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Abstract
Accurate registration in an Augmented Reality system

requires accurate trackers.  An electronic compass can be
a valuable sensor in an outdoor Augmented Reality
system because it provides absolute heading estimates.
However, compasses are vulnerable to distortion caused
by environmental disturbances to Earth’s magnetic field.
These disturbances vary with geographic location and
are not trivial to model.  Static calibration methods exist
but these require an explicit initial calibration step and
do not adapt to changing distortion patterns.  This
paper describes in detail an autocalibration method that
compensates for changing compass distortions.  With
minimal user input, it automatically measures and
adjusts the calibration table used to correct the compass
output.  Autocalibration uses redundant heading
information computed from rate gyroscopes.  We
demonstrate that autocalibration converges to solutions
similar to a distortion table that was manually measured
with a mechanical turntable.  With autocalibration, an
electronic compass can provide useful measurements even
as the user walks around through areas of varying
magnetic distortion.

1. Motivation

A basic objective of any Augmented Reality (AR)
system is the accurate alignment of virtual objects over
their real counterparts.  Achieving this goal requires
accurate real-time sensors to measure the user’s position
and orientation.  Ideally, an AR system would support
accurate registration in any operating environment,
including outdoors.

In an outdoor situation, an electronic compass can be an
important part of an effective hybrid tracking system for an
AR display.  The compass yields an absolute
measurement of the yaw component of orientation by
sensing Earth’s magnetic field.  In an indoor situation,
the AR system may have many absolute references
available, perhaps through fiducial markers placed at
known locations.  But such absolute references are harder
to provide in an outdoor situation, since the system
designer has little control over the environment.

Therefore, a sensor like an electronic compass that can
provide absolute information in an outdoor situation
without requiring any modification of the environment is
potentially valuable.

However, compasses are vulnerable to distortion,
because Earth’s magnetic field is a weak signal.  Besides
magnetic declination (an offset caused by the geographical
separation of Earth’s true north pole and magnetic north
pole), distortions can be introduced by any nearby
substance that disturbs the magnetic field.  Empirical
measurements taken at several different locations around
Malibu suggest that the peak-to-peak distortions can be
several degrees, and the distortion pattern can appear as
complicated curves that are not easily modeled.

These distortions will exist even with a perfect
compass.  They are endemic properties of the
environment.  Although electronic compasses vary in
sensitivity and quality, buying a perfect compass (if such
a device existed) would not solve this problem.

Furthermore, these distortions vary with geographic
location.  A user walking around outdoors would
experience different distortion patterns at different
locations.  This problem is especially acute in areas with
large magnetic disturbances, such as an urban
environment.  Therefore, calibrating the system for a
single location is insufficient to solve the entire problem.

This paper describes in detail an approach to
autocalibrate an electronic compass.  The method is
designed to automatically adjust, with minimal user
input, the calibration table used to correct the compass
output.  Thus, as the user walks around, this method can
automatically compensate for the changing distortions in
the magnetic field.  With this method, an electronic
compass can still be a useful source of information to an
outdoor AR system even as the user walks around.

2. Previous work and contribution

Standard approaches to calibrating electronic compasses
involve either building a mathematical model of the
distortion and finding appropriate parameters to fit that
model to the experienced distortion, or building a
calibration table of the distortion and applying that to
correct the distortion.  These approaches involve an



explicit calibration step and measure the distortion at one
location.  While they may work well for vehicles such as
aircraft, since those operate far away from the ground-based
sources of magnetic distortion, these approaches are not
well-suited for a walking user on the ground who will be
exposed to many changing distortion patterns.

Some outdoor AR systems have been built and have
used electronic compasses as part of their tracking system.
An earlier system at HRL [1] uses an electronic compass
as part of a gyro-compass hybrid tracker, but the compass
calibration in that system was an explicit, manual
measurement of the distortion at individual locations, and
it had no ability to compensate for changing distortions.
[2], [4] and [6] also have outdoor AR tracking systems,
some of which use a compass, but none explicitly
describe a compass calibration routine.

