
CHAPTER 1: Audio-Material Reconstruction for Virtualized Reality Using a Probabilistic Damping

Model1

1.1 Introduction

Modal sound synthesis improves a user’s immersion, but it requires accurate real-world material pa-

rameters. Damping, which determines the rate at which vibrations and sound decay over time, is crucial

in differentiating between different materials. Some parameters, e.g. density and Young’s modulus, can be

looked up for known materials, but damping behavior can be difficult to identify and parameterize.

Traditionally, damping parameters are selected through laborious human hand-tuning. We present a study

evaluating human efficiency and precision at this task in Section 1.3.2. Even with a simple, easy-to-use GUI

optimized to minimize during modal analysis, the study shows that significant human effort is needed to select

accurate parameters. The study also finds that humans are able to distinguish between sounds with minor

differences in material parameters, suggesting that material parameters from a library may not sufficiently

reproduce the sound of a specific real-world object.

Figure 1.1: A real-time interactive virtual environment where striking objects produces dynamic sounds using
our method (left); a ball striking plates of various sizes plays a melody (middle); and a set of wind chimes
blowing in a virtual forest (right).

1This chapter previously appeared as a paper in the 26th IEEE Conference on Virtual Reality (IEEE VR 2019) and an article in a
special issue of IEEE Transactions on Visualization and Computer Graphics (TVCG). The original citation is as follows: Sterling, A.,
Rewkowski, N., Klatzky, R. L., and Lin, M. C. (2019). Audio-material reconstruction for virtualized reality using a probabilistic
damping model. IEEE Transactions on Visualization and Computer Graphics, 25(5):1855–1864
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Figure 1.2: Our pipeline for estimating material parameters from recorded audio and using the parameters to
synthesize sound for objects of the same material. Inputs are in green with italic text. If the object and hit
points are unknown, the pipeline can begin with recorded sounds instead.

Automated material parameter estimation provides a means to estimate the material parameters of

a specific object while reducing required human effort. Given an object made of a particular material,

we can strike the object and record the resulting sound. Existing methods use the sound, along with

mandatory knowledge about the shape and properties of the struck object, to estimate a number of material

parameters (Ren et al., 2013b). The material parameters can be applied to sound synthesis, “virtualizing”

the audio characteristics of a given material. While recent techniques have been able to estimate material

damping parameters, they assume minimal effect on damping from external factors.

For example, an object struck for the purposes of recording either needs to be held by hand or left to rest

on another surface. The interface between the object and its support will introduce additional damping. To

account for this support damping, recordings must be made with supports that introduce minimal damping,

requiring a carefully controlled recording environment using special support (Pai et al., 2001), e.g. strings or

rubber bands, to suspend the object (Ren et al., 2013a). Other factors that affect estimated damping values,

such as complex modes of vibration, background noise, and accumulated error during estimation are assumed

by prior work to be minimized. Satisfying all of the assumptions made by prior work requires significant

human effort.

In this chapter, we present a practical and efficient probablistic algorithm to estimate material damping

parameters directly from recorded impact sounds that accounts for these different factors affecting damping,

reducing their effects on the estimated parameters. Unlike previous work (Ren et al., 2013a), this method is

fast and requires no prior knowledge about the recorded object’s geometry, size, or hit location(s). We are

able to virtualize the specific material of a given object. Our method requires significantly less human time
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and effort to acquire material damping parameters than previous methods, while producing parameters of

similar quality. The key contributions of this work include:

• A new probabilistic material damping model that independently considers each source of damping

(Section 1.2.5);

• Application of this probabilistic model to estimation of material damping parameters (Section 1.2.6);

• A study evaluating human effectiveness at manual estimation of material parameters from sound (Sec-

tion 1.3.2); and

• Quantitative (Section 1.3.3) and perceptual (Section 1.3.4) evaluation of estimated damping parameters.

We validate our method through comparison between estimated and ground-truth damping values, an

auditory perceptual study, and comparison against alternative techniques. Figure 1.1 demonstrates our system

in several complex virtual environments consisting of real-time interaction with virtual objects of different

materials. Figure 1.2 shows the full pipeline for estimating material parameters and using them to synthesize

sound.

1.2 Probabilistic Damping Modeling

In order to perform the modal sound synthesis process described previously in ??, we need to know the

object’s geometry, Young’s Modulus E, density ρ, Poisson’s Ratio, and damping parameters αj for a chosen

damping model. We now consider how this information can be obtained in the first place. The geometry

can either be taken from a real-world object or designed for a virtual object. Young’s Modulus, density,

and Poisson’s Ratio can be measured from real-world objects, but for many materials these values have

been published and approximate values can be selected for synthesis purposes. Damping parameters, on

the other hand, are specific to their damping model and are difficult to find for arbitrary materials. In this

section, we present our probabilistic damping model for observed damping rates in the presence of external

environmental factors.

1.2.1 Hybrid Damping Model

Our probabilistic model extends any of the traditional damping models described in ??. For this work, we

consider the Rayleigh and Caughey damping models previously introduced. We also consider one additional
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damping model, derived from generalized proportional damping (see ??). This hybrid model incorporates

Rayleigh damping and a power law damping model (??). The damping rates are described according to the

function:

ci = α1 + α2ω
2α3
in . (1.1)

When α1 is 0, this becomes the power law damping model, and when α3 is 1, this becomes the Rayleigh

damping model. Since we have found that the optimal damping model varies depending on the object (??),

this hybrid model can model damping best represented by Rayleigh or power law damping. Using these

deterministic damping models, we can now introduce our probabilistic model.

