
EDF Scheduling on Heterogeneous Multiprocessors

by
Shelby Hyatt Funk

A dissertation submitted to the faculty of the University of North Carolina at Chapel
Hill in partial fulfillment of the requirements for the degree of Doctor of Philosophy in
the Department of Computer Science.

Chapel Hill
2004

Approved by:

Sanjoy K. Baruah, Advisor

James Anderson, Reader

Kevin Jeffay, Reader

Jane W. S. Liu, Reader

Montek Singh, Reader

Jack S. Snoeyink, Reader

ii

iii

c© 2004
Shelby Hyatt Funk

ALL RIGHTS RESERVED

iv

v

ABSTRACT

SHELBY H. FUNK: EDF Scheduling on Heterogeneous Multiprocessors.

(Under the direction of Sanjoy K. Baurah)

The goal of this dissertation is to expand the types of systems available for real-time
applications. Specifically, this dissertation introduces tests that ensure jobs will meet their
deadlines when scheduled on a uniform heterogeneous multiprocessor using the Earliest Dead-
line First (EDF) scheduling algorithm, in which jobs with earlier deadlines have higher priority.
On uniform heterogeneous multiprocessors, each processor has a speed s, which is the amount
of work that processor can complete in one unit of time. Multiprocessor scheduling algorithms
can have several variations depending on whether jobs may migrate between processors — i.e.,
if a job that starts executing on one processor may move to another processor and continue
executing. This dissertation considers three different migration strategies: full migration,
partitioning, and restricted migration. The full migration strategy applies to all types of job
sets. The partitioning and restricted migration strategies apply only to periodic tasks, which
generate jobs at regular intervals. In the full migration strategy, jobs may migrate at any
time provided a job never executes on two processors simultaneously. In the partitioning
strategy, all jobs generated by a periodic task must execute on the same processor. In the
restricted migration strategy, different jobs generated by a periodic task may execute on dif-
ferent processors, but each individual job can execute on only one processor. The thesis of
this dissertation is

Schedulability tests exist for the Earliest Deadline First (EDF) scheduling algo-
rithm on heterogeneous multiprocessors under different migration strategies in-
cluding full migration, partitioning, and restricted migration. Furthermore, these
tests have polynomial-time complexity as a function of the number of processors
(m) and the number of periodic tasks (n).

• The schedulability test with full migration requires two phases: an O(m) one-
time calculation, and an O(n) calculation for each periodic task set.

• The schedulability test with restricted migration requires an O(m + n) test
for each multiprocessor / task set system.

• The schedulability test with partitioning requires two phases: a one-time ex-
ponential calculation, and an O(n) calculation for each periodic task set.

vi

vii

ACKNOWLEDGEMENTS

First, I would like to thank my advisor, Sanjoy K. Baruah. He has been a wonderful advisor
and mentor. He and his wife, Maya Jerath, have both been good friends. In addition, I would
like to thank my committee members Jim Anderson, Kevin Jeffay, Jane Liu, Montek Singh,
and Jack Snoeyink. Each committee member contributed to my dissertation in different and
valuable ways. I would also like to thank Joël Goossens, who I worked with very closely. He
has been a good friend as well as colleague. I have also had the pleasure of working with a
talented group of graduate students while at UNC. I would like to thank Anand Srinivasan,
Phil Holman, Uma Devi, Aaron Block, Nathan Fisher, Vasile Bud, and Abishek Singh, who
have all participated in real-time systems meetings.

It has been a pleasure to be a graduate student at the computer science department at
UNC in large part because of the invaluable contributions of the staff. I thank each member
of the administrative and technical staff for the countless ways they assisted me while I was
a graduate student.

I have also had the pleasure of making wonderful friends while I was in the graduate
department at UNC. These friends, both those in the department and those from elsewhere,
provided me with much-needed relaxation during my graduate studies. I feel privileged to
have had so much support.

Finally, I would like to thank my family. My mother, Harriet Fulbright, who was a great
support during my entire time in graduate school. My grandparents, Brantz and Ana Mayor,
who encouraged me to apply to graduate school in the first place. My sisters, Heidi Mayor
and Evie Watts-Ward, who both are the best friends I could ask for. And Evie’s family,
James, Bo and Anna Ward, who have provided me a refuge in Chapel Hill.

viii

ix

TABLEOFCONTENTS

LIST OF TABLES xiii

LIST OF FIGURES xv

1 Introduction 1

1.1 Overview of real-time systems . 2

1.2 A taxonomy of multiprocessors . 5

1.3 Multiprocessor scheduling algorithms . 7

1.4 EDF on uniform heterogeneous multiprocessors 13

1.5 Contributions . 15

1.6 Organization of this document . 17

2 Background and related work 18

2.1 Results for identical multiprocessors . 19

2.1.1 Online scheduling on multiprocessors 19

2.1.2 Resource augmentation for identical multiprocessors 24

2.1.3 Partitioned scheduling . 27

2.1.4 Predictability on identical multiprocessors 28

2.1.5 EDF with restricted migration . 31

2.2 Results for uniform heterogeneous multiprocessors 32

x

2.2.1 Scheduling jobs without deadlines . 32

2.2.2 Bin packing using different-sized bins 38

2.2.3 Real-time scheduling on uniform heterogeneous multiprocessors 40

2.3 Uniform heterogeneous multiprocessor architecture 44

2.3.1 Shared-memory multiprocessors . 44

2.3.2 Distributed memory multiprocessors 47

2.4 Summary . 48

3 Full migration EDF (f-EDF) 50

3.1 An f-EDF-schedulability test . 52

3.2 The Characteristic Region of π (CRπ) . 57

3.3 Finding the subset crπ of CRπ . 60

3.4 Finding points outside CRπ . 66

3.5 Identifying points whose membership in CRπ has not been determined 70

3.6 Scheduling task sets on uniform heterogeneous multiproces-
sors using f-EDF . 71

3.7 Summary . 71

4 Partitioned EDF (p-EDF) 73

4.1 The utilization bound for FFD-EDF and AFD-EDF 74

4.2 Estimating the utilization bound . 82

4.3 Summary . 88

5 Restricted migration EDF (r-EDF) 90

5.1 Semi-partitioning . 98

xi

5.2 Virtual processors . 100

5.3 The r-SVP scheduling algorithm . 104

5.4 Summary . 107

6 Conclusions and future work 108

6.1 The EDF-schedulability tests . 110

6.2 Future work . 112

6.2.1 Generalizing the processing model . 112

6.2.2 Generalizing the job model . 114

6.2.3 Algorithm development . 115

6.2.4 Combining models . 115

6.3 Summary . 116

INDEX 117

BIBLIOGRAPHY 119

xii

xiii

LISTOFTABLES

2.1 A job set with execution requirement ranges. 30

2.2 Approximating the variable-sized bin-packing problem. 40

6.1 Context for this research and future research. 110

xiv

xv

LISTOFFIGURES

1.1 Period and sporadic tasks . 3

1.2 The importance of λ(π). The total speed of each of these two
multiprocessors equals 8. The jobs meet their deadlines when
scheduled on π1, but J2 misses its deadline when these jobs
are scheduled on π2, whose λ-value is larger. 8

1.3 EDF is a dynamic priority algorithm. 9

1.4 Scheduling tasks with full migration . 10

1.5 Scheduling tasks with no migration (partitioning) 11

1.6 Scheduling tasks with restricted migration . 12

1.7 An f-EDF schedule . 14

1.8 An p-EDF schedule . 14

1.9 An r-EDF schedule . 15

1.10 The graph of UAFD-EDF
π (u) for π = [2.5, 2, 1.5, 1] with er-

ror bound ε = 0.1. Any task is guaranteed to be p-EDF-
schedulable if its class is below the illustrated graph. 16

2.1 No multiprocessor online algorithm can be optimal. 20

2.2 Algorithm Reschedule. 22

2.3 Time slicing. 24

2.4 Utilization bounds guaranteeing p-EDF-schedulability on iden-
tical multiprocessors. The utilization bounds depend on β,
which is the maximum number of tasks with utilization umax

that can fit on a single processor. 28

2.5 EDF without migration is not predictable. 30

2.6 The level algorithm . 34

2.7 Processor sharing . 35

xvi

2.8 Precedence graph. 36

2.9 The level algorithm is not optimal when jobs have precedence constraints. . . 36

2.10 The region Rπ for π = [50, 11, 4, 4] contains all points (s, S)
with S ≤ S(π)− s · λ(π). Any instance I is guaranteed to be
f-EDF-schedulable on π if I is feasible on some multiprocessor
with fastest speed s and total speed S, where (s, S) is in the
region Rπ. 42

2.11 A shared-memory multiprocessor. 45

2.12 A distributed memory multiprocessor. 48

3.1 The region Rπ for π = [50, 11, 4, 4] contains all points (s, S)
with S ≤ S(π)− s · λ(π). Any instance I is guaranteed to be
f-EDF-schedulable on π if I is feasible on some multiprocessor
with fastest speed s and total speed S, where (s, S) is in the
region Rπ. 58

3.2 The regions associated with π = [50, 11, 4, 4] and π′ = [50]. 59

3.3 The set Aπ and the function Lπ(s) for π = [50, 11, 4, 4]. 63

3.4 The region crπ for π = [50, 11, 4, 4] . 66

3.5 Points inside and outside of CRπ for π = [50, 11, 4, 4]. 70

4.1 The FFD-EDF task-assignment algorithm. 74

4.2 A modular task set. 77

4.3 FFD-EDF may not generate a modular schedule. 77

4.4 A feasible reduction. 78

4.5 A modularized feasible reduction. 79

4.6 A modularized system. 81

4.7 Approximating the minimum utilization bound of modular
task sets. 83

4.8 The graph of y = 6 mod x . 85

xvii

4.9 The graph of UAFD-EDF
π (u) for π = [2.5, 2, 1.5, 1] with error

bound ε = 0.1. 88

5.1 EDFwith restricted migration (r-EDF). 92

5.2 r-EDF may generate several valid schedules 93

5.3 The r-SVP global scheduler. 106

xviii

Chapter 1

Introduction

A wide variety of applications use real-time systems: embedded systems such as cell
phones, large and expensive systems such as power plant controllers, and safety critical sys-
tems such as avionics. Each of these applications have specific timing requirements, and
violating the timing requirements may result in negative consequences. When timing require-
ments are violated in cell phones, calls could be dropped — if enough calls are dropped, the
cell phone provider will lose customers. When timing requirements are violated in power
plant controllers, the plant could overheat or even emit radioactive material into the sur-
rounding area. When timing requirements are violated in avionics, an airplane could lose
control, potentially causing a catastrophic crash.