Our work is related to previous autocalibration efforts
for virtual environment systems.  Their general approach
is to use multiple sensors to provide redundant
measurements of a particular property and use the
redundancy to correct for parameters that control the
output of the tracker.  [3] describes approaches for
autocalibration involving magnetic and optical trackers.
The Single Constraint at a Time (SCAAT) filter [7]
includes autocalibration as a feature and has been
demonstrated on a custom optical tracker at UNC Chapel
Hill.  While the basic idea behind autocalibration may be
simple, finding effective methods of employing it and
demonstrating it on working systems remains a nontrivial
problem.  Our work differs by designing an
autocalibration method for an electronic compass rather
than 6-DOF magnetic and optical trackers, requiring a
different algorithm and approach.

The contribution of this paper is in the description of a
new method to autocalibrate an electronic compass, to
make such a tracker useful for outdoor AR applications.
This calibration approach avoids an explicit calibration
step in advance and adapts to changing magnetic
distortions as the user walks around, while previous
methods are intended for constant distortion patterns.

3. Method

3.1. Overview
Effective autocalibration requires sources of redundant

information, either through multiple sensors or multiple
measurements of a known invariant.  In our system, we
use two types of sensors to measure head orientation:
three rate gyroscopes (Systron Donner GyroChip II,
model QRS14-500-103) and one electronic compass
orientation sensor (Precision Navigation TCM2-50).  The
rate gyroscopes measure the angular velocity of
orientation, while the TCM2 measures absolute
orientation through a combination of an electronic
compass (heading) and two tilt sensors (pitch and yaw).

We state the problem as follows: with these sensors,
the system must recover an accurate estimation of the head
orientation.  The sensors will have some noise in their

outputs.  There is also a significant bias in the electronic
compass, due to magnetic disturbances in the
environment.  In reality, there will be biases in the
gyroscopes as well and other types of distortions but for
the purposes of this autocalibration routine we assume
those other errors are much smaller and can be ignored.
Therefore, the estimator must simultaneously compute the
orientation and the bias for the electronic compass.

The compass bias varies with head orientation.  The
bias is not a scalar value, but rather takes the form of a
calibration table.  The table is indexed by the reported
compass heading.  To correct the compass output, the
estimator looks up the associated bias for that heading and
adds that to the output.  Since the table has a limited
number of entries, the computed bias will generally be
interpolated between the two nearest table entries.

Our general approach is to modify the Kalman-like
estimator used in [1].  We add an explicit bias table as
part of the estimator.  The method must automatically
update the values in the bias table.  We define a cost
function that has minimum value when the bias estimate
matches the true bias.  A gradient descent strategy tells
the estimator how to adjust the bias values to reduce the
cost.  With time, the estimator eventually computes good
estimates for the bias table.  To reduce the computational
complexity, we make a significant simplification that
empirically works, as demonstrated on real test data.

The rest of this section is organized as follows: Section
3.2 defines the estimator and the relevant variables.  The
reader can then read the derivation of the method in
section 3.3 or skip directly to section 3.4 for the
explanation of the actual algorithm.  Section 3.5 describes
an important pitfall in the method and how to compensate
for that weakness.

3.2. Definitions
The estimator is based upon a discrete Kalman filter [5]

and is a modification of the estimator used in [1].  Each
discrete step i is one millisecond of time, so the estimator
updates at 1 kHz.  The estimator maintains a state vector
xi which is a 6 by 1 matrix:

x
T

i C C C g g gr p h r p h= [ ]
where r, p, and h represent the roll, pitch and heading
values at that discrete step i.  The subscripts c and g
denote compass (TCM2) and gyroscope, respectively.
The first three values are absolute angles in degrees and
the last three are angular rates in degrees per second.  x i is
the true value of the state vector, which of course is not
known.  We can only estimate the state vector through
our sensor measurements, and this estimate is x̂i .