1.2.2 Feature Extraction from Audio

Our technique uses multiple recorded impact sounds to estimate material parameters. A mode that is

heavily damped by external factors in one sound may be relatively undamped in another, providing additional

information about the range of possible damping values. As damping parameters are geometry-invariant (Ren

et al., 2013a) for simple objects often present in virtual enviroments, we do not need to know the object’s

geometry, its size, or its hit location.

The first step in our approach is to extract the modal components of each input sound. Assuming the

sounds come from rigid objects, the sound produced will be mostly modal and can be decomposed into a

set of features. Each feature corresponds to one mode of vibration and can be parameterized as a damped

sinusoid with a damped frequency ωid, an initial amplitude ai, and an exponential damping coefficient di.

We adopt a feature extraction process that identifies likely features, then performs local optimization.

This is derived from the feature extraction step of Ren et al. (Ren et al., 2013b), which is described in ??. For

this work, we again adopt the same feature extraction step, but decouple it from the subsequent Match Ratio

Product parameter estimation (??).

We further extend this standalone feature extraction step to improve robustness. As an additional step,

we remove features with di under a threshold. These low-damping features are likely to be a constant pitched

background noise unrelated to the impact sound. We also remove features below an amplitude threshold, as

they are more susceptible to noise. The extracted (ωid, ai, di) features can be converted into pairs of (λi, di)

values by inverting the process in ??:

λi = ω2
in = ω2

id + d2i . (1.2)
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Figure 1.3: Features extracted from multiple impact sounds on a porcelain plate. λ is the eigenvalue of the
mode of vibration (related to the frequency), while c is the rate of exponential decay. For any value of λ,
there is a range of possible d values, which can be captured in a statistical model.

As a result of this feature extraction process, we have a set of features roughly corresponding to the modes of

vibration of the object. The most notable modification is that we account for background noise (modeled

as additive white Gaussian noise) by estimating the amplitude of the noise floor. The extracted (ωid, ai, di)

features are converted into pairs of (λi, ci) values, where λi is the eigenvalue corresponding to that mode of

vibration and ci = 2di.

1.2.3 Distributions of Damping Values

With (λi, ci) features extracted from multiple input sounds, we now interpret the results. Figure 1.3

shows an example of features extracted from impact sounds on a porcelain plate. Note that for any given

eigenvalue λ, there exists a range of extracted damping values. This is especially noticeable where feature

points appear as a vertical line, showing that even the same mode of vibration may have a variable rate of

decay. These results are inconsistent with the damping models in ????, which propose a one-to-one mapping

between λ and c. Instead, we propose that there is significant error present in the extracted damping value of

each feature, and that error can be modeled with a statistical distribution.

The prior work of Ren et al. (Ren et al., 2013b) estimates damping parameters using a least-squares

metric to compare spectrograms. Similar results could be produced by fitting a damping model to (λ, c)

features using least-squares (e.g. by optimizing all αj). Statistically, a least-squares fit of a damping model is
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equivalent to assuming there is normally-distributed error around the model. We will refer to least-squares

fitting of damping models as LSQ. However, we have found experimentally that least-squares fits tend to

overestimate the material damping parameters, and resynthesized sounds all sound heavily overdamped.

Another notable property of Figure 1.3 is the clear line of points forming a lower bound to the data (with

a few outliers). We have found experimentally that a damping model fit to this lower bound curve results

in resynthsized sounds much closer to the input sounds. If the damping model should fit the lower bound,

then all error is positive and can only increase the extracted damping values. Statistically, this indicates a

one-sided error distribution; e.g. half normal, exponential, or chi-square distribution. Computationally, a

lower bound Rayleigh damping model can also be found as a line along the lower convex hull of the points.

We refer to lower-bound fitting of damping models as LB.

However, as can be seen in Figure 1.3, outliers often appear below the clean LB curve, and for other

objects such a clean curve does not appear in the first place. A strict LB fit will be highly sensitive to outliers,

as it must assume all error is positive. It is difficult to detect and remove outliers in extracted feature datasets.

To solve this problem, we examine the physical sources of error in extracted damping values and construct

an appropriate statistical distribution modeling that error. Ideally, this should produce a more robust lower

bound fit which handles outliers based on their statistical probability of occurrence.

1.2.4 External Damping Factors

To accurately model error in damping values, we consider a number of physical phenomena that may

affect estimates of the material damping values. These external damping factors are distinct from the material

damping, which occurs due to the internal structure of a material.

1.2.4.1 Support Damping

An object’s method of support can be varied; the object could be sitting on a desk, held in a hand, or

dangling from a ceiling. We define a support broadly as any long-lasting contact with the sounding object of

interest, with enough friction to maintain its contact with the object even when the object is struck. Regardless

of the form of support, some energy from the object’s vibrations will be transferred to the support, causing

additional damping. In real-world situations where the object is unlikely to be minimally supported, the

additional damping significantly affects the sound.
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Figure 1.4: A porcelain bowl struck in the same location produces different sound when supported with a
tight grip (left) or supported by resting on a single point (right). Without accounting for the effect of the
support, prior methods would not be able to estimate accurate material parameters from these sounds.

Refer to Figure 1.4 for an example of the effect of the support on the resulting sound. A tight grip on the

bowl’s rim produces a more damped sound compared to gentle balancing on fingertips.

1.2.4.2 Complex Modes

Complex modes of vibration are slight deviations from normal mode behavior. Unlike normal modes,

complex modes are not linearly separable: energy may be transferred between modes while vibrating. A

mode that loses energy to others will produce higher damping values, while a mode that gains energy from

others will produce lower damping values. Most systems have only slightly complex modes (i.e. there is little

energy transfer), so normal modes are a close approximation (Imregun and Ewins, 1995), but not an exact

one. Since we make the assumption of normal modes, the slight transfers of energy are a source of error in

damping value estimates.

