is

div σ(φ)+ f = 0 (1)

where σ is stress tensor, φ is deformation function,
and f is the density of external forces.
The simulation of an anatomical structure involves
two tasks:

• Defining PDEs for a particular simulation prob-
lem

• Solving the PDEs

The first task is called modeling. Modeling consists
of two parts. One part is determining material prop-
erties for various tissue types (hence PDEs) and the
other part focuses on defining the geometry of or-
gans (i.e., the boundary of the PDEs’ domain). The
boundary conditions may also include PDEs that de-
fine forces that act on boundary surfaces (such as air
pressures).
The second task, solving the PDEs, requires a dis-
cretization method such as FEM. After FEM dis-
cretization, the object’s configuration (shape) is de-
scribed entirely by a finite number of nodal points.
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Fig. 3. Finite element method. A continuous object is discretized by the finite element method. The partial differential equa-
tion, div σ(φ)+ f = 0 is replaced by algebraic equations in terms of the nodal residual forces R1, R2, . . .

Discretization also converts the PDEs to a sys-
tem of nonlinear equations. The equations are the
forces acting on nodal points, and they are func-
tions of the nodal positions (Fig. 3). In static anal-
yses, simulation is nothing more than solving the
system of nonlinear equations to find an equilib-
rium (zero-force) configuration. In dynamic analy-
ses, PDEs contain derivatives with respect to time,
which is usually discretized by finite-difference
methods, and the resulting nonlinear system repre-
sents, again, an equilibrium state of all participat-
ing forces, including inertial ones. Our FEM pro-
gram performs implicit dynamic analyses: our solver
uses the Newton–Raphson method with line search
to find a zero-force configuration at each point in
time. This method is more robust than the common
semi-implicit scheme [3, 28] that lacks convergence
check.

3.2 Material models

The relationship between stress σ and deformation
φ determines the material properties. The proper-
ties of organic tissues are being actively studied in
biomechanics, and several models have been pro-
posed based on stress-strain data obtained from in
vivo and in vitro experiments. However, due to the
limitations of measurement technology, those mod-
els have not been rigorously validated [20].

Nevertheless, some of the important properties are
known about most biological tissues. Those proper-
ties include the following: (1) infinite energy with
zero volume, (2) highly nonlinear stress-strain rela-
tionships, and (3) anisotropy. Every material used in
this research has an elastic potential energy that tends
to infinity as the volume compression ratio tends to
zero. This is not only a realistic assumption but also
important in the numerical sense: this property ef-
fectively prevents the element-reversal phenomenon
in the finite-element solution. To simulate the prop-
erties of tissues, we use two isotropic materials,
Mooney–Rivlin and Veronda, and a fiber-reinforced
anisotropic material [14–16].

4 The contact problem

4.1 Stationary rigid obstacle: introduction

In many contact situations, one side of the contact is
assumed to be a fixed rigid obstacle. In this section,
this problem, Signorini’s problem, is used to intro-
duce a few important concepts, such as gap func-
tions, contact forces, and penalty formulations.
First, it is necessary to define the basic kinematics of
contact problems (see Fig. 4). There is a deformable
body, whose interior (open and bounded) is v and
whose boundary is ∂v in the 3D Euclidian space.
There is a fixed and rigid obstacle, whose interior
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Fig. 4. Geometric configuration of a deforming object and fixed obstacle
Fig. 5. Penalty formulation

is F , and its boundary is ∂F . The distance to F
is defined by a scalar function g(x), which is called
a gap function and measures the clearance, or gap,
for avoiding collision with the obstacle F . The sign
of g(x) is positive if x is outside of the obstacle. For
example, if the obstacle is a ground plane at level
zero (as shown in Fig. 4), then g(x) = x2.
The contact dealt with in this work is frictionless;
therefore, the contact force is normal to the surface.
The normal is the partial derivative of g with respect
to spatial coordinates. Thus the contact force is

t = pn = ∂g(x)

∂x
= p∇g. (2)

The penalty method replaces the pressure p with the
penalty εpg (Fig. 5).