There are two processes that update the state.  The first
is the model of system dynamics, represented by:

x A x wi i i i+ = +1

where Ai is a 6 by 6 matrix representing how the state
vector changes in the absence of any measurements, and



wi represents a 6 by 1 matrix of white noise sources.  We
define Ai later on in this section.  The other process
shows the relationship of measurements to the state
vector:

z H x B x vi i i i= + ( ) +
where zi is a 6 by 1 matrix holding the measurements, H
is a 6 by 6 matrix converting the state vector into the
measurements, B(xi) is the state-dependent sensor bias,
and vi is another white noise vector.  In our case, zi has
the same definition as x i, so H is the 6 by 6 identity
matrix. Note: in the realtime system there is a time delay
between the compass and gyro measurements, which we
ignore here for simplicity.  See [1] for how that is
accounted for in the estimator.  We define B later on in
this section.

The estimator combines both the dynamics and the
measurement processes into one update.  Given a
measurement and a previous estimated state, the new
estimated state is computed as follows:

ˆ ˆ ˆ ˆ ˆx A x K z B A x HA xi i i i i i i i+ += + − ( ) −( )1 1

This update is a simplification of the Kalman filter,
where we use a constant 6 by 6 Kalman gain matrix K,
defined as:
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where I3x3 is the 3 by 3 identity matrix, 03x3 is a 3 by 3
matrix filled with zeroes, and the empirically-determined
gain constants are gc = 0.05 and gg = 1.0.  Using a
constant K reduces the computation requirements,
effectively operating the filter in a steady-state condition.

The derivation of Ai is lengthy, so we only include the
definition here:
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where ∆ t is the timestep (0.001 seconds) and A12 is a 6
by 6 matrix that translates small rotations in the sensor
suite’s frame to small changes in the TCM2 variables:
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where cθ = cos(θ), sθ = sin(θ), tθ = tan(θ).  For example,
cp = cos( p ) and t2r = tan2( r ).  r and p are the TCM2
roll and pitch variables in the estimated state vector (i.e.
rc and pc).  Variable a is defined as:

a
t p t r

=
+ +
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Our goal is to determine the sensor bias B().  Of course,
we can only estimate this, so we compute the estimated

bias ˆ ()B .  The bias takes the form of a lookup table, and
the entry depends on the current estimated state.  The
lookup table has n entries, where each represents one
patch (p1 to pn) of heading space.  When the heading hc in

the estimated state is in patch pj, we use the estimated

bias vector B̂ j  from the lookup table:

ˆ ˆ ˆ ˆB A x B A xi i j i i jp( ) = ∈, if

Bias vector B̂ j  is a 6 by 1 matrix with only one non-

zero setting, since the only bias we are computing is the
bias for the compass heading (yaw), bh.

B̂
T

j hb= [ ]0 0 0 0 0

3.3. Derivation
The goal is to compute the entries in the bias table,

which should contain the differences between the measured
and the true values in the state:

B x z H x xi i i i( ) = −[ ]E |
This problem would be easy if we knew the true state

xi.  Of course, we can only estimate the state, so we must
employ an indirect estimation method.  Another way to
state the problem is to subtract the sensor bias estimate
and tune the result so the expected value is zero.  We use

B̂ j  as the sensor bias vector for the current patch:

E z B H x xi j i i jp− − ∈[ ] =ˆ | 0

One approach to solving such a parameter estimation

problem is to construct an energy function where B̂ j  is

the parameter.  The value of the energy function is

everywhere nonnegative and is minimized when B̂ j  is

optimal.  We then use a gradient descent search strategy

to search for the optimal value of B̂ j  by taking the

gradient of this function with respect to B̂ j  and

incrementally changing the value of B̂ j  along the

direction of the gradient to improve our estimate.  One
such energy function is:

E z B H x xi j i i jp− −( ) ∈
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It can be shown that this energy function is minimized

when ˆ |B B x xj i i jp= ( ) ∈[ ]E , i.e. when  B̂ j  is an

optimal bias estimate.
However, this candidate energy function requires that

we know the true state of the system, x i, which is
unavailable.  Instead, we must substitute the estimated
state x̂i , so the energy function becomes:

E z B H x xi j i i jp− −( ) ∈
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There is a significant pitfall created by this substitution,
which is discussed in detail in section 3.5.