1.2.4.3 Background Noise

Background noise in recorded sounds is too variable to realistically model. The feature extraction step

of the method is designed to specifically extract modal features from the sound. This mostly eliminates

persistent “hums” which do not match the modal exponential-decay model. We modify the feature extraction

method to account for additive white Gaussian noise (Section 1.2.2). This further removes the influence

of persistent background noise, though there may still be some remaining Gaussian (normal) error in the

spectrograms and their resulting extracted damping values.
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Acoustic reflections and reverberations from room acoustics are confounding factors. Without knowing

the properties of the room acoustics, we cannot separate the effect of a damping material from the effect

of the acoustics. For our model, we still assume minimal room reverberations, but some small sources of

transient noise or early reflections may be appropriately modeled by normally distributed error.

1.2.4.4 Feature Extraction Error

The feature extraction step itself is not perfect; some error is introduced in the process. For example,

spectrograms have limited spectral and temporal resolution, and the Fourier transform’s assumption of

periodicity in each window is an approximation. The discretization of the spectrogram will produce small

amounts of error. Sidelobes resulting from Fourier transforms may appear as separate peaks or affect the

estimated damping rate of nearby modes.

1.2.4.5 Acoustic Radiation

Uneven acoustic radiation from the object may mean that different microphone placements will result in

different initial mode amplitudes. This can be accounted for by keeping the object and microphone stationary

during an impact sound. However, the relative positions of the microphone and object do not need to be

fixed across all input sounds. Moving the microphone between sounds will not change the frequencies or

exponential rates of decay, and thus does not need to be accounted for in our model.

1.2.4.6 External Factor Summary

Current damping parameter estimation techniques do not explicitly consider these factors, instead

attributing all damping to the material (as we do in ??). The resulting damping parameters therefore model

the combined effect of the material and the recording environment. These parameters may not properly

transfer to an object of the same material in a different environment. This limits the sounds that can be used

for accurate damping parameter estimation: the sounds must be recorded in a carefully controlled setting.

With a thoroughly robust technique that can separately model environmental factors, we can reduce the

factors’ impact on the estimated parameters. The external factors cannot be fully removed, but reducing their

impact may result in more physically-accurate material parameters.
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1.2.5 Generative Model for Combined Damping

We now introduce a generative model for sampling damping values. The model defines the probability

distribution for an extracted damping value ci, given the eigenvalue λi and a set of parameters θ. θ contains

parameters representing both the material and the environment. The material damping parameters, such as α1

and α2, are referred to as θd for generality. The model can be written as p(ci|λi, θ), and asks, “given a known

material and environment, what is the probability of measuring any particular damping value?”

The value ci is a damping value obtained from the feature extraction step. In the absence of any external

factors, ci would consist only of material damping. To account for the external factors, we model ci as a

random variable based on the sum of normally and exponentially distributed random variables.

1.2.5.1 Normal Distribution

A normal distribution models the effect of some external factors. The normal distribution accounts for

(1) energy transfer due to complex modes, (2) small sources of background noise, and (3) error in feature

extraction due to spectrogram discretization. We assume that each of these factors are an additive, normally

distributed random variable. The sum of these normally distributed factors (cni ) is also normally distributed:

p(cni |λi, θd, σ) = N
(
c(λi, θd), σ

2
)

(1.3)

The distribution is centered on the damping function c evaluated at an eigenvalue λ with damping parameters

θd, with a standard deviation σ resulting from the combination of factors.

1.2.5.2 Exponential Distribution

An exponential distribution models the effect of the object’s support.

p(cei |η) = Exp (η) = ηe−ηc
e
i . (1.4)

cei is the resulting exponential damping resulting from the object’s support, while η is the rate parameter of

the exponential distribution. This distribution is an approximation, but in attempting to create a robust lower

bound method, it serves the role of a one-sided distribution fitting to the lower bound of damping values.
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Zheng and James defined a model to approximate additional per-mode damping based on contacts with

other objects (Zheng and James, 2011). However, a statistical analysis of this model is highly dependent on

the distribution of elements of the matrix of eigenvectors Φ. We are not aware of any prior work that has

attempted to statistically model the distribution of eigenvector matrix Φ elements, and our own analysis using

Kolmogorov-Smirnov goodness-of-fit tests found no probable common distributions. In the absence of a

more well-defined model and with the main requirement of a one-sided distribution satisfied, the exponential

distribution was selected empirically based on extracted feature data.

1.2.5.3 Exponentially Modified Gaussian

The combined damping value ci can then be modeled as the combination of (1) the normally-distributed

factors cni due to complex modes, noises, and other sources of errors, and (2) the exponentially-distributed

factor cei due to the support damping. Assuming that the factors are independent (for mathematical feasibility),

they can be formulated as two separate sources of exponential decay of the mode amplitude zi:

zi(t) = aie
−cni te−c

e
i t cos(ωidt) (1.5)

= aie
−(cni +cei )t cos(ωidt). (1.6)

The probability density function of the sum of the normal and exponential distributions (cni + cei ) is the

convolution of their individual probability density functions. The resulting distribution is an exponentially

modified Gaussian (EMG) distribution. EMG distributions have been used extensively in chromatogra-

phy (Grushka, 1972), but have also found uses in other domains. The probability density function for the

EMG is:

p(ci|λi, θd, σ, η) =
η

2
e
η
2
(2c(λi,θd)+ησ

2−2ci) erfc (si) (1.7)

si =
c(λi, θd) + ησ2 − ci√

2σ
, (1.8)

where erfc is the complementary error function, defined as:

erfc(x) = 1− erf(x) =
2√
π

∫ ∞
x

e−y
2
dy. (1.9)
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Figure 1.5: Parameter estimation on sound features. Each feature consists of an eigenvalue λi and its
corresponding damping coefficient ci. Estimated Rayleigh damping curves are plotted, with the variation
from the curve caused by external factors. Our method, using the EMG distribution, provides the closest fit to
the lower bound of the data while being relatively unaffected by outliers.