4.2 Self-contact: general contact

4.2.1 Projection

We now examine contact between flexible objects
(Fig. 6). If an object can be deformed, it is possible
that two parts of the object make contact. Therefore,
in general, self-contacting cases should be taken into
consideration.
If penetration occurs, multiple particles may share
the same location x. The location alone is not enough
information to determine which particle is examined.
To prevent this ambiguity, the gap function must be
defined as a function of the coordinates X in the ini-
tial configuration, i.e., g(X).
If self-contact is considered, the “obstacle” may
be the deforming body itself. Unlike in Signorini’s
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Fig. 6. Geometric configuration of self-penetrating object
Fig. 7. 2D illustration of contact-force discretization: The upper object intrudes into the lower object. The upper object’s
boundary is discretized as line segments (in 3D, it is a triangle mesh). The squares are nodal points. The nodal contact force of
the ath node is the weighted average of the contact penalty force (εp∇g). The force is averaged over the contact area (∂v(c)),
and the shape function of the node (Na) is used for the weight. da is the elementary surface area

problem, the gap function cannot be defined as the
distance between the point and boundaries since it
is always zero. Instead of the distance, conventional
methods use the distance from x to its projections
on object boundaries. A projection of x on a surface
is a point x′ such that x− x′ is normal to the sur-
face (Fig. 6). A projection is a local minimizer of
distance.

4.2.2 Discretization of the contact force

In FEM, all forces must be discretized into nodal
equivalent forces. The contact force is no exception.
The contact force [Eq. (2) ] in the penalty formula-
tion is discretized as follows (see also Fig. 7):

Fcont
a =

∫

∂vc

εpg∇gNada. (3)

This is the nodal equivalent contact force on node a.

4.2.3 Point collocation

Now the numerical integration of Eq. (3) is con-
sidered. Since it is difficult to obtain an analytical
expression of g and ∇g, this integration cannot be
performed easily. To simplify the computation, most
conventional methods evaluate g and ∇g only at
nodal points (or a limited number of points): the inte-
gration is performed by the point collocation as (see
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Fig. 8. Point collocation and contact force discontinuity. The weight is an impulse function scaled by a constant node
weight Wa . A small node movement causes an abrupt nodal force change
Fig. 9. Derivative discontinuous gap function. A bumpy surface has many projections for a given particle x. In such a case,
a small movement of x results in a sudden jump of the closest projection. In this case, the gap function (defined as the closest
projection) is continuous with respect to x, but its derivative with respect to x is not continuous

also Fig. 8)

Fcont
a =

∫

∂vc

εpg∇gδ(x− x̄a)Wada. (4)

With this method, the nodal force depends only on
the gap value at the nodal point and becomes discon-
tinuous.

4.2.4 Sensitive projection location
and gap discontinuity

This section discusses in more detail the difficulties
in determining the gap function. The gap function is

evaluated by finding projections. By the definition of
projection, the search algorithm has to rely on the
surface normals. The problems can be summarized
as the following two points:

1. If the gap function is defined as the distance to
the closest projection from a particle at x, the gap
function becomes discontinuous with respect to
the configuration because the location of the pro-
jection is sensitive to the deformation (see Figs. 9
and 10).

2. The criteria for selecting a projection among
many candidates are difficult to define. In fact,
choosing the closest projection is not always de-
sirable (see Figs. 11 and 12).
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Fig. 10. Discontinuous gap function. A small deformation creates a new projection, which can be closer than the old pro-
jection, causing an abrupt jump of the gap function value. This case is worse than Fig. 9 since the gap function itself is
discontinuous
Fig. 11. Closest but undesirable projection. The closest projection found in the neighbor is intuitively not desirable. However,
it is hard to define criteria that make the algorithm prefer the desirable projection. In the presence of self-contact, both red and
blue regions may belong to a single object. Therefore, it is not possible to mechanically reject projections on red regions

Fig. 12. Multiple valid projections. Since the particle x intrudes into more than one region of nearby objects, it makes more
sense to use multiple projections. The red, blue, and green regions may be just parts of a single object
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Fig. 13. Material depth

4.2.5 Convergence and noise problem

The point-collocation technique [Eq. (4)] samples
the discontinuous function g and ∇g. The resulting
penalty force Fcont

a is therefore discontinuous with
respect to the mesh configuration. Fcont

a is a com-
ponent of the residual force (R1, R2, . . . in Fig. 3).
This discontinuity often manifests itself as the con-
vergence problem (oscillation) in nonlinear system
solving, because with the presence of a discontinu-
ity, a nonlinear equation often lacks a solution. This
discontinuity also causes high-frequency noises in
simulations of sliding contact.