Now define:

d z B H xi i j i= − −ˆ ˆ



Our energy function Ej is the statistical variance of d i

over all “visits” the algorithm makes to patch pj:
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where pj  is the number of “visits” to patch pj and 1
2  is

an arbitrary positive constant added for convenience.
The gradient descent algorithm is expressed by the

parameter update:

∆ ˆ
ˆB
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j

T

where ∆B̂ j  is the change to the sensor bias estimate at

the patch pj, γ is a small positive constant controlling the
learning rate, and ∇

B̂ j
Ej  is the gradient of Ej with

respect to B̂ j .  This gradient is:

∇ =










∈
∑ˆ ˆ

ˆ
B

d

Bx
d

j
E

p p
j

j

i

j
i j

i

1 ∂
∂

T

Since this expression is a sum, we can instead model
the change to the sensor bias estimate as a sequence of
changes, one for each visit to a particular patch pj:
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The task now becomes one of computing the

incremental bias update ∆B̂ j
i , which requires computing

∂
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d

B
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j
ˆ .  We can rewrite di as:
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recursive formula. The end result when plugged back into

the equation for 
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Using this expression for 
∂
∂

d

B
i

j
ˆ  would be difficult in a

real-time system.  It can be computationally intensive,
involving the product of a series of matrices, and the total
number of terms involved grows with time.  As the
counter i increases, we must store a longer history of
patches visited and matrices A i, which could require
significant storage space.  Therefore, it is not attractive to

use this expression to compute an exact value for 
∂
∂

d

B
i

j
ˆ .

Instead, it is preferable to find an approximation that is
more computationally efficient.  We note that matrix K
weighs the contribution from the sensor measurements
and (I-K H) gives partial weight to the system dynamics.
When these matrices are iteratively multiplied, they decay
the terms.  Therefore, values in the past are weighed less
and less until they do not contribute significantly.  This

can be seen by rewriting 
∂
∂

d

B
i

j
ˆ , with the following

assumptions: H=I, Ai=A, and K=aI where 0 < a < 1.
Then:
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The terms where k << i will not be significant.  To
avoid any storage issues, we simplify this greatly by
dropping all of the first terms which might require storing
past values of Ai, so that

∂
∂

d

B
Ii

j
ˆ ≈ −

Using such an approximate gradient often allows
gradient descent to find an optimum through a “gradually
downhill” path rather than a “directly downhill” path.
This simplification makes the entire bias update
algorithm very simple and easy to compute in real time.
To verify that this simplification still generates reasonable
results, we tested this algorithm on real data. Those
results are shown in section 4.

With this simplification, the incremental change to the
sensor bias estimate at patch pj reduces to:

∆ ˆ ' ˆ ˆB z B H xj
i

i j i= − −( )γ



3.4. Algorithm
First, choose a learning rate γ ' .  Then for each time

step i:
1) Given the estimated state A xi i− −1 1

ˆ , determine the

current patch pj and retrieve the associated bias vector B̂ j

from the lookup table.
2) Estimate the new state for timestep i:

ˆ ˆ ˆ ˆx A x K z B HA xi i i i j i i= + − −( )− − − −1 1 1 1

3) Compute a 6 by 1 matrix d i, representing the
difference between the bias-adjusted sensor input and the
estimated state:

d z B H xi i j i= − −ˆ ˆ
4) Compute an update to the bias vector, modify the

vector and then store it back into the lookup table, using
the simplification from section 3.3:

∆ ˆ 'B dj
i

i= γ

3.5. A pitfall
As stated in the derivation, there is a pitfall when

computing the difference d i using the estimated state x̂i

rather than the actual state xi.  The autocalibration routine
has no ability to detect DC offsets between the estimated
state and the actual state.  Another way of stating this is
the autocalibration routine is good at determining the
shape of the compass distortion lookup table, but there
could be an undetermined DC offset added to all the
lookup table values that is needed to get accurate results.
Figure 1 gives an example of this effect.  This was
generated from an artificial data set of 10,000 sensor
samples collected over 10 seconds.  This data was run
through the autocalibration routine 25 times with a
learning rate set to 0.05.  Figure 1 shows the true
compass distortion as the dotted line, and the distortion
computed by the autocalibration routine as the solid line.
The autocalibration routine has captured the shape of the
compass distortion correctly, but there is a 5 degree offset
between the two curves.