This defines the probability of observing an extracted damping value, given the material damping and

environmental damping parameters. This is the complete generative model for damping values, encompassing

multiple sources of damping and errors. Since only the frequencies and damping values of the modes are

needed for this model, we do not need to assume that the mode shapes remain unchanged. The full set of

parameters θ is (θd, σ, η), which together define the distribution.

1.2.6 Parameter Estimation

With the generative model established, we now describe the estimation of damping parameters. We

estimate the parameters θ through maximum likelihood estimation (MLE). The generative model above uses

known parameters to produce data from a distribution. MLE is an optimization method that reverses the

process: use known data from a distribution to produce best-fitting parameters. Given a set of extracted

(λi, ci) pairs as data and a set of parameters, we can use the generative model to compute the log-likelihood

of the data given the parameters:

log p(d|λ, θd, σ, η) =
∑
i

log
(η
2

)
+ ηc(λi, θd) +

η2σ2

2
− ηci + log (erfc(si)) . (1.10)

Using the log-likelihood simplifies computation, removing exponentiation and turning a product of

probabilities into a sum of log probabilities. We want to find the parameters that maximize this log-likelihood—

and hence also maximize the original probability. These maximizing parameters are those that best explain
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the extracted data, “fitting” the probability distribution to the data. We compute the analytical gradient of the

log-likelihood function and perform gradient ascent to find these optimal parameters.

We compute the full average derivative for the n (λi, ci) samples. We define a term ti and use the scaled

complementary error function erfcx(si) = exp(s2i ) erfc(si) to simplify notation:

ti =
−2

erfc(si)
√
π
e−s

2
i =

−2
erfcx(si)

√
π
. (1.11)

The derivatives for η and σ must be computed for all damping models. Their derivatives are as follows:

∂ log p

∂η
=
n

η
+ nησ2 +

∑
i

c(λi, θd)− ci + ti
σ√
2
, (1.12)

∂ log p

∂σ
= nλ2σ +

∑
i

ti

(
ησ2 + ci − c(λi, θd)√

2σ2

)
. (1.13)

The derivatives for θd will depend on the damping function itself. We will present the derivatives

for Rayleigh damping here; derivatives for alternative models are not difficult to compute. For Rayleigh

damping’s linear c = α1 + α2λ function, the derivatives for α1 and α2 are:

∂ log p

∂α1
= ηn+

∑
i

ti√
2σ
, (1.14)

∂ log p

∂α2
=
∑
i

ηλi +
tiλi√
2σ
. (1.15)

With the derivative established, we can perform standard gradient ascent until convergence. The final

damping parameters in θd are the optimal parameters for the material of the struck object. These damping

parameters can be used to represent the recorded material for modal sound synthesis, with other effects (e.g.

room acoustics, supports) modeled separately (Zheng and James, 2011).

Section 1.2.6 shows features extracted from 19 impact sounds on a metal plate, while Section 1.2.6

shows features extracted from 40 impact sounds on a glass mug. Similarly, ?? shows features extracted from

synthetic sounds. The figure compares our EMG fit with MLE optimization against the baseline LSQ and

LB methods (see Section 1.2.3). In each case, LSQ overfits the data, while LB is strongly affected by low

outliers and underfits the data.
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Figure 1.6: Comparison of real-world extracted features (blue) and sampled features from a fitted EMG
model (red). The two sets of points are similarly distributed, indicating that the EMG model is properly fit to
the real-world data.

1.2.7 Discussion and Analysis

The effect of external damping factors cannot be entirely removed, and in real-world situations the

extracted damping values may all be much higher than the material damping function alone. This positively

biases the estimator: the estimated parameters will often be larger than the ground truth. By accounting for

external factors, this estimator has less bias than other methods, and is therefore more accurate.

Figure 1.6 shows experimental validation of the EMG model. It contains the same extracted glass mug

features as found in Figure 1.5 in blue, but overlays additional features in red. These red features are sampled

from the optimized EMG distribution. They need not correspond one-to-one with the extracted features, but

they should follow a similar distribution. This shows experimentally that the underlying statistical model is

appropriate for capturing the distribution of real-world data.

1.2.8 Sound Synthesis with Estimated Values

The estimated damping parameters should be accurate, having accounted for the effect of the support.

However, modal sound synthesis assumes free vibrations (i.e. no support) when in most cases there will be

something supporting the object. An additional step is needed to apply support damping to synthesize contact

sounds due to support.
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Figure 1.7: Three objects from our impact sound dataset: a porcelain cup (left), a small glass tile (center),
and a wood block (right). Note the ways that each object is supported. These supports interfere with damping
parameter estimation.

We adopt a contact model for modal sound synthesis introduced by Zheng and James (Zheng and James,

2011). The method uses an additional damping matrix G to model the additional damping resulting from

each contact point k in the set of contact points C:

G =
∑
k∈C

ckΦ
T
k (µI + (1− µ)nknTk )Φk, (1.16)

where ck is the magnitude of the contact force for contact k, Φk is the set of eigenvectors corresponding

to the point at contact k, µ is the coefficient of friction, and nk is the normal direction at that point. Some

mode coupling is introduced since G is not diagonal, but this coupling was found to be perceptually minor.

Therefore, each damping model may be augmented by adding the corresponding diagonal component of G.

1.3 Results

We have implemented the damping parameter estimation method described in Section 1.2.5 and tested

its effectiveness through both numerical analysis and perceptual validation. With this method, the process

for material damping parameter estimation involves striking an object repeatedly, ideally with varying hit

locations and support methods. This approach has less strict requirements about the recording environment

than previous work; sounds can be recorded in a quiet room, as long as there are few transient sounds and the

room is not heavily reverberative.