In real-time systems, events must occur within a specified time frame, measured using
“real” wall-clock time rather than some internal measure of time such as clock ticks or in-
struction cycles. Like all systems, real-time systems must maintain logical correctness – given
a certain input, the system must generate the correct output. In addition, real-time systems
must maintain temporal correctness – the output must be generated within the designated
time frame.

Real-time systems are comprised of jobs and a platform. A job is a segment of code that
can execute on a single processor for a finite amount of time. A platform is the processor
or processors on which the jobs execute. When an application submits a job to a real-time
system, the job specification includes a deadline. The deadline is the time at which the job
should complete execution.

In hard real-time systems, all jobs must complete execution prior to their deadlines — a
missed deadline constitutes a system failure. Such systems are used where the consequences
of missing a deadline may be serious or even disastrous. Avionic devices and power plant
controllers would both use hard real-time systems. In soft real-time systems, jobs may continue
execution beyond their deadlines at some penalty — deadlines are considered guidelines, and
the system tries to minimize the penalties associated with missing them. Such systems are
used when the consequences of missing deadlines are smaller than the cost of meeting them
in all possible circumstances (including the improbable and pathological). Cell phone and

2

multimedia applications would both use soft real-time systems.

This dissertation introduces tests for ensuring that a hard real-time system will not fail
due to a missed deadline. In hard real-time systems, we must be able to ensure prior to
execution that a system will meet all of its deadlines during execution. We need tests that we
can apply to the system that will guarantee that all deadlines will be met. This dissertation
develops different tests for different types of systems. If a system does not pass its associated
test, it will not be used for real-time applications.

This dissertation introduces several tests for hard real-time systems on multiprocessors
using the Earliest Deadline First (EDF) scheduling algorithm, in which jobs with earlier
deadlines have higher priority. The different tests depend on the parameters of the system.
For example, we may be certain all deadlines are met on one multiprocessor, but we may be
unable to make the same guarantee if the same jobs are scheduled a different multiprocessor.

All the tests presented in this dissertation apply to uniform heterogeneous multiproces-
sors, in which each processor has an associated speed. The speed of a processor equals the
amount of work that processor can complete in one unit of time. Retailers currently offer
uniform heterogeneous multiprocessors. For example, Dell offers several multiprocessors that
allow processors to operate at different speeds. Until now, developers of real-time systems
have not been able to analyze the behavior of real-time systems on uniform heterogeneous
multiprocessors.

The remainder of this chapter is organized as follows: Section 1.1 introduces some basic
real-time concepts. Section 1.2 introduces various multiprocessor models. This section de-
scribes the uniform heterogenous multiprocessor model in detail and explains its importance
for real-time systems. Section 1.3 discusses multiprocessor scheduling algorithms. Section 1.4
introduces variations of EDF on uniform heterogeneous multiprocessors. Finally, Section 1.5
discusses this dissertation’s contributions to real-time scheduling on heterogeneous multipro-
cessors in more detail.

1.1 Overview of real-time systems

A real-time instance, I = {J1, J2, . . . , Jn, . . .}, is a (possibly infinite) collection of time-
constrained jobs. Each job Ji ∈ I is described by a three-tuple (ri, ci, di), where ri is the job’s
release time, ci is its worst-case execution requirement (i.e., the maximum amount of time
this job requires if it executes on a processor with speed equal to one), and di is its deadline.
A job Ji is said to be active at time t if t ≥ ri and Ji has not executed ci units by time t.

In real-time systems, some jobs may repeat. For example, a system may need to read the
ambient temperature at regular intervals. These infinitely-repeating jobs are generated by
periodic or sporadic tasks [LL73], denoted τ = {T1, T2, . . . , Tn}. Each periodic task Ti ∈ τ

is described by a three-tuple, (oi, ei, pi), where oi is the offset, ei is the worst-case execution

3

T1

T2

-

-

0 2 4 6 8 10 12 14 16 18

6 6 6 6? ? ?

6 6 6? ?

(a)

-

-

0 2 4 6 8 10 12 14 16 18

6 ?6 ?6 ?

6 ?

(b)

Figure 1.1: Task set τ = {T1 = (0, 2, 8), T2 = (1, 3, 5)} is a periodic task (a), and sporadic task
(b). An up arrow indicates a new job arrival time. A rectangle indicates the job is executing.
In periodic tasks, the period is the time that elapses between consecutive job arrivals. In
sporadic tasks, the period is the minimum time that elapses between consecutive job arrivals.

requirement and pi is the period: for each nonnegative integer k, task Ti generates a job
Ti,k = (ri,k, ei, di,k) where ri,k = oi + k · pi and di,k = oi + (k + 1) · pi. For sporadic tasks, the
parameter pi is the minimum inter-arrival time — i.e., the minimum time between consecutive
job arrivals. Thus, the arrival time of Ti,k is not known but it is bounded by the minimum
separation: ri,k+1 ≥ ri,k + pi. The arrival time of Ti,0 is bounded by the offset: ri,0 ≥ oi. The
deadline of a sporadic task is always di,k = ri,k + pi.

Example 1.1 Figure 1.1 illustrates the task set τ = {T1 = (0, 2, 8), T2 = (1, 3, 5)}. In
inset (a) of Figure 1.1, τ is a periodic task set, and in inset (b), it is a sporadic task set. In
these diagrams, an upward arrow indicates a job arrival and a downward arrow indicates its
deadline. A rectangle on the time line indicates that the task is executing during that interval.
Notice that the periodic task’s deadlines always coincide with the arrival time of the next job.
Henceforth, the deadline indicators will be omitted in diagrams of periodic tasks. On the other
hand, the sporadic task’s deadlines do not necessarily coincide with the next arrival time —
the next job can arrive at or after the previous deadline. Also, notice that in both figures the
first job of task T1 executes for one time unit, stops, and then restarts to execute for the final
one time unit. The event is called a preemption. Throughout this dissertation, preemption is
allowed.

When analyzing a system, we need to know the requirements of each task — i.e., the
amortized amount of processing time the task will need. We use a task’s utilization to
measure its processing requirement. The utilization of task Ti is the proportion of processing
time the task will require if it is executed on a processor with speed equal to one: ui

def= ei
pi

.

The total utilization of a periodic or sporadic task set, Usum(τ) def=
∑n

i=1 ui, measures the
proportion of processor time the entire set will require.

Our goal is to develop tests that determine if a real time system will meet all its deadlines.
We wish to develop tests that can be applied in polynomial time. We categorize periodic and
sporadic task sets according to their utilization. We consider both the total utilization,

4

Usum(τ) def=
∑n

i=1 ui, and the maximum utilization, umax(τ) def= max
Ti∈τ
{ui}. We group all task

sets with maximum utilization umax and total utilization Usum into the same class, denoted
Ψ(umax, Usum). Any task set τ ∈ Ψ(umax, Usum) will miss deadlines if it is scheduled on a
multiprocessor whose fastest processor speed is less than umax or whose total processor speed
is less than Usum. However, we shall see that ensuring that τ ∈ Ψ(umax, Usum) is not a
sufficient test for guaranteeing all deadlines will be met.

A real-time instance is called feasible on a processing platform if it is possible to schedule
all the jobs without missing any deadlines. A specific schedule is called valid if all jobs
complete execution at or before their deadlines. If a particular algorithm A always generates
a valid schedule when scheduling the real-time instance I on a platform π, then I is said to be
A-schedulable on π. The feasibility and schedulability of I depend on the processing platform
under consideration. The next section examines various types of processing platforms.

First, some additional notation.

Definition 1 (δ(A, π, si, I, J, t)) Let I be any real-time instance, J be a job of I, and π =
[s1, s2, . . . , sm] be any uniform heterogeneous multiprocessor. For any algorithm A and time
instant t ≥ 0, let δ(A, π, si, I, J, t) indicate whether or not J is executing on processor si of π

at time t when scheduled using A. Specifically,

δ(A, π, si, I, J, t) def=

1 if A schedules J to execute on si at time t

0 otherwise.

The function δ can be used to determine all the work performed by algorithm A on a given
job or on the entire instance.

Definition 2 (W (A, π, I, J, t),W (A, π, I, t)) Let J be a job of a real-time instance I and let
π = [s1, s2, . . . , sm] be any uniform heterogeneous multiprocessor. For any algorithm A and
time instant t ≥ 0, let W (A, π, I, J, t) denote the amount of work done by algorithm A on job
J over the interval [0, t), while executing on π and let W (A, π, I, t) denote the amount of work
done on all jobs of I. Specifically,

W (A, π, I, J, t) def=
m∑

i=1

(
si ×

∫ t

0
δ(A, π, si, I, J, x)dx

)
and

W (A, π, I, t) def=
∑
J∈I

W (A, π, I, J, t).

5

1.2 A taxonomy of multiprocessors

A real-time system is a real-time instance paired with a specific computer processing
platform. The platform may be a uniprocessor, consisting of one processor, or it may be
a multiprocessor, consisting of several processors. If the platform is a multiprocessor, the
individual processors may all be the same or they may differ from one another. We divide
multiprocessors into three different categories based on the speeds of the individual processors.

• Unrelated heterogeneous multiprocessors. In these platforms, the processing
speed depends not only on the processor, but also on the job being executed. For
example, if one of the processors is a graphics coprocessor, graphics jobs would execute
at a more accelerated rate than non-graphics jobs. Each (processor, job)-pair of an
unrelated heterogeneous system has an associated speed si,j , which is the amount of
work completed when job j executes on processor i for one unit of time.

• Uniform heterogeneous multiprocessors. In these platforms, the processing speed
depends only on the processor. Specifically, for each processor i and for all pairs of jobs
j and k, we have si,j = si,k. In these multiprocessors, we use a si to denote the speed
of the i’th processor.

• Identical multiprocessors. In these platforms, all processing speeds are the same.
In these systems, the speed is usually normalized to one unit of work per unit of time.

Until recently, research in real-time scheduling on multiprocessors has concentrated on
identical multiprocessors. The research presented in this dissertation concentrates on uniform
heterogeneous multiprocessors, which are a relevant platform for modelling many real-time
applications:

• These multiprocessors give system designers more freedom to tailor the platform to
the application requirements. For example, if a system is comprised of a few tasks
with large utilization values and several tasks with much smaller utilization values, the
designer may choose to use a multiprocessor with one very fast processor to ensure the
higher-utilization tasks meet their deadlines and several slower processors to execute
the lower-utilization tasks.