4.3 The new algorithm

The culprit in the convergence problem is the dis-
continuity of the contact force. The gap function is
intrinsically nonsmooth. As long as the point col-
location of Eq. (4) is used, discontinuous contact
forces are inevitable. A possible remedy to the dis-
continuity problem is to perform the area integration
of Eq. (3). Area integration averages various values
of g and ∇g, resulting in a smooth contact force.
By sampling many points in the area, similar ef-
fects can be achieved, but that is expensive compu-
tationally. Therefore, a precise analytical integration
is desirable. However, if a projection is used to eval-
uate g and ∇g, the formulation of the analytical in-
tegration is not easy. As described in Sect. 4.2.4, it
is already difficult to uniquely determine an opti-
mum projection for a point. Analytically integrating
a quantity that is related to such values seems im-
possible. A more stable and simpler substitute for
the projection is required. The following sections ex-
plain a new algorithm based on the use of material
depth for evaluating the gap function.

4.3.1 Material depth and gap continuity

Figure 13 shows the notion of material depth. The
deformation maps particle X on a boundary to the
current position x. As a result, X collides with par-
ticle Y. The material depth is the distance from Y
to the boundary in the reference (undeformed) con-
figuration. It maintains a constant intrinsic value for
a particle (or material point); hence the term mate-
rial depth. Since there is no self-penetration in the
reference configuration, the material depth can be
computed regardless of self-penetration in the cur-
rent (deformed) configuration. Also, unlike the dis-
tance to a projection, material depth never changes
abruptly due to deformation.
Using the material depth as the gap function, as de-
scribed above, is still not simple enough to allow
analytical integration. The new algorithm approxi-
mates the material depth by the linear interpolation
of the material depths between nodal points of the FE
mesh (see Fig. 14). The contact force is integrated for
each intersecting pair of a boundary triangle element
and an interior tetrahedron element. The integration
is performed in the parameter space of the triangle
element (see Fig. 15). The detailed derivation of an-
alytical integration is mathematically quite involved
and is presented elsewhere [16].
Material depth is an approximation of the dis-
tance field in the current configuration. As an ob-
ject is stretched or compressed, the depth value
deviates from the actual distance. However, the in-
accuracy does not cause a significant problem in
terms of the maximum penetration allowed since
in practice a large penalty factor can be used with-
out causing numerical instability [10]. Thus the
magnitude of the depth value is not a significant
issue.
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Fig. 14. Linear interpolation of material depth
Fig. 15. Intersecting elements and area integration

A more important aspect of material depth is its gra-
dient, which is used as an approximate surface nor-
mal. Since the material depth deviates from the spa-
tial distance, the gradient also deviates from the ac-
tual normal. But this is not a serious problem either.
The direction of the gradient is in fact the same as the
exact normal on the boundary. Thus the gradient of
the material depth is indeed a good approximation of
the surface normal, and the directional accuracy in-
creases as the algorithm converges to a solution with
small penetration.

4.3.2 Algorithm summary

The algorithm performs the following steps:
1. Compute the material depth for each node in the

reference configuration. This is an off-line pro-
cess that can be done by a brute-force method
once per model.

2. Find the collision between a boundary triangular
element and an interior tetrahedral element. This
step is described in Sect. 4.3.4.

3. Compute the intersection of the triangular ele-
ment and the tetrahedral element.

4. Integrate the penalty force over the area of the in-
tersection polygon, and add their contributions to
the global residual and the stiffness matrix.

4.3.3 Area integration and gap gradient continuity

The area of the intersection of the boundary trian-
gles and the interior’s tetrahedron varies continu-
ously. The material depth is also continuous. Thus
the penalty force is mostly a smooth function (C1)
of the mesh configuration. There are two excep-
tions. One occurs when an edge of a triangle and
a side of the tetrahedron are coplanar, in which case
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Fig. 16. Two intersecting objects

the penalty force is no longer smooth but it is still
continuous (C0). The other exception occurs when
the triangle is coplanar with a side of the tetrahe-
dron. In this case the continuity no longer holds,
but for this to occur, three vertices of the triangle
must fall into the side of the tetrahedron, a behav-
ior not likely to happen in practice. Furthermore, if
the side of tetrahedron is one of the object’s bound-
ary triangles, continuity still holds. Thus the penalty
forces are continuous in all plausible situations. This
is a crucial point with respect to equation solving,
since a solution may not even exist without continu-
ous penalty forces. This continuity is the major ad-
vantage of the new method over traditional methods.
A more rigorous mathematical analysis can be found
elsewhere [16].