We have recorded numerous impact sounds on a set of fifteen rigid objects, where the hit points and

the method of support are documented for each impact. Figure 1.7 shows a sample of these objects, with
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Figure 1.8: Plot of log-likelihood maximization converging over the course of parameter estimation. Opti-
mization was performed on 752 frequency-damping points extracted from porcelain plate impact sounds, and
converged after 39,009 iterations for a total of 16.3s in an one-time preprocessing.

various hit locations and methods of support. There are an average of nearly 50 impact sounds sampled per

object. All objects were supported by hand, often either with an edge being pinched between two fingers or

the center resting on a few fingertips. Audio was recorded using a Zoom H4 in a padded sound recording

booth which reduced, but did not eliminate, acoustic effects and background noise. Objects were struck with

a small metal wrench, the wrench itself being tightly gripped to minimize its own vibrations.

The eigenvalues and damping values are each normalized, but the data are not shifted or centered. With

this normalization, the estimated damping values need to be unnormalized for application to other materials.

Although we cannot guarantee that the optimization problem in this context is always convex, especially

for higher order damping functions, in multiple runs from different starting points on multiple datasets, all

optimization processes have converged on the same parameters. The optimal value of σ tends to be very

small, indicating that the distributions of damping values tend to be closer to exponential distributions than to

normal distributions. σ and η are used to guide optimization of the damping parameters, but they are not

needed for sound synthesis.

We implemented the parameter optimization algorithm in Python and NumPy. On a laptop with a

dual core 2.53 GHz Intel Core i5-540M processor, optimization over thousands of features from tens of

input sounds and hundreds of thousands of iterations takes 1-5 minutes to complete. See Figure 1.8 to see

an example of convergence behavior. Note that we are attempting to maximize the log-likelihood, as the
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Porcelain Travertine Wood Steel Plastic Glass

Rayleigh α1 3.9 1.3 39.0 2.3 39.8 2.0
α2 1e-8 2.5e-8 1.3e-7 6.9e-8 1.3e-7 7.8e-8

Hybrid
α1 3.9 1.3 39.0 2.4 34.83 1.9
α2 5.2e-9 2.5e-8 2.1e-7 5.5e-8 4.1e-7 1.5e-7
α3 1.027 1.001 0.978 1.011 0.95 0.974

Table 1.1: Damping parameters estimated using our technique. These materials come from a subset of objects
in our impact sound dataset. These parameters are described in ?? and Section 1.2.1. When hybrid α3 = 1,
the remaining hybrid damping parameters are equivalent to their Rayleigh damping counterparts. These
parameters can be used to virtually recreate the material of the real-world object.

parameters that maximize the log-likelihood also maximize the underlying probability. Upon convergence,

the optimized θd parameters model the damping behavior of the recorded material.

Table 1.1 contains results from estimation on some of the objects. When hybrid α3 = 1, the model is

identical to Rayleigh damping. Even small changes in hybrid α3 can have a large impact on the resulting

damping. For example, a 10 kHz mode on the Porcelain plate has a damping coefficient d = 20 with the

provided parameters (hybrid α3 = 1.027), but changing α3 to exactly 1 reduces the damping coefficient to

d = 12.

In general for these damping models, larger parameters create virtual materials with more damping and

shorter sounds. For example, the two objects with the most damping are the wood block and plastic bowl,

whose materials are known to be naturally heavily damped. The porcelain plate, travertine tile, and glass tile

all had similar estimated parameters.

1.3.1 Real-time Synthesis and Rendering

Finally, the optimized parameters are used for sound synthesis. Each sounding object must be prepro-

cessed before running any interactive application. Preprocessing time depends primarily on the number of

tetrahedra in the input mesh; a mesh with 2,000 tetrahedra takes under a minute to preprocess while a mesh

with 30,000 tetrahedra can take many minutes. Once each sounding object has been preprocessed, modal

synthesis is performed in real time at 44 kHz.

Like previous work (Ren et al., 2013b), we are able to synthesize sound using an interactive rigid-body

physics simulation in real time. We have implemented our method for sound synthesis with support damping

in C++ as a module for Unreal Engine 4. Our demos have been integrated with an HTC Vive headset and
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Figure 1.9: A simulated porcelain bowl is struck in multiple locations, with and without a supporting grip.

Leap Motion controller. The user’s hands were tracked with the Leap Motion, with the Vive controllers used

to represent tools that could be picked up and used to strike objects. Users can walk in the virtual environment

and strike objects, immediately hearing the resulting synthesized sound. Figure 1.1 shows multiple scenes

from our real-time demo, with multiple objects of various shapes and materials. Figure 1.9 shows another

scene, where a bowl is supported by either strings or a hand, producing different sounds depending on the hit

point and support type.

1.3.2 Human Hand-Tuning Evaluation

In the absence of an automated method for damping parameter estimation, parameters have traditionally

been estimated by hand. We present a study evaluating the effectiveness of human damping parameter

estimation, using human subjects to hand-tune material parameters for multiple objects. Specifically, we

are interested in the tuning of the damping parameters and the specific modulus γ, defined as the ratio of

Young’s modulus to density. We seek to evaluate the distributions of subjects’ selected material parameters.

For example, are subjects able to agree on a single unique set of material parameters, and if so, to what

degree of precision? We also seek to determine the time and sound samples needed for subjects to reach their

conclusions.