• If a platform is upgraded, either by adding processors or by enhancing currently exist-
ing processors, the resulting platform may be comprised of processors that execute at
different speeds. If only identical multiprocessors are available, all processors must be
upgraded simultaneously. Similarly, when adding processors, slower processors would
have to be added even if faster ones were available and affordable.

6

• Unrelated heterogeneous multiprocessors are a generalization of uniform heterogeneous
multiprocessors, which are in turn a generalization of identical multiprocessors. Anal-
ysis of uniform heterogeneous multiprocessors gives us a deeper understanding of both
of the other types of multiprocessors. Specifically, any property that does not hold for
uniform heterogeneous multiprocessors will not hold for unrelated heterogeneous mul-
tiprocessors. Any property that does hold for uniform heterogeneous multiprocessors
will also hold for identical multiprocessors.

We use the following notation to describe uniform heterogeneous multiprocessors.

Definition 3 Let π = [s1, s2, . . . , sm] denote an m-processor uniform multiprocessor with the
ith processor having speed si, where si ≥ si+1 for i = 1, . . . ,m− 1. The following notation is
used to describe parameters of π. (When the processor under consideration is unambiguous,
the (π) may be removed from the notation.)

m(π): the number of processors in π .

si(π): the speed of the ith fastest processor of π .

Si(π): the cumulative processing power of the i fastest processors of π, Si(π) def=
i∑

k=1

sk(π).

S(π): the cumulative processing power of all processors of π, S(π) def=
m∑

k=1

sk(π).

λ(π): the “identicalness” of π, λ(π) def= max
1≤k<m

∑m
i=k+1 si(π)
sk(π)

.

Intuitively, λ(π) enumerates the level to which π diverges from being an identical multipro-
cessor. The “less identical” π is, the greater the likelihood that an active job whose deadline
is approaching can move to a faster processor. The value of λ increases as π becomes more
identical. In the extreme, π is an identical multiprocessor and no faster processors exist for a
job with an approaching deadline to move to. On identical multiprocessors, λ is maximized
and has the value (m − 1). In the opposite extreme, the value of λ can be arbitrarily small
when the processors have extremely different speeds. For example, λ < ε for the m-processor
multiprocessor where si+1 ≤ ε

m · si for i = 1, . . . ,m− 1. The value of λ is used to assess the
penalty associated with using Earliest Deadline First (EDF), a non-optimal algorithm. As
the following example illustrates, it is not enough to know the total speed when analyzing
whether a real time instance will meet all deadlines. We must also know the relative speeds
of the different processors, which is partially captured by the parameter λ(π).

Example 1.2 Consider two multiprocessors π1 = [6, 2] and π2 = [5, 3]. Then S(π1) =
S(π2) = 8. The identicalness parameters associated with π1 and π2 are 1

3 and 3
5 , respectively.

7

Assume we want to schedule two jobs, J1 = (0, 30, 6) and J2 = (0, 34, 9), using the EDF

scheduling algorithm and we allow migration. Inset (a) of Figure 1.2 illustrates the schedule
of these jobs on π1 and inset (b) illustrates the schedule on π2. Initially, J1 executes on the
faster processor since it has the earlier deadline, and J2 executes on the slower processor.
Once J1 completes executing, after 5 time units on π1 and 6 time units on π2, job J2 can
migrate to the faster processor. Notice that when these jobs execute on π1, job J1 completes
executing at t = 5 and job J2 completes executing at t = 9. By contrast, on π2, job J1

completes executing at t = 6 and job J2 completes executing at t = 9.2. Thus, both jobs meet
their deadlines on π1, but it is impossible for both jobs to meet their deadlines on π2 since J1

must execute on the s1(π2) during the entire interval [0, 6) in order to meet its deadline, but
J2 misses its deadline if it can’t migrate to s1(π2) before t = 6.

1.3 Multiprocessor scheduling algorithms

We have seen that analysis of real-time systems depend on the processing platform. In this
section, we will see that analysis of real-time systems also depends on the scheduling algorithm
— i.e., the method used to determine when each job executes and on which processor. This
section begins by discussing several important properties of scheduling algorithms.

In offline scheduling algorithms, all scheduling decisions are made before the system begins
executing. These scheduling algorithms select jobs to execute by referencing a table describing
the pre-determined schedule. Usually, offline schedules are repeated after a specific time
period. For example, if the jobs being scheduled are generated by periodic tasks, an offline
schedule may be generated for an interval of length equal to the least common multiple of the
periods of the tasks in the task set — after this period of time, the arrival pattern of the jobs
will repeat. When the schedule reaches the end of the pre-determined table, it can simply
return to the beginning of the table. This type of scheduler is often called a cyclic executive.

In online scheduling algorithms, all scheduling decisions are made without specific knowl-
edge of jobs that have not yet arrived. These scheduling algorithms select jobs to execute
by examining properties of active jobs. Online algorithms can be more flexible than offline
algorithms since they can schedule jobs whose behavior cannot be predicted ahead of time.
For example, the system must use an online scheduling algorithm if the task set includes spo-
radic tasks whose inter-arrival times are unpredictable or dynamic tasks that join and leave
the system at undetermined times.

Both online and offline algorithms may be work conserving . A scheduling algorithm
is work conserving if processors can idle only when there are no jobs waiting to execute.
For uniform heterogeneous multiprocessors, work conserving scheduling algorithms must also
take full advantage of the faster processor speeds. In particular, a uniform heterogeneous
multiprocessor scheduling algorithm A is said to be work-conserving if and only if it satisfies

8

0 2 4 6 8 10

J2

J1

s2

s1

s1

Job view
0 2 4 6 8 10

s2

s1

J2

J1 J2

Processor view

(a) π1 = [6, 2] λ(π1) = 1/3

0 2 4 6 8 10

J2

J1

s2

s1

s1

Job view
0 2 4 6 8 10

s2

s1

J2

J1 J2

Processor view

(b) π2 = [5, 3] λ(π2) = 3/5

Figure 1.2: The importance of λ(π). The total speed of each of these two multiprocessors
equals 8. The jobs meet their deadlines when scheduled on π1, but J2 misses its deadline
when these jobs are scheduled on π2, whose λ-value is larger.

9

-

-

6 6 6 6 6 6T1

6 6 6 6T2 . . .

. . .

Figure 1.3: Task set τ = {T1 = (0, 1, 3), T2 = (0, 3, 5)} scheduled on a unit speed uniprocessor
using EDF. Observe that initially, task T1 has higher priority than task T2. However, when
T1 generates a new job at t = 3, task T1 has lower priority than task T2.

the following conditions.

• No processor idles while there are active jobs waiting to execute.

• If at some instant there are fewer than m active jobs waiting to execute, where m

denotes the number of processors in the multiprocessor, then these jobs execute upon
the fastest processors. That is, at any instant t if A idles the jth-slowest processor, then
A idles the kth slowest processors for all k > j.

In fixed priority scheduling algorithms, jobs generated by the same task all have the same
priority. More formally, if Ti,k has higher priority than Tj,` then Ti,r has higher priority than
Tj,s for all values of r and s. These are also called static priority algorithms. One very
well-known fixed priority scheduling algorithm is the Rate Monotonic (RM) algorithm [LL73].
In this algorithm, the task period is used to determine priority — tasks with shorter periods
have higher priority. This algorithm is known to be optimal among uniprocessor fixed-priority
algorithms [LL73] — i.e., if it is possible for all jobs to meet their deadlines using a fixed
priority algorithm, then they will meet their deadlines when scheduled using RM.

In dynamic priority scheduling algorithms, jobs generated by the same task may have
different priorities. The Earliest Deadline First (EDF) algorithm [LL73] is a well-known
dynamic priority algorithm. The EDF scheduling algorithm is optimal among all uniprocessor
scheduling algorithms — if it is possible for all jobs to meet their deadlines, they will do so
when scheduled using EDF. This algorithm is illustrated in Example 1.3.

Example 1.3 Figure 1.3 illustrates an EDF schedule of the task set τ = {T1 = (0, 1, 3), T2 =
(0, 3, 5)} on a uniprocessor of speed 1. Notice that T1,1 (the first job of task T1) has a deadline
of 3 and has higher priority than T2,1. However, T1,2 has lower priority than T2,1 since d1,2 = 6
and d2,1 = 5.

Dynamic priority algorithms can be divided into two categories depending on whether
individual jobs can change priority while they are active. In job-level fixed-priority algorithms,
jobs cannot change priorities. EDF is a job-level fixed-priority algorithm. On the other

10

Tasks -
Global
Task

Scheduler

Processor
1

Processor
2

...

Processor
m

�
�

�
�

�
��

������-

@
@

@
@

@
@R

Figure 1.4: Scheduling with full migration uses a global scheduler. Tasks generate jobs and
submit them to the global scheduler, which monitors both when and where all jobs will
execute.

hand, in job-level dynamic-priority algorithms, jobs may change priority during execution.
For example, the Least Laxity First (LLF) algorithm [LL73] is a job-level dynamic-priority
algorithm. At time t, the laxity of a job is (d− t− f), where d is the job’s deadline and f is
it’s remaining execution requirement. Intuitively, the laxity is the maximum amount of time
a job may be forced to wait if it were to execute on a processor of speed 1 and still meet its
deadline. The LLF algorithm assigns higher priority to jobs with smaller laxity. Since the
laxity of a job can change over time, the job priorities can change dynamically.

Finally, an algorithm is optimal if it can successfully schedule any feasible system. For
example, EDF is optimal on uniprocessors [LL73, Der74]. While RM is not an optimal al-
gorithm, it is optimal on uniprocessors among fixed priority algorithms [LL73] — i.e., if it
is possible for a task set to meet all deadlines using a fixed priority algorithm then that
task set is RM-schedulable. Uniprocessor systems that allow dynamic-priority scheduling will
commonly use the EDF scheduling algorithm, while systems that can only use fixed-priority
scheduling algorithms will use the RM scheduling algorithm.

On multiprocessors, scheduling algorithms can be divided into various categories depend-
ing on the amount of migration the system allows. A job or task migrates if it begins execution
on one processor and is later interrupted and restarts on a different processor. This disserta-
tion considers three types of migration strategies [CFH+03].

Full migration. Jobs may migrate at any point during their execution. All jobs are per-
mitted to execute on any processor of the system. However, a job can only execute on
at most one processor at a time — i.e., job parallelism is not permitted. Figure 1.4
illustrates a full migration scheduler.

No migration (partitioning). Tasks can never migrate. Each task in a task set is assigned

11

Task
Subset 1

Task
Subset 2

...

Task
Subset m

-

-

-

Local Job
Scheduler 1

Local Job
Scheduler 2

...

Local Job
Scheduler m

Processor
1

Processor
2

...