4.3.4 Collision detection

The algorithm needs to know which boundary ele-
ments (triangles) intersect with which interior ele-
ments (tetrahedra). In our applications, the number
of elements reaches tens to hundreds of thousands.
Algorithms that are based on sorting along coordi-
nate axes and overlap lists suffer from a large number
of overlapping tetrahedra per triangle in a coordinate
and perform very poorly.
We use hierarchical bounding volumes. The frequent
deformation of the finite-element mesh demands that
the algorithm update the tree quickly. Therefore,
a simple bounding volume, an interval in a coordi-
nate, is chosen. The hierarchy is stored as a binary
tree. A node of the tree represents an x-, y-, or z-
coordinate interval that bounds the intervals of all
descendant nodes. The interval of a leaf node con-
tains a tetrahedral element. The overlaps between the
intervals of each triangle element and the intervals

of tree nodes are examined, and final candidates are
collected from tetrahedra in overlapping leaf nodes.
The tree structure is built by a top-down partitioning
of elements in the direction of their greatest extent.
We usually divide an “analysis session” of a phe-
nomenon (e.g., flexion of a joint) into sequential sim-
ulation runs. Since we set up the simulation runs such
that the mesh does not deform much in a single run,
it is sufficient to build the tree structure only once
at the beginning of each run. The interval values are
efficiently updated in a bottom-up manner at every
solution step. As a result, the collision detection oc-
cupies a rather minor part of the total computation
time (see Sect. 6.3).

5 Numerical comparison
of convergence

This section presents a numerical comparison of
a point-collocation algorithm and the area-integration
algorithm to illustrate the superior convergence char-
acteristics of our method.
Figure 16 illustrates the test case used. In the
initial configuration, two objects are intersecting.
The pointy part of the object on the right is pen-
etrating into the concave edge of the object on
the left. This is a typical case that causes contact
chatter.
The color encodes depth. The discontinuous bor-
ders of depth gradient are visible between the up-
per and lower parts of the objects. The directions
of contact forces are the same as the gradient di-
rections. As the position of sampling moves from
the upper part to the lower part, the contact forces
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Fig. 17. Comparison of convergence rates. The area-integration algorithm converges quickly while the point-collocation algo-
rithm fails to converge
Fig. 18. Finite element model of human leg

change abruptly. But the area-integrated contact
forces change continuously.
Figure 17 compares convergence rates of the point-
collocation algorithm and the area-integration algo-
rithm. The residual for the point-collocation algo-
rithm stays just below 1.00E+00, while the resid-
ual for the area-integration algorithm goes down to
a very low level until it hits a limit due to the floating-
point truncation error.

6 Application to the human body

Accurate simulation, in the sense that one can confi-
dently control the numerical error compared to real
subjects, requires an accurate anatomical model. But
building such a model is quite difficult because nei-
ther established tissue material models (constitutive

laws) nor measurement technology exist. Thus the
simulation results in this section are meant to give
a glimpse of what our computational method can of-
fer once the advancement of biomechanics enables
the construction of accurate models of biological
systems.
The goal of our algorithm is to handle contacts, es-
pecially complex self-contacts. Therefore, it is best
tested on the skin folds around flexing joints. The
wrinkles around joints are particularly important in
realistic image synthesis.

6.1 The model

We simulated flexion of a human knee joint us-
ing a finite-element model of a right human leg
(Fig. 18). To build the model, we first generated
boundary polygons of all the organs from a man-
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Fig. 19. Bent knee (left) and stretched (initial) position (right). The patella automatically slides over the femur as a result of
the simulation

ually segmented mask image volume of the Vis-
ible Human Male [27]. Then a tetrahedral mesh
was generated from the polygonal boundaries us-
ing SolidMesh [19]. The mesh contains about 10 000
nodes, 10 000 triangular elements, and 40 000 tetra-
hedral elements. It consists of a femur (thigh bone),
a patella (knee cap), a tibia (shin bone), a quadri-
ceps (a collection of four major anterior thigh mus-
cles), a patella ligament, tendons that connect the
patella and the quadriceps, and a skin-fat layer.
The model encompasses mechanically diverse tis-
sues ranging from hard bones, ligaments, and ten-
dons to softer muscles and a skin-fat layer. There-
fore, a broad range of material properties are used.
The Mooney–Rivlin and Veronda models were both
applied.
The femur is fixed in space. The cross-section of the
thigh is constrained so that it can only move on the
cutting plane. The tibia is rotated around an axis in
the knee joint. These positional constraints constitute
a displacement boundary condition. The tibia’s total
150-degree rotation was divided into 50 three-degree
intervals and the algorithm was applied to each inter-
val to generate deformations.