1.3.2.1 Experimental Setup

We constructed an easy-to-use GUI enabling interactive adjustment of material parameters for sounds

produced through modal sound synthesis. For each object in the study, we created a corresponding 3D model

by hand (a laborious process requiring precise measurements) and performed modal analysis on that model
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once (a few hours of computation time). The damping parameters and specific modulus γ for an object

can be adjusted as a post-processing step, without needing to repeat the lengthy modal analysis step. With

these optimizations, resynthesis with modified parameters took less than two seconds, allowing for rapid

iteration. In the interface, each parameter was controlled with a slider, with a range of plausible realistic

values presented on normalized scales from 0–100.

Subjects were recruited primarily through mailing lists and were not required to have any background in

parameter tuning or impact sound analysis. Subjects were compensated financially for their participation.

Subjects were given real-world objects, placed on small foam blocks to reduce support damping. For each

object, the subjects’ task was to tune material parameters such that the synthesized sound produced by the

application most closely matched the sound they heard when striking the real object. Subjects were instructed

to find the most accurate parameters possible, regardless of the time needed. Subjects first performed this

task with a training object, in order to reduce learning effects. The six objects evaluated were all disk-shaped

objects of approximately the same radius and thickness. Every subject hand-tuned material parameters for all

six objects in a random order.

The study was divided into two sections. The first 20 subjects hand-tuned three parameters for each

object: the two Rayleigh damping parameters and the specific modulus. The following 20 subjects hand-tuned

two parameters for each object: just the two Rayleigh damping parameters. For the two-parameter section,

the specific modulus was set to the mode of the subject-selected specific moduli from the three-parameter

section. The three-parameter section models the real-world case where all three parameters must be picked in

order to virtualize an object.

1.3.2.2 Results and Analysis

We first consider the distributions of subjects’ selected material parameters. Figure 1.10 shows results

from the three-parameter section of the study for a few selected objects: a wood disc and a porcelain disc. For

highly reverberant objects such as the porcelain disk, subjects could generally agree on Rayleigh damping’s

α1 parameter for each object. However, for highly damped objects such as the wood disk, Rayleigh α1

responses were less consistent. The distributions of Rayleigh α2 parameters for each object show agreement

between subjects, indicated by the relatively low standard deviations and frequently unimodal distributions.

The specific modulus, which modifies the pitch of the synthesized sound, often resulted in multimodal

distributions.
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Figure 1.10: Distributions of human-tuned material parameters for wood and porcelain discs. α1 and α2 are
Rayleigh damping parameters, E/ρ is the specific modulus, and all parameters were tuned on normalized
scales from 0–100. The observed distributions indicate that subjects had difficulty finding a unique optimal
solution for the specific modulus, and for α1 in the case of highly-damped objects.
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Figure 1.11: Box-and-whisker plots of the time and number of synthesized sounds needed for subjects to
reach their final hand-tuned material parameters, with deviant observations plotted as outliers. Between the
two versions of the study, the difference in median time is 20 s, and the difference in median sounds played is
7 sounds. Our method is an automated version of the 2-parameter study, and significantly reduces the human
labor needed.

We also consider the time and number of sounds needed for subjects to reach their conclusions. Fig-

ure 1.11 contains histograms for the amount of time and number of synthesized sounds needed for subjects to

finalize their selections. The median time needed was 165 s to tune three parameters, and 145 s to tune two

parameters. The median number of synthesized sounds needed was 35 to tune three parameters, and 28 to

tune two parameters. The range of times (33–614 s) and sounds (5–182) was highly variable, and the effect

of parameter count on times and sounds did not reach statistical significance by t-test.

Our method for parameter estimation is an automated way to perform the parameter selection task.

Human hand-tuning requires around 145 s and 28 sounds per object, requiring dedicated human attention for

the entire duration. Hand-tuning also requires creating an accurate 3D model of the object and performing

modal analysis, possibly adding hours of extra human effort. In contrast, our automated method operates

effectively with 10–20 sounds and does not require a 3D model of the object. Parameter estimation then takes

a few minutes, during which no human attention is required. Overall, our method significantly reduces the

amount of human labor needed to create virtualized objects. Compared to prior work, our method reduces

human labor by not requiring carefully controlled recording environments, creation of a 3D model, and

knowledge of object geometry and hit points.
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1.3.3 Synthetic Validation

Synthetic validation provides a numerical comparison against ground-truth damping parameters. We

synthesized a variety of sounds with known damping parameters and passed the resulting sounds through the

parameter estimation process to see if the original ground-truth values could be recovered using our algorithm.

Sounds were synthesized from the geometry of 18 models, ranging from small, hollow cups to desktop vases

and large sculptures. Five materials were chosen by randomly sampling material parameters from a range

of realistic values. For each object, ten support points were sampled at random on the surface of the object,

each with a random amount of contact force ranging from a light support to a moderate support. Then, 100

sounds were synthesized for each combination of object and material. Each sound sampled its impact point

randomly on the exterior surface and picked one support point to be active. The resulting sounds were passed

through the feature extraction process for Rayleigh damping, and extracted features from a varying number

of sounds were used to estimate the original parameters.

Parameter estimation was performed with three different estimators: EMG (our method, see Section 1.2.5)

and the two baselines LSQ and LB (see Section 1.2.3). Direct comparison against the algorithm of Ren

et al. (Ren et al., 2013b) is infeasible due to the significant differences in inputs and outputs. However,

their method will produce results most similar to the least squares (LSQ) estimator. We compared the error

between the ground-truth parameters and the estimated parameters while using a varying number of input

sounds. For each tested number of impact sounds, 30 different sets of sounds of that cardinality were sampled,

and the resulting errors averaged.

1.3.3.1 Discussion

Figure 1.12 shows the relative error for each parameter and each estimator. For all materials in this

synthetic data, both the EMG and LB estimators significantly outperformed the LSQ estimator (p < .05).