Processor
m

-

-

-

Figure 1.5: Scheduling with no migration uses a partitioned scheduler. Tasks generate jobs
and submit them to the local scheduler for the processor to which the task is assigned. Every
job generated by a task executes on the same processor.

to a specific processor. All jobs generated by a task can execute only on the processor
to which the task is assigned. Figure 1.5 illustrates an partitioned scheduler.

Restricted migration. Task can migrate only at job boundaries. When a task generates a
job, the global scheduler assigns the job to a processor, and that job can execute only
on the processor to which it is assigned. However, the next job of the same task can
execute on any processor. Figure 1.6 illustrates a restricted migration scheduler.

While the full migration strategy is the most flexible, there are clearly overheads associated
with allowing migration. On the other hand, there are also overheads associated with not
migrating jobs. Prohibiting migration may cause a system to be under-utilized to ensure
enough processing power will be available on some processor when a new job arrives. If
migration is allowed, the job can execute for a time on one processor and then move to another
processor, allowing the spare processing power to be distributed among all the processors.
Thus, there is a trade-off between scheduling loss due to migration and scheduling loss due
to prohibiting migration. In some systems, we may prefer to migrate jobs and in others we
may need a more restrictive strategy.

Systems that do not allow jobs to migrate must use either the partitioning or the restricted
migration strategy. Between these two, the partitioning strategy is more commonly used
in current systems. However, partitioning can only be used for fixed task sets. If tasks
are allowed to dynamically join and leave the system, partitioning is not a viable strategy
because a task joining the system may force the system to be repartitioned, thus forcing
tasks to migrate. Determining a new partition is analogous to the bin-packing problem, which
is known to be NP-hard [Joh73]. Thus, repartitioning dynamic task sets incurs too much

12

Tasks -
Global
Task

Scheduler

Local Job
Scheduler

1

Local Job
Scheduler

2
...

Local Job
Scheduler

m

�
�

�
�

�
��

������-

@
@

@
@

@
@R

Processor
1

Processor
2

...

Processor
m

-

-

-

Figure 1.6: Scheduling with restricted migration uses both a global scheduler and a partitioned
scheduler. Tasks generate jobs and submit them to the global scheduler. The global scheduler
assigns the job to a processor and the local scheduler for that processor determines when the
jobs executes. Different jobs generated by a task may execute on the different processors.

overhead.

The restricted migration strategy provides a good compromise between the full migration
and the partitioning strategies. It is flexible enough to allow for dynamic task sets, but it
doesn’t incur large migration overheads. This strategy is particularly useful when consecutive
jobs of a task do not share any data since all data is passed to subsequent jobs would have to
be migrated even at job boundaries. Furthermore, the restricted-migration global scheduler
is much simpler than the full-migration global scheduler. The full migration global scheduler
needs to maintain information about all active jobs in the system, whereas the restricted
migration global scheduler makes a single decision about a job when it arrives and then
passes the job to a local scheduler that maintains information about the job from that point
forward. However, this flexibility comes at a cost: Chapter 5 of this dissertation will show
that any task set that is guaranteed to meet all deadlines using EDF with restricted migration
would also meet all deadlines if scheduled using either of the other two migration strategies.

If we have a real-time instance I that we know is feasible on a uniprocessor, we can
schedule I using an optimal online scheduling algorithm such as EDF. Thus, in order to
determine whether I is EDF-schedulable on a uniprocessor, it suffices to determine whether
I is feasible on the uniprocessor. Unfortunately, it has been shown that there are no optimal
job-level fixed-priority scheduling algorithms for multiprocessors [HL88, DM89]. Since EDF

is a job-level fixed-priority scheduling algorithm for multiprocessors, determining whether I

is feasible on a multiprocessor π will not tell us whether I is EDF-schedulable on π. Instead,
we have to use other means to determine EDF-schedulability.

In [HL88, DM89], the authors actually state that there is no optimal online scheduling

13

algorithm for multiprocessors. However, the proof considered only job-level fixed-priority algo-
rithms. Baruah, et al.[BCPV96], proved that there is a job-level dynamic-priority scheduling
algorithm that is optimal for periodic task sets on multiprocessors. Srinivasan and Ander-
son [SA] later showed that this algorithm can be modified to be optimal for sporadic task sets.
These results do not apply to EDF because they use a job-level dynamic-priority algorithm.

1.4 EDF on uniform heterogeneous multiprocessors

The EDF scheduling algorithm has been shown to be optimal for uniprocessors [LL73].
However, since it is an online job-level fixed-priority algorithm, we know that EDF cannot be
optimal for multiprocessors. Nonetheless, there are still many compelling reasons for using
EDF when scheduling on multiprocessors.

• Since EDF is an optimal uniprocessor scheduling algorithm, all local scheduling is done
using an optimal algorithm. This is particularly relevant for the partitioning and re-
stricted migration strategies since many of the scheduling decisions are made locally in
these strategies.

• Efficient implementations of EDF have been designed [Mok88].

• The number of preemptions and migrations incurred by EDF can be bounded. (The
bounds depend on which migration strategy is being used.) Since migration and pre-
emption both incur overheads, it is important to be able to incorporate the overheads
into any system analysis. This can only be done if the associated overheads can be
bounded1.

On uniprocessors, EDF is well defined — at all times, the job with the earliest deadline
executes on the sole processor. When more processors are added to the system, there are
several variations of EDF depending on the chosen migration strategy. This dissertation will
analyze three variation of EDF — one for each migration strategy discussed on page 10.

Full migration EDF (f-EDF). This algorithm uses full migration, as illustrated in Figure 1.4,
with the global scheduler giving higher priority to jobs with earlier deadlines. Moreover,
deadlines not only determine which jobs execute, but also where they execute — the
earlier the deadline, the faster the processor. Figure 1.7 illustrates an f-EDF schedule of
the periodic task set τ = {T1 = (1, 2, 3), T2 = (1, 3, 4), T3 = (0, 6, 8)} on the multipro-
cessor π = [2, 1] (i.e., s1 = 2 and s2 = 1). In this diagram, the height of the rectangle
indicates the processor speed. When a job executes on s1, the corresponding rectangle

1This dissertation assumes that the overheads associated with both preemptions and migrations are included
in the worst-case execution requirements.

14

-

-

-

0 5 10 15 20 25

6 6 6 6 6 6 6 6 6

T1

6 6 6 6 6 6 6T2

6 6 6 6

T3 . . .

. . .

. . .

Figure 1.7: Task set τ = {T1 = (1, 2, 3), T2 = (1, 3, 4), T3 = (0, 6, 8)} scheduled on π = [2, 1]
using EDF with full migration (f-EDF).

-

-

-

0 5 10 15 20 25

6 6 6 6 6 6 6 6 6T1

6 6 6 6 6 6 6T2

6 6 6 6T3

. . .

. . .

. . .

Figure 1.8: Task set τ = {T1 = (1, 2, 3), T2 = (1, 3, 4), T3 = (0, 6, 8)} scheduled on π = [2, 1]
using partitioned EDF (p-EDF).

is twice as high as when it executes on s2. Thus, the total area of the rectangles equals
the execution requirement.

Partitioned EDF (p-EDF). This algorithm uses partitioning, as illustrated in Figure 1.5,
with each local scheduler using uniprocessor EDF. A task with utilization u can be
assigned to a speed-s processor if and only if the total utilization of all tasks assigned to
that processor is at most s−u. For this reason, we often refer to a processor’s total speed
as that processor’s capacity . Figure 1.8 illustrates a p-EDF schedule of the periodic task
set τ = {T1 = (1, 2, 3), T2 = (1, 3, 4), T3 = (0, 6, 8)} on the multiprocessor π = [2, 1] with
tasks T1 and T3 assigned to processor s1 and task T2 assigned to processor s2.

Restricted migration EDF (r-EDF). This algorithm uses restricted migration, as illustrated
in Figure 1.6, with each local scheduler using uniprocessor EDF. The global scheduler
assigns each newly arrived job to any processor with enough available capacity to guar-
antee all deadlines will still be met after adding the job to the scheduling queue. Each
of the local schedulers use uniprocessor EDF. Figure 1.9 illustrates an r-EDF sched-
ule of the periodic task set τ = {T1 = (1, 2, 3), T2 = (1, 3, 4), T3 = (0, 6, 8)} on the
multiprocessor π = [2, 1].

15

-

-

-

0 5 10 15 20 25

6 6 6 6 6 6 6 6 6T1

6 6 6 6 6 6 6T2

6 6 6 6T3

. . .

. . .

. . .

Figure 1.9: Task set τ = {T1 = (1, 2, 3), T2 = (1, 3, 4), T3 = (0, 6, 8)} scheduled on π = [2, 1]
using EDF with restricted migration (r-EDF).

All three variations of EDF are online algorithms since they consider only the deadlines
of currently active jobs when making scheduling decisions. However, only f-EDF is a work
conserving algorithm. Both of the other two algorithms may force a job to wait to execute
even if there is an idling processor. For example, in Figure 1.9, T1 does not execute during
the interval [22, 22.5) even though processor s2 is idling during that time. Nonetheless, on a
local level both p-EDF and r-EDF are work conserving — a processor will not idle if there is
an active job assigned to that processor that is waiting to execute.

1.5 Contributions

The thesis for my work is as follows:

Schedulability tests exist for the Earliest Deadline First (EDF) scheduling algo-
rithm on heterogeneous multiprocessors under different migration strategies in-
cluding full migration, partitioning, and restricted migration. Furthermore, these
tests have polynomial-time complexity as a function of the number of processors
(m) and the number of periodic tasks (n).

• The schedulability test with full migration requires two phases: an O(m) one-
time calculation, and an O(n) calculation for each periodic task set.

• The schedulability test with restricted migration requires an O(m + n) test
for each multiprocessor / task set system.

• The schedulability test with partitioning requires two phases: a one-time ex-
ponential calculation, and an O(n) calculation for each periodic task set.

All of the schedulability tests for task sets presented in this dissertation are expressed in
the following form.

16

-

6

1 2 3
u

3

4

5

6

7

UAFD-EDF
π (u)

Figure 1.10: The graph of UAFD-EDF
π (u) for π = [2.5, 2, 1.5, 1] with error bound ε = 0.1. Any

task is guaranteed to be p-EDF-schedulable if its class is below the illustrated graph.

Let π = [s1, s2, . . . , sm] be any uniform heterogeneous multiprocessor. If Usum ≤
UM (π, umax), then every task set τ in the class Ψ(umax, Usum) is guaranteed to be
EDF-schedulable on π using migration strategy M .