6.2 The result

Anatomically expected movements were automat-
ically generated by the simulation. The patella’s
movement is particularly noteworthy. Figure 19
shows the movement of the patella. Even though
the movement of the patella is not prescribed, it

slides over the head of the femur (between the lateral
and medial condyles) as it is pulled by the rotat-
ing tibia via the patella ligament. Figure 20 shows
the result at the maximum flexion. The left image
shows the skin geometry. The right image shows
the cut-away view. The colors encode the material-
depth value. The folded skin-fat layer inside the
knee joint is highly compressed, yet the amount
of penetration is not visible. Figure 21 shows the
complex wrinkling pattern of the skin. The curva-
ture of the skin surface is extremely high where
the folding occurs. Figure 22 shows cut-away views
of the same part. Again, the penetration is visually
undetectable.

6.3 CPU time statistics

The complete simulation took 376 min on a single
300 MHz R12000 CPU of an SGI Onyx system.
Most of the time (63%) was consumed by the force
and stiffness matrix computations. 22% of the time
was spent on collision detection, out of which the
bounding volume tree construction took less than
1%. The rest of the time, 15%, was spent on the linear
system solution.

7 Other examples

Figure 23 shows another animation sequence. This
animation was created by an old version of our algo-
rithm.
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22

Fig. 20. Skin surface of the highly flexed knee (left); cut-away view of the same flexed knee (right)
Fig. 21. Close-up of knee, illustrating pattern of skin folding
Fig. 22. The complex self-contact of folding skin was handled without visible penetration



306 G. Hirota et al.: An improved finite-element contact model for anatomical simulations

Fig. 23. Snake and apple. A snake swallows an apple. The upper 3 rows show the sequence in opaque rendering. The images
in the bottom row use transparent rendering to show the internal movement of the apple

Figure 24 shows an example of dynamic simulation.
There is a 7 × 5 array of rods mounted on a 45◦-
slanted foundation. At the beginning of the simula-
tion, all the objects are stationary. Gravity then pulls
the rods toward the ground and causes complex col-
lisions and sliding contacts.

8 Discussion and future work

8.1 Trading accuracy for speed

In many applications such as video games or surgical
simulators, interactive response is preferred to slow
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Fig. 24. A stack of rods deformed by gravity

and accurate simulations. The most decisive factor
for computation time is the complexity of the prob-
lem. Fast simulations can be achieved by simplify-
ing (hence reducing the fidelity of) the simulation
models.
Reducing the number of elements is the simplest
way to save computation time. The materials can
be simplified, too. Using a simpler material model,
for example the neo-Hookean material, instead of
Mooney–Rivlin and Veronda materials would reduce
the stiffness matrix computation by nearly an order
of magnitude [7]. The movements of objects can be
slowed down by increasing the inertial forces. Be-
cause of the sluggishness of the objects, larger time
steps can be safely chosen [26]. Since such modifica-

tion changes the objects’ behavior, the fidelity of the
simulation is compromised.

8.2 Thin objects

It is rare that flat objects are simulated as zero-
thickness plates [12]. However, it is certainly an ad-
vantage for an algorithm if it can handle objects with
smaller thickness efficiently. This can probably be
achieved by truncating the length of time steps to the
nearest contact time estimated by a method similar to
the one proposed by Heinstein et al. [12, 13]. After
the truncation, our algorithm can perform the rest of
the contact handling.
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8.3 Augmented Lagrangian method

The penalty method used in this paper seems to per-
form very well. Yet, a more sophisticated method
can be constructed by representing pressure on con-
tact surfaces (contact-force magnitude) by Lagrange
multipliers. Lagrange multipliers would make the
enforcement of the penetration limit more robust.
The pressure field would be approximated by a lin-
ear interpolation of nodal pressure values and the
contact force would be defined as a product of the
interpolated pressure and the gap function gradient.
By combining penalty methods and Lagrangian mul-
tiplier techniques, an augmented Lagrangian scheme
can be devised. In this scheme, the penalty term is
preserved from the current algorithm. The difference
between the interpolated pressure and the magni-
tude of the penalty force is integrated and used to
update the nodal pressures. The pressure update is
repeated until the penetration becomes below the de-
sired tolerance.

8.4 Friction

Our algorithm is limited to frictionless contact prob-
lems. This limitation is justified because the fric-
tion between lubricated organ surfaces inside bod-
ies is known to be small [18, 21]. This is not the
case for friction between (non-lubricated) skin sur-
faces. We expect that our algorithm can be extended
easily to accommodate friction. Frictional forces are
functions of normal forces and relative velocities on
the contact surfaces. They can be integrated over
the contact areas just as normal contact forces are
integrated. Furthermore, continuous normal forces
(which were realized by our algorithm) are helpful
in performing more accurate simulations of frictional
contacts [25].
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