With real-world data, the EMG and LB estimators more frequently decouple, as the EMG estimator’s

statistical model better adapts to noise and other artifacts of recording. These synthetic sounds, without noise

or other effects, are the ideal situation for the LB estimator, and do not leverage the full capabilities of the

EMG estimator.

Rayleigh α1 estimates have minimal error, especially with larger amounts of data. While the error in

Rayleigh α2 is relatively higher, no prior work has performed a similar validation for comparison. Prior work
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Figure 1.12: Relative error for Rayleigh damping parameters α1 and α2 in synthetic validation. As the
number of sounds used for parameter estimation increase, error in Rayleigh damping parameter α1 decreases
while α2 displays some overfitting as number of input sounds increases.

would produce results most similar to the LSQ estimator, which was outperformed by our method. In light of

this, our method provides an improvement over previous work while removing the need for knowledge of

geometry and hit points. Finally, the error is mostly important as it affects users’ perception of the material.

Our perceptual evaluation provides an analysis of whether our estimated parameters are accurate when

evaluated by humans.

1.3.4 Perceptual Evaluation

Numerical comparisons against previous work are difficult since our method is the first work to estimate

damping parameters given only input audio with no knowledge of geometry, size, or hit point. In this

study, we considered recorded real-world sounds, and sounds synthesized using three sets of damping

parameters: parameters from Ren et al. (Ren et al., 2013b), parameters from the human hand-tuning study

(Section 1.3.2), and parameters estimated using our method to create 4 datasets. We sought to evaluate how

well the synthesized sounds recreate the real-world sounds. Subjects evaluated sounds individually, answering

questions about qualities of the sounds and estimating properties of the object or impact. Synthesized sounds

that more accurately recreate qualities of the real-world sounds should produces similar patterns of answers

to questions.

1.3.4.1 Experimental Setup

The study was conducted in an online web questionnaire, and subjects were recruited through mailing

lists and online posts, but no financial compensation was offered. No prior experience in auditory perception
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was expected. Subjects were asked to wear headphones or earbuds to ensure a consistent auditory environment.

All sounds were scaled to the same volume, though difference in sound playback devices may have affected

perception. Subjects listened to a series of impact sounds, answering questions about each. Variables involved

are sound datasets (4: as listed above), object shape (2: disc or rod), and material class (5: wood, metal,

plastic, glass, porcelain). All together, this produces a total of 40 sounds to evaluate.

24 subjects participated in the study, but more specific demographic information was not collected. Each

subject listened to all 40 impact sounds in randomized order. For each sound, subjects were asked which

object shape and material class they suspected created the sound. Subjects also were asked to rate descriptive

qualities of the sound—the duration, ringiness, tonality, and pitch—on 7-point ordinal scales. The extreme

ends of the scales were descriptively labeled, e.g. tonality ranged from “mixed tones” to “pure tone”. Subjects

could listen to each sound multiple times as needed. A brief training section at the beginning provided

example sounds and definitions for the descriptive qualities.

1.3.4.2 Results: Confusion Matrices

Even with recorded real-world sounds, user identification of material and shape is not always accurate.

In evaluation of synthetic datasets, we compare the pattern of errors to those of the real-world sounds, with a

closer match suggesting more realistic synthesized sounds. Figure 1.13 shows confusion matrices for material

class identification for the disc-shaped objects.

The recorded dataset demonstrates mis-labelings such as heavy confusion between wood and plastic,

perception of the glass and ceramic discs as metal, and high accuracy on the metal disc. The hand-tuned

dataset differs primarily in perception of its glass and ceramic objects; these differences could be due to

human error while hand-tuning or due to inherent assumptions in the underlying modal synthesis model. The

Ren dataset largely reproduces the matrix from their original paper (Ren et al., 2013b), although it does not

recreate the error patterns (particularly metal) seen in our recorded or hand-tuned datasets. Our dataset (EMG)

most closely resembles the hand-tuned results, with the exception of plastic being identified as ceramic by

some subjects.

We evaluate the pairwise similarity between these matrices by computing the Frobenius norm of the

element-wise difference of the two. The two most similar matrices are the hand-tuned and EMG dataset

results, with a difference norm of 16.03. In comparison, between Ren and the hand-tuned data, the norm is

22.09. Against recorded sounds, EMG’s norm was 23.11, while ren’s norm was 31.85 and hand-tune’s norm
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Figure 1.13: Material confusion matrices for the disc-shaped objects in our perceptual study. All four
tested datasets (including recorded sounds) show significant labeling errors. However, our method (EMG)
replicates the pattern of errors seen in the recorded and hand-tuned datasets more closely than the Ren dataset,
suggesting more accurate recreations of the real-world sounds.
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Figure 1.14: The mean selected value for each descriptive quality, material, and dataset. Most datasets are
tightly clustered for pitch and tonality, with more differences in duration and ringiness. The Ren dataset
contains many statistically-significant differences from the recorded dataset. While our EMG dataset contains
some differences in duration and ringiness, it is overall closer to the recorded means.

is 22.83. The high similarity (low difference norm) between our EMG results and the hand-tuned results

suggests that our method automatically produces sounds perceptually similar to what would be selected by

human hand-tuning.

1.3.4.3 Results: Descriptive Qualities

We evaluate the descriptive quality ratings by performing a multi-factorial repeated measures ANOVA.

Each of the variables (sound dataset, object shape, and material) is considered an ANOVA factor, each a

repeated measure across subjects. The main effects of dataset, shape, and material are all significant for all four

descriptive qualities. For example, for perception of pitch, the effects of material (F4,92 = 95.61, p < .05),

shape (F1,23 = 30.35, p < .05), and dataset (F3,69 = 22.79, p < .05) are all significant. This is not

surprising, as each of these effects alone can dramatically change the sound. Almost all interaction effects

are significant, with the exceptions of material*dataset on tonality (F12,276 = 2.814, p = .107). Table 1.2

contains the full list of main and interaction effects for each perceptual quality.