For all three migration strategies, UM can be graphed by drawing one or more lines
on the (umax, Usum) plane. Any task set τ whose class falls between the lines defined by
UM (π, umax(τ)) and the line Usum = umax is guaranteed to be EDF-schedulable on π using
the migration strategy corresponding to the graph.

Example 1.4 Figure 1.10 shows an approximation of the graph of fpartition for the multipro-
cessor π = [2.5, 2, 1.5, 1]. The point (1,4) is below the graph in this figure. This means that
every task set τ with umax(τ) = 1 and Usum(τ) = 4 is p-EDF-schedulable on π. For exam-
ple, the task set τ containing four tasks each with utilization equal to one can be successfully
partitioned onto π.

Even though the three schedulability tests will seem quite similar, they were developed
using different methods.

• Determining the full migration test uses resource augmentation [KP95, PSTW97] meth-
ods and exploits the robustness [BFG03] of f-EDF on uniform heterogeneous multiproces-
sors. Given a task set τ , the resource augmentation method finds a slower multiprocessor
π′ on which τ is feasible. If π has “enough extra speed,” then τ is guaranteed to be
f-EDF-schedulable on π. The amount of extra speed that must be added to π′ to ensure
f-EDF-schedulability on π depends on the parameters of π and the maximum utilization,
umax. Resource augmentation analysis finds many, but not all, of the classes of task

17

sets that are guaranteed to be f-EDF-schedulable on π. More classes can be found by
applying the same test to “sub-platforms” π′′ of π — multiprocessors whose processor
speeds are all slower than the speed of the corresponding processors of π. For example,
the multiprocessor π′′ = [50, 11, 3] is a “sub-platform” of π = [50, 11, 4, 4]. f-EDF was
shown to be robust on uniform heterogeneous multiprocessors, meaning that anything
f-EDF-schedulable on π′′ is also f-EDF-schedulable on π.

• Determining the partitioning test uses approximation methods. Given any ε, this test
will find all classes of task sets within ε of the actual utilization bound. Since partitioning
is NP-complete in the strong sense [Joh73], it is particularly difficult to determine the
utilization bound. Therefore, the p-EDF-schedulability test is an approximation of the
actual utilization bound. The approximate utilization bound is found by an exhaustive
search of the space of all task sets. For any umax, all possible task sets are searched to
find the task set τ with umax(τ) ≤ umax such that τ is almost infeasible — i.e., adding
any capacity to τ will cause some deadline to be missed. A variety of methods are
used to reduce the number of task sets that must be considered while still finding an
approximation that is within ε of the actual bound. The number of points considered in
the search grows in proportion to (1/ε) log(1/ε) — the smaller the value of ε, the more
points and hence the longer it takes to complete the search.

• Determining the restricted migration test uses worst-case arrival pattern analysis meth-
ods — i.e., finding the pattern of job arrivals that would be most likely to cause a
job to miss its deadline. Once this pattern is identified, the utilization bound can
be established. In some cases this bound can be too restrictive. This is particularly
true for task sets whose maximum utilization is significantly larger than their average
utilization. This dissertation introduces a variation of r-EDF that restricts tasks to a
subset of the processors of π without imposing a full partitioning strategy. These vari-
ations are intended to be used on systems with a few high-utilization tasks and several
low-utilization tasks.

1.6 Organization of this document

The remainder of this dissertation is organized as follows. Chapter 2 discusses previous
results that pertain to the research presented in this dissertation. Chapters 3, 4, and 5 present
the uniform heterogeneous multiprocessor schedulability tests for the f-EDF p-EDF and r-EDF

scheduling algorithms, respectively. Finally, Chapter 6 provides some concluding remarks.

18

Chapter 2

Background and relatedwork

The real-time community has actively researched multiprocessor scheduling for over twenty
years. This chapter presents several results that have some bearing on EDF scheduling on
uniform heterogeneous multiprocessors. It is divided into four sections. Sections 2.1 and 2.2
present results pertaining to scheduling on identical and uniform heterogeneous multiproces-
sors, respectively. Section 2.3 presents architectural issues that arise when using uniform
heterogeneous multiprocessors, and Section 2.4 provides some concluding remarks.

2.1 Results for identical multiprocessors

Much of the research on multiprocessor real-time scheduling has focussed on identical mul-
tiprocessors. This section presents a few important results. We first present general results
pertaining to any online multiprocessor scheduling algorithm. Next, we present resource aug-
mentation, which can be used to address some of the shortcomings that arise from using online
algorithms. Also, we discuss a utilization bound that ensures partitioned EDF-schedulability
on identical multiprocessors. Finally, we introduce an important property called predictabil-
ity.

2.1.1 Online scheduling on multiprocessors

Hong and Leung [HL88] and Dertouzos and Mok [DM89] independently proved that there
can be no optimal online algorithm for scheduling real-time instances on identical multipro-
cessors. Later, Baruah, et al.[BCPV96], proved that there is a job-level dynamic-priority
scheduling algorithm called Pfair that is optimal for periodic task sets on multiprocessors.
Srinivasan and Anderson [SA] later showed that this algorithm can be modified to be opti-
mal for sporadic task sets. In this section, we will examine the work that applies to general
real-time instances, beginning with the result developed by Hong and Leung.

Theorem 1 ([HL88]) No optimal online scheduler can exist for instances with two or more
distinct deadlines for any m-processor identical multiprocessor, where m > 1.

20

-s2

-s1

0 1 2 3 4 5 6 7 8

J1

J2

J ′
4

J ′
5 J3

Processor view

-J ′
5

-J ′
4

-J3

-J2

-J1

0 1 2 3 4 5 6 7 8

s1

s2

s1

s2

s1

Job view

(a) Job J3 cannot execute in interval [0, 2)

-s2

-s1

0 1 2 3 4 5 6 7 8

J1

J3

J2

J ′′
4

J ′′
5

Processor view

-J ′′
5

-J ′′
4

-J3

-J2

-J1

0 1 2 3 4 5 6 7 8

s2

s1

s2

s1

s2

Job view

(b) Job J3 must execute in interval [0, 2)

Figure 2.1: No multiprocessor online algorithm can be optimal.

Hong and Leung proved this theorem with the counterexample that follows.

Example 2.1 ([HL88]) Consider executing instances on a two-processor identical multipro-
cessor. Let I = {J1 = J2 = (0, 2, 4), J3 = (0, 4, 8)}. Construct I ′ and I ′′ by adding jobs to I

with later arrival times as follows: I ′ = I ∪ {J ′
4 = J ′

5 = (2, 2, 4)} and I ′′ = I ∪ {J ′′
4 = J ′′

5 =
(4, 4, 8)}. There are two possibilities depending on the behavior of J3.

Case 1: J3 executes during the interval [0,2). Then one of the jobs of I ′ will miss a
deadline. Inset (a) of Figure 2.1 illustrates a valid schedule of I ′ on two unit-speed processors.
Notice that the processors execute the jobs J1, J2, J ′

4 and J ′
5 and never idle during the interval

[0, 4). Moreover, these four jobs all have the same deadline at t = 4. Therefore, if J3 were to
execute for any time at all during this interval, it would cause at least one of the jobs to miss
its deadline.

Case 2: J3 does not execute during the interval [0,2). Then one of the jobs of I ′′ will
miss a deadline. Inset (b) of Figure 2.1 illustrates a valid schedule of I ′′ on two unit-speed
processors. Notice that the processors execute the jobs J1, J2, and J3 during the interval [0, 4)
and all three jobs have completed execution by time t = 4. Moreover, jobs J ′′

4 and J ′′
5 both

require four units of processing time in the interval [4, 8). If job J3 did not execute during
the entire interval [0, 2), it would not complete execution by time t = 4. Therefore, it would
require processing time in the interval [4, 8) and at least one of the jobs J3, J ′′

4 , or J ′′
5 would

21

miss its deadline.

Therefore, the jobs in I cannot be scheduled in a way that ensures valid schedules for all
feasible job sets without knowledge of jobs that will arrive at or after time t = 2.

Hong and Leung introduced the online algorithm Reschedule(I,m) that will optimally
schedule jobs with common deadlines. Jobs are not assumed to have common arrival times.
At each time t, algorithm Reschedule(I, m) considers only the active jobs of I. If any jobs
Ji1 , Ji2 , . . . , Jik ∈ I have execution requirements larger than C/m, where C is the total remain-
ing execution requirement of all active jobs, then Reschedule(I, m) assigns each of these k

jobs to their own processor and recursively calls Reschedule(I \ {Ji1 , Ji2 , . . . , Jik},m− k).
If all jobs have execution requirement less than or equal to C/m, the jobs are scheduled
using McNaughton’s wraparound algorithm [McN59]. This algorithm lists the jobs in any
order and views the list as a sequential schedule. It then cuts the sequential schedule into m

equal segments of length C/m and schedules each segment on a separate processor. There
is no concern about executing the same job simultaneously on different processors because
McNaughton’s algorithm is only executed once all jobs are guaranteed to have execution re-
quirement at most C/m. If more jobs arrive at a later time, the jobs in I are updated by
replacing their execution requirements with their remaining execution requirements. The new
jobs are then added to the job set and the algorithm Reschedule is executed again. The
following example illustrates the algorithm Reschedule.

Example 2.2 ([HL88]) Let I = {J1 = (0, 6, 10), J2 = J3 = (0, 3, 10), J4 = (0, 2, 10), J5 =
(3, 5, 10), J6 = (3, 3, 10)} be scheduled on three unit-speed processors. Initially, only jobs
J1, J2, J3, and J4 are active and C = 6 + 3 + 3 + 2 = 14. Then C/m = 14

3 = 42
3 and

3 ≤ C/m < 6, so J1 is assigned to its own processor and Reschedule is recursively called
with I = {J2, J3, J4} and m = 2. Since 8

2 = 4 is larger than the execution requirements of jobs
J2, J3 and J4, McNaughton’s algorithm is used to schedule these jobs. Inset (a) of Figure 2.2
illustrates the schedule generated at time t = 0.

When jobs J5 and J6 arrive at time t = 3, algorithm Reschedule is called again. The
execution requirements of jobs J1, J3 and J4 become 3, 1 and 1, respectively. Job J2 is
no longer active so it is not included in the second Reschedule call. In the second call to
Reschedule, C = 3+1+1+5+3 = 13 so C/m = 13

3 = 41
3 . Since 3 ≤ 41

3 < 5, the algorithm
assigns job J5 to processor s1 recursively calls Reschedule with C = 3 + 1 + 1 + 3 = 8 and
m = 2, at which point McNaugton’s algorithm is applied. Inset (b) of Figure 2.2 illustrates
the resulting schedule.