Figure 1: Calibration tables
demonstrating offset problem.  Dotted line
is the true value; solid line is computed by

the autocalibration routine.

This pitfall becomes obvious when one considers the
nature of the sensors involved.  We use a combination of

rate gyroscopes and a compass and tilt sensor.  The rate
gyroscopes do not measure absolute orientation.  Only the
compass gives absolute heading information.  If there is a
systematic offset in the compass output, caused for
example by magnetic declination, there is no other sensor
available to detect and correct this error.  The gyroscopes
can calibrate relative errors (the shape of the overall curve)
but not the absolute error (an overall offset).

To get around this problem, we need to measure the
bias correction for  one patch in the lookup table.  One
way to do this is to sight a landmark at a known location.
Given the location of the landmark and the observer’s
known location (measured through a differential GPS
receiver), it is easy to compute the true heading.  Let’s

call this measured offset ˆ *B  for a landmark observed in
patch k.  Then we run the algorithm as stated before, but
periodically adjust all bias estimates by:

∀ = − −( )j j j k, ˆ ˆ ˆ ˆ *B B B B
This subtracts the constant bias error from the entire
lookup table.

As the user walks around and the one absolute

landmark-based correction ˆ *B  becomes less relevant, the
overall calibration table may become offset with respect to
the true table value.  There are two ways to correct this
problem.  The first is that the user could manually adjust
the offset, by occasionally twisting a dial.  This is much
easier than trying to set an entire calibration table
manually.  However, this does require user interaction for
a task that ideally should be free of user involvement.
Therefore, the preferred approach would be to incorporate a
video camera and vision-based recognition software that
can occasionally find and recognize known landmarks in
the environment.  Then the calibration system would
automatically compute a new landmark-based correction
ˆ *B  from time to time, as the user walks around, and this

will serve to automatically remove the constant bias offset
from the entire table.

4. Evaluation

To evaluate how well the autocalibration routine works,
we need to compare the calibration table computed by
autocalibration against a more accurate measurement of the
true magnetic distortion.  Therefore, we evaluate this
method by first using a mechanical turntable to manually
measure the distortion (Figure 2).  This turntable is made
of Delrin, to avoid adding any additional distortion to the
magnetic field.  The turntable is accurate to 0.25 degrees.
We manually generate a calibration table for comparison
purposes by turning the compass to known orientations
and recording the average heading measurements.

Then we captured three datasets of head motion,
averaging 20 seconds long.  These datasets were captured
in the same session as the manual calibration.  Since they
share the same geographic location and are taken at about



the same time, we assume the distortion pattern is the
same for all datasets.  

Figure 2: Mechanical turntable with
TCM2-50 and gyroscopes mounted

Figure 3 compares the results of autocalibration against
the manually measured calibration table.  The dotted line
is the manually generated calibration table, using the
mechanical turntable.  The three solid lines are the
outputs of the autocalibration routine for the three
datasets.  Note that the shapes of all four curves are very
similar, demonstrating that autocalibration has computed
the distortion pattern at this location.  The offsets
separating the curves can be reduced through approaches
discussed in section 3.5.
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Figure 3: Comparison of manual
calibration (dotted line) vs. autocalibration

(solid lines)

We intend to do a more thorough demonstration of the
autocalibration routine’s ability to adapt to changing
environments by checking the calibration table after
walking to a different geographical location.

5. Future work

We are in the process of adding visual-based corrections
in real time to reduce the registration errors in the outdoor
AR system (using methods similar to [8]).  Such visual
corrections would provide another source of absolute

measurements and could be used to improve the
autocalibration of the compass.  The compass could then
provide absolute heading during the times that visual
features or landmarks in the real environment are
unavailable.

Autocalibration might apply to other sensors and
calibration parameters in an AR system, providing that
sufficient redundancy existed to allow the setup of an
autocalibration strategy.  This might reduce the
calibration setup requirements in AR systems.
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