Figure 1.14 contains the mean values for each descriptive quality, material, and dataset (using combined

results for shapes). For pitch and tonality, most dataset means are closely-clustered. Duration and ringiness
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Duration
Df1 Df2 F value Pr(> F )

Material 4 92 739.4 < .001

Shape 1 23 65.65 < .001

Dataset 3 69 81.23 < .001

Material*Shape 4 92 52.97 < .001

Material*Dataset 12 276 53.56 < .001

Shape*Dataset 3 69 43.16 < .001

Mat*Shape*Dset 12 276 16.3 < .001

Pitch
Df1 Df2 F value Pr(> F )

Material 4 92 95.61 < .001

Shape 1 23 30.35 < .001

Dataset 3 69 22.79 < .001

Material*Shape 4 92 5.754 < .001

Material*Dataset 12 276 2.814 .0012

Shape*Dataset 3 69 69.23 < .001

Mat*Shape*Dset 12 276 4.691 < .001

Ringiness
Df1 Df2 F value Pr(> F )

Material 4 92 469.7 < .001

Shape 1 23 35.07 < .001

Dataset 3 69 51.47 < .001

Material*Shape 4 92 40.25 < .001

Material*Dataset 12 276 28.45 < .001

Shape*Dataset 3 69 7.708 < .001

Mat*Shape*Dset 12 276 4.984 < .001

Tonality
Df1 Df2 F value Pr(> F )

Material 4 92 9.325 < .001

Shape 1 23 20.97 < .001

Dataset 3 69 15.27 < .001

Material*Shape 4 92 11.54 < .001

Material*Dataset 12 276 1.548 0.107

Shape*Dataset 3 69 35.36 < .001

Mat*Shape*Dset 12 276 2.53 .0035

Table 1.2: Significance of fixed effects in our perceptual study, as determined by repeated measures ANOVA.
For each of the four perceptual qualities, the resulting degrees of freedom, F score, and p value are listed. All
main effects and almost all interactions are significant at the p < .001 level.
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Figure 1.15: Average error between perceptual quality ratings in the recorded dataset versus each of the three
synthetic datasets. A lower average error is better, indicating more perceptual similarity with the recorded
sounds. Both hand-tuned and EMG perform well.

show more difference: while hand-tuned and recorded are closely aligned, Ren and EMG occasionally display

more variance. Ringiness displays nearly the same pattern of significance as duration.

Synthetic datasets that produce more realistic sounds should have descriptive qualities similar to the

recorded dataset. To evaluate this, we look at the absolute error between each subject’s recorded and synthetic

ratings for each sound. Across all materials and shapes, hand-tuned sounds were closest to the recorded

sounds for duration and ringiness. For pitch and tonality, all datasets produced more similar results.

Figure 1.15 shows the computed average error values. The hand-tuned dataset is closest for the duration

and ringiness qualities, our EMG method is the closest for pitch, Ren is closest for tonality. Our EMG dataset

outperforms the Ren dataset on each perceptual quality except for tonality. One-way repeated-measures

ANOVAs show a significant effect of dataset on error for duration (F2,46 = 50.03, p < .05), ringiness

(F2,46 = 20.11, p < .05), and tonality (F2,46 = 5.717, p < .05). There was no significant effect of dataset

on error for pitch (F2,46 = 50.03, p = .347).

Hand-tuned parameters produce the closest ratings to the recorded dataset on these perceptual scales.

The Ren dataset contains many discrepancies from the real dataset, shown in the duration, pitch, and ringiness

of the more reverberative materials. Our EMG dataset properly reproduces the perceptions of the pitch and

tonality of the recorded objects, but in some cases produces higher duration and ringiness. Our EMG method

demonstrates an improvement over the Ren dataset in the fit to recorded sounds.
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1.4 Summary

We have presented a method for estimating material damping parameters using recorded impact sounds

as the only input. We have validated these contributions through parameter estimation on a new dataset of

impact sounds on rigid objects, using both an auditory user study and synthetic validation. These methods

can extract real-world material parameters from audio recording and recreate virtualized materials and their

rich sound effects arising from dynamic interaction in virtual environments.

1.4.1 Limitations

Our method removes a number of assumptions used by prior damping parameter estimation tech-

niques (Ren et al., 2013b). For example, our method does not require knowledge of the object’s geometry,

and it reduces the strict assumptions on the object’s support and the presence of background noise. However,

some common assumptions of prior works remain: (1) application to rigid objects and their vibrations can

be accurately modeled by linear analysis. (2) difficulty to fully remove all external damping factors—the

presence of loud transient noises, a tightly-coupled support, or a highly reverberative room may still impose

residual effects.

1.4.2 Future Work

In general, for parameter estimation, there exists a tradeoff between the amount of assumptions on the

required inputs and the quality of outputs. We do not assume prior knowledge on the object geometry, size,

material parameters, or the impact location—just audio recording is sufficient. However, this technique

currently does not estimate Young’s modulus, Poisson’s ratio, density, or geometric properties of the object.

Generalization of a probabilistic model like this work or use of learning algorithms can potentially estimate

these parameters automatically using only a few audio recordings. A method that can optimize all parameters

simultaneously would further simplify the pipeline from audio recording to automatic synthesis. Future work

may explore if additional inputs can result in a much greater increase in the number of estimated parameters.

A single sound is not enough to estimate parameter α1 with sufficient accuracy; upwards of 10–20 sounds

may be needed. In our human parameter tuning study, subjects were initially untrained; experts may produce

slightly different parameter distributions.
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