Dertouzos and Mok [DM89] also considered online scheduling algorithms on identical
multiprocessors. They isolated three job properties that must be known in order to optimally
schedule jobs. This result applies to general real-time instances — it does not apply to
periodic or sporadic task sets.

22

-s3

-s2

-s1

0 1 2 3 4 5 6 7 8

J1

J2 J3

J3 J4

Processor view

-J4

-J3

-J2

-J1

0 1 2 3 4 5 6 7 8

s1

s2

s2s3

s3

Job view

(a) t = 0

-s3

-s2

-s1

0 1 2 3 4 5 6 7 8

J1

J2

J3 J4

J5

J1 J3

J4 J6

Processor view

-J6

-J5

-J4

-J3

-J2

-J1

0 1 2 3 4 5 6 7 8

s1

s2

s3

s3

s1

s2

s2

s3

Job view

(b) t = 3

Figure 2.2: Algorithm Reschedule.

23

Theorem 2 ([DM89]) For two or more processors, no real-time scheduling algorithm can
be optimal without complete knowledge of the 1) deadlines, 2) execution requirements, and 3)
start times of the jobs.

They also found conditions under which a valid schedule can be assured even if one or
more of these properties is not known. For general real-time instances, they determined that
if the jobs can be feasibly scheduled when they arrive simultaneously, then it is possible to
schedule the jobs without knowing the arrival times even if they do not arrive simultaneously.

Theorem 3 ([DM89]) Let I = {J1, J2, . . . , Jn} and I ′ = {J ′
1, J

′
2, . . . , J

′
n} be two real-time

instances satisfying the following

• the jobs of I and the jobs of I ′ differ only in their arrival times: for all i = 1, 2, . . . , n,
the execution requirements are equal, ci = c′i, and the jobs have the same amount of
time between arrival times and deadlines, di − ri = d′i − r′i,

• the jobs of I ′ all arrive at the same time r′i = r′j for all i, j = 1, 2, . . . , n, and

• I ′ can be feasibly scheduled on m unit-speed processors.

Then I can be scheduled to meet all deadlines even if the arrival times are not known in
advance. In particular, the LLF scheduling algorithm will successfully schedule I on m unit-
speed processors.

Dertouzos and Mok also found a sufficient condition for ensuring a periodic task set will
meet all deadlines when the tasks are scheduled on m processors and preemptions are allowed
only at integer time values.

Theorem 4 ([DM89]) Let τ = {(e1, p1), (e2, p2), . . . , (en, pn)} be a periodic task set with
umax(τ) ≤ 1 and Usum(τ) ≤ m. Define G and g as follows:

G
def= gcd{p1, p2, . . . , pn}, and

g
def= gcd{G, G× u1, G× u2, . . . , G× un}.

If g is in the set of positive integers, Z+, then there exists a valid schedule of τ on m unit-speed
processors with preemptions occurring only at integral time values.

They proved a valid schedule exists by constructing it using the concept of time slicing .
In this strategy, the schedule is generated in slices G units long. Within each slice, task Ti

receives G× ui units of execution. While the schedule does not have to be exactly the same
within each slice, each task must execute for the same amount of time within each slice. The
following example illustrates a time slicing schedule.

24

-s2

-s1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

J1

J3 J4

J2 J1

J3 J4

J2

. . .

. . .

(a) Processor view

-T4

-T3

-T2

-T1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

s1

s2

s2

s1

s1

s2

s2

s1

. . .

. . .

. . .

. . .

(b) Task view

Figure 2.3: Time slicing.

Example 2.3 ([DM89]) Let τ = {T1 = (2, 6), T2 = (4, 6), T3 = (2, 12), T4 = (20, 24)}.
Then G = gcd{6, 6, 12, 24} = 6 and g = gcd{6, 6 × 2/6, 6 × 4/6, 6 × 2/12, 6 × 20/24} =
gcd{6, 2, 4, 1, 5} = 1 so the theorem applies to τ on m unit-speed processors provided m ≥
Usum(τ) = 2. The schedule is divided into slices 6 units long and tasks T1, T2, T3 and T4

execute within each slice for 2, 4, 1 and 5 units of time, respectively. Figure 2.3 illustrates
the time slice schedule of τ on two processors.

Even though Hong and Leung and Dertouzos and Mok showed that multiprocessor online
algorithms are not optimal, they can still be used for real-time systems. Kalyanasundaram
and Pruhs addressed this lack of optimality by increasing the speed of the processors. The
following section describes this method.

2.1.2 Resource augmentation for identical multiprocessors

A common way of analyzing online algorithms is to find their competitive ratio, the worst
case ratio of the cost of using the online algorithm, A, to the cost of using an optimal
algorithm, Opt, where the cost measure is dependent on the problem under consideration.
For example, in the travelling salesman problem we need to determine the minimum length
a salesman must travel in order to visit a group of cities and return home. In this case the
cost is the distance travelled. In example 2.4 below, we see that the cost associated with the
bin-packing problem is the number of bins required to hold a given number of items.

25

For minimization problems, the competitive ratio is defined as follows:

ρ(n) def= max
I

A(I)
Opt(I)

,

where I is any instance containing n items, and A(I) and Opt(I) represent the cost associated
with executing algorithms A and Opt on instance I, respectively. For maximization problems
the reciprocal ratio is used.

Example 2.4 The bin packing problem addresses the following question:

Let L be a list of n items with weights w1, w2, . . . , wn. Place the items into bins
with so that the total weight of items placed in any bin is at most 1. Given an
integer k > 0, can the items of L be placed into k bins?

This problem is known to be NP-complete. Therefore, any known polynomial-time algorithm
will require more than the optimal number of bins. Johnson [Joh73] studied the First Fit (FF)
algorithm, which places each item with weight wi into the lowest indexed bin with (1−r`) ≥ wi,
where r` is the total weight of items assigned to the `’th bin. He found that the competitive
ratio of FF is 1.7. Therefore, given any list L the FF algorithm will never require more than
1.7·Opt(L) bins, where Opt(L) is the optimal number of bins required for L.

The competitive ratio provides a measure for understanding how close a given algorithm
is to being optimal and it provides us a way to compare algorithms. Kalyanasundaram and
Pruhs [KP95] pointed out that the competitive ratio has some shortcomings. In particular,
there are algorithms for which pathological worst-case inputs are the only inputs that incur
extremely high costs, whereas common inputs always incur costs similar to the optimal al-
gorithm. This shortcoming could cause these algorithms, which empirically perform well, to
receive a poor competitive ratio.

Kalyanasundaram and Pruhs introduced the speed of the processors into the competitive
analysis. Instead of comparing the two algorithms on the same processing platform, they
allowed algorithm A to execute on m speed-s processors, while Opt executes on m unit-
speed processors. Thus, A is s-speed c-competitive1 for a minimization problem if

max
I

As(I)
Opt1(I)

≤ c , (2.1)

where each algorithm is subscripted with the executing speed of the processors the algorithm
uses. Using this concept, they showed that some algorithms that have a poor competitive
ratio can perform well when speed is increased even slightly. For example, they considered

1While Kalyanasundaram and Pruhs developed the concept of using speed in competitive analysis, Phillips,
et al. [PSTW97], introduced the terminology “s-speed c-competitive.”

26

the problem of trying to minimize the average response time of a collection of non-real-time
jobs on a uniprocessor. They showed that the algorithm balance, in which the processor is
always shared among the jobs that have received the least amount of execution time (i.e., the
jobs with the smallest balance), is (1+ ε)-speed (1+1/ε)-competitive for minimizing response
time. Thus, speeding up the processors can result in a constant competitive ratio.

For the purposes of this research, we examine the amount of work a scheduling algorithm
has completed on the jobs of a real-time instance — i.e., the progress that has been made in
completing each job’s execution requirement, c.

Phillips, et al. [PSTW97], used the concept of s-speed c-competitive algorithms to develop
tests for identical-multiprocessor real-time scheduling algorithms. They proved that, with
respect to total progress toward completion of the jobs’ execution requirements, all work-
conserving algorithms are (2− 1/m)-speed 1-competitive — i.e.,

max
I

A2−1/m(I)
Opt1(I)

≤ 1 .

Thus, any work conserving algorithm will do at least as much work over time on m speed-
(2 − 1/m) processors as any other algorithm, including an optimal algorithm, will do on m

unit-speed processors.

Theorem 5 ([PSTW97]) Let π be a multiprocessor comprised of m unit-speed processors
and let π′ be a multiprocessor comprised of m speed-(2−1/m) processors. Let Opt be any mul-
tiprocessor scheduling algorithm and let A be any work-conserving multiprocessor scheduling
algorithm. Then for any set of jobs I and any time t,

W (A, π′, I, t) ≤W (Opt, π, I, t).

Using this result, Phillips, et al., were able to prove many important results regarding
real-time scheduling algorithms on identical multiprocessors. In particular, they showed that
any real-time instance that is feasible on m unit-speed processors is f-EDF-schedulable if the
m processors execute at speed (2 − 1/m). Thus, increasing the speed allows us to use an
online algorithm even though no online algorithm can be optimal. Phillips, et al., coined the
term resource augmentation to describe this technique of adding resources to overcome the
limitations of online scheduling.

Lam and To [LT99] explored augmenting resources by adding machines as well as increas-
ing their speed. In particular, they proved that if I is feasible on m unit-speed processors
then I is f-EDF-schedulable on (m + p) processors of speed (2− 1+p

m+p).

Theorem 6 ([LT99]) Let I be any real-time instance. Assume I is known to be feasible on
m unit-speed processors. Then I will meet all deadlines when scheduled on (m + p) speed-
(2− 1+p

m+p) processors using the f-EDF scheduling algorithm.

27

In addition, they showed that the minimum speed augmentation required for any online
algorithm is at least max

{
km+m2

k2+m2+pm
| 0 ≤ k ≤ m

}
. Thus, if A is any online algorithm and

s < km+m2

k2+m2+pm
, for some k, there exists a real-time instance that is feasible on m unit-speed

processors but is not A-schedule on (m + p) speed-s processors.

Example 2.5 Let π be an identical multiprocessor comprised of five unit-speed processors and
let π′ be comprised of six speed-s processors. If k = 2, then 10+25

4+25+5 = 35
34 ≈ 1.029 Therefore,

if s < 1.029 there is some instance I that is feasible on π, but is not online schedulable on
π′.

2.1.3 Partitioned scheduling

The previous sections have explored algorithms that allow jobs to migrate. This section
presents a utilization test for partitioned scheduling of periodic task sets.

Lopez, et al. [LGDG00], determined a utilization bound for p-EDF on identical multipro-
cessors. They considered a variety of methods for assigning tasks to processors. Some of the
methods they considered were first fit (FF), in which each task is assigned to the processor
with the lowest index that has enough spare capacity, best fit (BF), in which each task is
assigned to the processor with the least spare capacity that exceeds the task’s utilization, and
random fit (RF), in which each task can be assigned to any processor that has enough spare
capacity. They also considered sorting the tasks in decreasing order of utilization prior to
assigning them to the processors. Interestingly, they found that all these variations have the
same utilization bound.

This utilization bound is a function of
⌊

1
umax(τ)

⌋
, denoted β, which is the fewest number of

tasks that can be assigned to a processor before attempting to assign a task whose utilization
exceeds the processor’s spare capacity. The test considers scheduling n tasks on m unit-speed
processors. If n ≤ β ·m, then any reasonable allocation will clearly work. If n > β ·m, the
utilization bound that guarantees p-EDF-schedulability on identical multiprocessors is

Usum ≤
βm + 1
β + 1

. (2.2)

Figure 2.4 illustrates the utilization bound for various values of β.

This bound was also used to determine the minimum number of processors required to
schedule n tasks with a given β and Usum:

m ≥

1 if Usum ≤ 1

min
{⌈

n
β

⌉
,
⌈

(β+1)Usum−1
β

⌉}
if Usum > 1

. (2.3)

Example 2.6 Can any task set τ with Usum(τ) = 2.8 and umax(τ) = 0.4 be scheduled on

28

1/4

1/2

3/4

1

1 5 10 15 20 25
Number of processors (m)

T
ot

al
ut

ili
za

ti
on

(U
s
u

m
/
m

)

β =∞

β = 10

β = 3
β = 2

β = 1

Figure 2.4: Utilization bounds guaranteeing p-EDF-schedulability on identical multiproces-
sors. The utilization bounds depend on β, which is the maximum number of tasks with
utilization umax that can fit on a single processor.

three unit speed processors? Since umax(τ) = 0.4, the value of β is b1/0.4c = b5/2c = 2.
Therefore, Condition (2.2) evaluates to

2.8 ≤ 2 · 3 + 1
2 + 1

=
7
3
,

which is false. Therefore, there may be some task set τ with Usum(τ) = 2.8 and umax(τ) = 0.4
that cannot be partitioned onto three unit speed processors. For example, the task set com-
prised of seven tasks with utilization 0.4 cannot be partitioned onto three processors. Applying
Condition (2.3) to τ gives

m ≥ min
{⌈

10
2

⌉
,

⌈
(2 + 1) · 2.8− 1

2

⌉}
= min{5, 4} = 4,

so τ can be scheduled on any identical multiprocessor with at least 4 processors.

2.1.4 Predictability on identical multiprocessors

Ha and Liu [HL94] studied the effects of having a job complete in less than its allowed
execution time. In particular, they determined the conditions under which a job completing
early may cause another job to behave in an unexpected manner. In their model, they allowed
jobs to have a range of execution requirements. Each job Ji is described by the three-tuple
(ri, [c−i , c+

i], di), where ri is its arrival time, di is its deadline, and c−i and c+
i are its minimum

29

and maximum execution requirements, respectively. This research studies the behavior of jobs
as the execution requirement varies when the jobs are executed on an identical multiprocessor.

Given an instance, I, Ha and Liu considered three possible schedules. In the actual
schedule, denoted A, each job Ji executes for ci time units, where c−i ≤ ci ≤ c+

i . In the
minimal and maximal schedules, denoted A− and A+, each job Ji executes for c−i and c+

i

time units, respectively. For each job Ji, the start and finish times of Ji in the actual schedule
are denoted S(Ji) and F (Ji). The start time is the moment when the job is first scheduled
to execute, which may occur at or after its arrival time. Similarly, the finish time is the
time at which the job has completed ci units of work, which occurs at or before the deadline
if the schedule is valid. The start and finish times in the minimal schedule are denoted
S−(Ji) and F−(Ji). Finally, the start and finish times in the maximal schedule are denoted
S+(Ji) and F+(Ji). The execution of Ji is predictable if S−(Ji) ≤ S(Ji) ≤ S+(Ji) and
F−(Ji) ≤ F (Ji) ≤ F+(Ji). Thus, in predicable schedules, the start and finish times of the
actual schedule, in which c−i ≤ ci ≤ c+

1 , are bounded by the start and finish times of the
maximal and minimal schedules.

While we may intuitively expect that a job’s completing early would cause all subsequent
jobs to arrive and finish earlier, this is not always the case. For example, the jobs are not
predictable if they are scheduled using EDF without allowing migration. This is illustrated in
the following example (adapted from [HL94]).

Example 2.7 Table 2.1 lists six jobs indexed according to their EDF-priority. These jobs
are scheduled on two unit-speed processors using EDF without migration. A job is assigned
to a processor if either (1) the processor is idle, or (2) the job’s priority is higher than any
job currently assigned to the processor. If neither condition holds at the job’s arrival time,
the processor assignment is delayed until one of the conditions holds. Inset (a) of Figure 2.5
illustrates the minimal schedule and inset (b) illustrates the maximal schedule. Insets (c) and
(d) illustrate the schedules that result when J2 executes for 3 and 5 time units, respectively.

Both jobs J4 and J6 violate predictability. S(J6) is 21 when c2 = 3 and 15 when c2 = 5
even though S−(J6) = 20 and S+(J6) = 16. Also, F (J4) is 21 when c2 = 3 and 15 when
c2 = 5 even though F−(J4) = 20 and F+(J4) = 16. Most notably, both the minimal and
maximal schedules are valid even though job J4 misses its deadline when c2 = 3.

Example 2.7 illustrates how important predictability can be. If a set of jobs is not pre-
dictable under a given scheduling algorithm, then it is not enough to verify that all deadlines
will be met in the maximal schedule — a more comprehensive test is required. However, if we
know the system is predictable, we need to verify only that the maximal schedule is valid. Ha
and Liu proved that work-conserving systems that allow both preemption and migration are
predictable. Also, if all jobs arrive simultaneously, then systems that do not allow migration
are predictable regardless of whether preemption is allowed or not. However, if no migration

30

Job ri di [c−i , c+
i]

J1 0 10 [5,5]
J2 0 10 [2,6]
J3 4 15 [8,8]
J4 0 20 [10,10]
J5 5 35 [20,20]
J6 7 40 [2,2]

Table 2.1: A job set with execution requirement ranges.

-

-s1

s2

0 2 4 6 8 10 12 14 16 18 20 22 24

J1

J2 J4 J3

J5

J4 J6 -
-
-
-
-
-J1

J2

J3

J4

J5

J6

0 2 4 6 8 10 12 14 16 18 20 22 24

s1

s2

s2

s2

s1

s2

s2

(a) the minimal schedule c2 = 2

-

-s1

s2

0 2 4 6 8 10 12 14 16 18 20 22 24

J1

J2 J4

J3 J5

J6

Processor view

-
-
-
-
-
-J1

J2

J3

J4

J5

J6

0 2 4 6 8 10 12 14 16 18 20 22 24

s1

s2

s2

s1

s1

s2

Job view
(b) the maximal schedule c2 = 6

-

-s1

s2

0 2 4 6 8 10 12 14 16 18 20 22 24

J1

J2 J4 J3

J5

J4 J6

Processor view

-
-
-
-
-
-J1

J2

J3

J4

J5

J6

0 2 4 6 8 10 12 14 16 18 20 22 24

s1

s2

s2

s2

s1

s2

s2

Job view
(c) c2 = 3

-

-s1

s2

0 2 4 6 8 10 12 14 16 18 20 22 24

J1

J2 J4

J3 J5

J6

Processor view

-
-
-
-
-
-J1

J2

J3

J4

J5

J6

0 2 4 6 8 10 12 14 16 18 20 22 24

s1

s2

s2

s1

s1

s2

Job view
(d) c2 = 5

Figure 2.5: Four schedules of I on two unit-speed processors using EDF without migration.

31

is allowed and the jobs do not arrive simultaneously, predictability is assured only if jobs that
arrive earlier are given higher priority — i.e., if the jobs are scheduled using First In First
Out (FIFO).

2.1.5 EDF with restricted migration

Baruah and Carpenter [BC03, BC] developed schedulability tests for EDF with restricted
migration (r-EDF) on identical multiprocessors. They established the following utilization
bound:

Theorem 7 ([BC03, BC]) Let τ be any task set. If

Usum(τ) ≤ m− (m− 1) · umax(τ) ,

then τ can be feasibly scheduled on m unit-speed processors using r-EDF.

If umax(τ) is large, this utilization bound can be prohibitively small. This is illustrated
in the following example.

Example 2.8 Let τ contain three tasks with utilization 0.75, five tasks with utilization 0.3
and one task with utilization 0.2. Then Usum(τ) = 3.95. Assume we schedule τ on five
unit-speed processors. Then the above theorem is not satisfied since m− (m−1) ·umax(τ) = 2.

Baruah and Carpenter extended this work by focussing on the higher-utilization tasks —
those tasks with utilization greater than 0.5. They observed that if τ has one or more high-
utilization tasks, the test may fail. However, the schedule may be valid if one processor is
reserved solely for each of the high-utilization tasks and the remaining tasks execute on the re-
maining processors. This algorithm, called r-fpEDF, is based on the algorithm fpEDF [Bar04],
which reserves processors for the high-utilization tasks and schedules the low-utilization tasks
on the remaining processors using full migration EDF. Baruah and Carpenter found that
both r-fpEDF and fpEDF have the same utilization bound.

Theorem 8 ([BC03, BC]) Let τ be any task set. If the following condition is satisfied

Usum(τ) ≤

m− (m− 1)umax(τ) if umax(τ) ≤ 0.5

m/2 + umax(τ) if umax(τ) ≥ 0.5 ,

then τ can be successfully scheduled on m unit-speed processors using either algorithm fpEDF

or r-fpEDF.

In Chapter 5 of this dissertation, we extend these results for uniform heterogeneous mul-
tiprocessors.

32

2.2 Results for uniform heterogeneous multiprocessors

The previous section discussed real-time scheduling results on identical multiprocessors.
This section discusses the use of uniform heterogeneous multiprocessors. Section 2.2.1 presents
work by Liu and Liu [LL74] and by Horvath, et al. [HLS77]. The work in this section concerns
scheduling jobs without deadlines with the goal of minimizing the time required to finish all
the jobs. Section 2.2.2 presents work by Hochbaum and Shmoys [HS87, HS88] concerning
bin-packing with bins of different sizes. Since bin packing and partitioned scheduling have a
strong correlation, the results of Hochbaum and Shmoys can be used to schedule jobs on uni-
form heterogeneous multiprocessors. Finally, Section 2.2.3 presents work by Baruah [Bar02]
regarding the robustness of f-EDF on uniform heterogeneous multiprocessors.

2.2.1 Scheduling jobs without deadlines

Liu and Liu [LL74] studied non-real-time scheduling on uniform heterogeneous multipro-
cessors. They considered jobs with precedence constraints, which impose an ordering of the
jobs over time. A job Ji precedes job Jj , denoted Ji < Jj , if Jj cannot begin to execute before
Ji has completed executing. The notation (J , <) represents a set of jobs J with precedence
constraints. Given a set (J , <), Liu and Liu considered schedules satisfying the following
properties:

• job-level fixed-priority,

• work conserving, and

• non-preemptive.

Schedules satisfying these three properties can differ due to different priority assignments.

Deadlines are not a concern for non-real-time jobs. Nonetheless, the amount of time
required to complete all the jobs, called the makespan, may be of concern. Liu and Liu
determined the maximum ratio between the makespan of two schedules.

Theorem 9 ([LL74]) Let π be any m-processor uniform heterogeneous multiprocessor with
maximum speed s1(π) and total speed S(π) and let (J , <) be a set of jobs with precedence
constraints. Assume these jobs are scheduled on π using two different schedules. Let ω be the
makespan of a job-level fixed-priority, work-conserving, non-preemptive schedule, and let ω′

be the makespan of an arbitrary schedule. Then

ω

ω′ ≤
s1(π)
sm(π)

+ 1− s1(π)
S(π)

.

Moreover, this bound is the best possible.

33

Therefore, the makespan of any schedule of (J , <) can be used to bound the makespan
of any other schedule. Furthermore, even though ω may not be the minimum makespan, this
theorem can be used to determine how far any schedule may be from the optimal.

Liu and Liu also compared the makespan of schedules on two different uniform heteroge-
neous multiprocessors.

Theorem 10 ([LL74]) Let π and π′ be any two uniform heterogeneous multiprocessors and
let (J , <) be a set of jobs with precedence constraints. Assume these jobs are scheduled on
π and π′ using two different schedules. Let ω be the makespan of a job-level fixed-priority,
work-conserving, non-preemptive schedule on π, and let ω′ be the makespan of an arbitrary
schedule on π′. Then

ω

ω′ ≤
s1(π′)
sm(π)

+
S(π′)− s1(π′)

S(π)
,

where s1(π) and sm(π′) are the fastest and slowest processor speeds of π and π′, respectively,
and S(π) and S(π′) are their total processing speeds. Moreover, this bound is the best possible.

Horvath, et al. [HLS77], studied the problem of scheduling a set of non-real-time preempt-
able jobs, all of which arrive at the same time. They showed that when independent non-
real-time jobs execute on a uniform heterogeneous multiprocessor, the minimum makespan
depends on the cumulative execution requirements of the jobs and the cumulative speeds of
the processors.

Theorem 11 (Horvath, et al. [HLS77]) Let J = {J1, J2, . . . , Jn} be a set of n indepen-
dent non-real-time jobs, each with arrival time equal to zero and indexed according to non-
increasing execution requirements, ci ≥ ci+1 for all i = 1, 2, . . . n − 1, and let Ci denote the
cumulative execution requirement of the i largest jobs for all i = 1, 2, . . . , n. Then for any
m-processor uniform heterogeneous multiprocessor, π, the minimum makespan for scheduling
I on π is

ω
def= max

(
max

1≤i≤m

{
Ci

Si(π)

}
,

Cn

S(π)

)
. (2.4)

They introduced the level algorithm, which always completes execution at time ω. The
level of job J at time t is its remaining amount of work. The level algorithm recursively
assigns jobs to processors. Starting at time t = 0, the algorithm sets j equal to m and k equal
to the number of jobs with the largest execution requirement (i.e., the highest initial level).
If k > j, the k jobs are jointly assigned to the j processors (the details of jointly assigning
jobs to processors is described below). Otherwise, the k jobs are assigned to the k fastest
processors and the remaining jobs are assigned to the slower processors in a similar manner.
This processor assignment will remain until either some set of jobs completes executing or
the level of one group equals the level of the group below it.

34

-

s1

s2

s3

0 1 2 3 4 5 6

J1

J2

J3 J3, J4

J1, J2 J1, J2,
J3, J4

Processor view

-

J1

J2

J3

J4

0 1 2 3 4 5 6

s1

s2

s3

s3

s1, s2

s1, s2, s3

Job view

Figure 2.6: Jobs J1, J2, J3, and J4 with execution requirements c1 = 20, c2 = 16, c3 = 6, and
c4 = 5 scheduled on π = [5, 3, 1] using the level algorithm.

Example 2.9 Let π = [5, 3, 1] and let I be the set of jobs with execution requirements
c1 = 20, c2 = 16, c3 = 6, and c4 = 5. Figure 2.6 illustrates the level-algorithm schedule
of I on π. Notice that the diagrams only have one time line for all the processors (or jobs)
to more easily reflect when jobs execute jointly on one or more processors. Initially, all the
jobs have distinct levels so J1, J2 and J3 execute on s1, s2 and s3, respectively. At t = 1, the
levels of J3 and J4 are both equal to 5, so these two jobs jointly execute on s3. At t = 2, the
levels of J1 and J2 are both equal to 10, so these jobs jointly execute on processors s1 and s2.
At t = 34

7 , all the jobs have a level of 35
7 so they all execute jointly on all three processors

until they complete at t = 417
21 .

Jobs are jointly assigned to processors by dividing the shared intervals into smaller inter-
vals and scheduling the jobs in a round-robin fashion. More specifically, if j jobs, J1, J2, . . . , Jj ,
are scheduled for t time units on k processors, s1, s2, . . . , sk, where k ≤ j, then the interval is
divided into j subintervals of length (t/j) and each job executes on each processor for exactly
one subinterval and idles for (k − j) subintervals. During the first subinterval Ji executes on
si where 1 ≤ i ≤ k. After this, each job shifts down to the next processor so Jj executes on
s1 and Ji executes on si+1, where 1 ≤ i ≤ k− 1. Figure 2.7 illustrates a schedule sharing five
jobs among four processors for five time units.

When J has precedence constraints, the level of each job Ji does not depend only on ci.
Instead, the level includes the longest chain that starts at Ji. A chain is a sequence of jobs
Ji1 , Ji2 , . . . , Jin′ such that Jik < Jik+1

for each k = 1, 2, . . . n′ − 1. The length of the chain
is sum of its component jobs’ execution requirements: ci1 + ci2 + . . . + cin′ . While the level
algorithm minimizes the makespan for independent jobs, Horvath, et al. [HLS77], found that
the level algorithm does not minimize the makespan when J has precedence constraints. The
following example illustrates a set (J , <) whose makespan is not minimized when scheduled
using the level algorithm.

35

-

-

-

-
s1

s2

s3

s4

0 1 2 3 4 5

J1

J2

J3

J4

J5

J1

J2

J3

J4

J5

J1

J2

J3

J4

J5

J1

J2

J3

J4

J5

Processor view

-

-

-

-

-J1

J2

J3

J4

J5

0 1 2 3 4 5

s1

s2

s3

s4

s1

s2

s3

s4

s1

s2

s3

s4

s1

s2

s3

s4

s1

s2

s3

s4

Job view

Figure 2.7: Executing five jobs on four processors.

Example 2.10 ([HLS77]) Let J be comprised of 13 jobs with c1 = c2 = . . . = c9 = 7, and
c10 = c11 = c12 = 30, and c13 = ε. Assume that for all i ≤ 9, job Ji precedes job J12 and that
jobs J10, J11 and J12 precede job J13. The precedence relation for this job set is illustrated in
Figure 2.8. Assume (J , <) is scheduled on π = [s1 = 4, s2 = s3 = . . . = s9 = 1]. Inset (a)
of Figure 2.9 illustrates the schedule of (J , <) on π generated by the level algorithm. Since
jobs J1, J2, . . . , J9 all have the largest initial level, they are scheduled on the nine processors
until they complete execution. After these jobs complete, jobs J10, J11 and J12 can execute on
the fastest three processors. Finally, once these jobs complete, job J13 executes on the fastest
processor. The makespan of this algorithm is 20.25 + ε/4. Inset (b) of Figure 2.9 illustrates
the optimal algorithm, which schedules jobs J1, J2, . . . , J9 on seven of the unit-speed processors
until they complete executing at time 9. During this time, the remaining two processors execute
jobs J10 and J11. At time 9, job J12 is eligible to execute because all the jobs that precede it
have completed executing. Therefore, at this time J12 executes on the fastest processor and
jobs J10 and J11 execute on two of the unit-speed processors. All three jobs complete executing
after 7.5 time units at time 16.5. At this point job J13 can execute on the fastest processor.
The makespan of the optimal schedule is 16.5 + ε/4, which is less than the makespan of the
level algorithm.

Even though the level algorithm does not find the minimal makespan when jobs have
precedence constraints, the ratio between the makespan of the level algorithm and the minimal
makespan is bounded. The bound depends on the speeds of the processors of π. For any

36

J1 J2
. . . J9

J10 J11 J12

J13

Figure 2.8: Precedence graph.

s1
s2
s3
s4
s5
s6
s7
s8
s9

0 2 4 6 8 10 12 14 16 18 20 22 24

J1, J2,

. . . , J9

J10, J11, J12
J13

Processor view

J1
J2
J3
J4
J5
J6
J7
J8
J9
J10
J11
J12
J13

0 2 4 6 8 10 12 14 16 18 20 22 24

s1, s2,
. . . , s9

s1, s2, s3

s1

Job view

(b) Level algorithm schedule

s1
s2
s3
s4
s5
s6
s7
s8
s9

0 2 4 6 8 10 12 14 16 18 20 22 24

J1, J2, . . . , J9

J10, J11
J10, J11

J12 J13

Processor view

J1
J2
J3
J4
J5
J6
J7
J8
J9
J10
J11
J12
J13

0 2 4 6 8 10 12 14 16 18 20 22 24

s3, s4, . . . , s9

s1, s2 s2, s3

s1
s1

Job view

(b) Optimal schedule

Figure 2.9: The level algorithm is not optimal when jobs have precedence constraints.

37

uniform heterogeneous multiprocessor, define αi for each i = 2, 3, . . . ,m− 1 as follows:

αi
def=

Si(π)/i

S(π)− Si(π)
.

Intuitively, αi is the ratio of execution rate versus idle rate when the i fastest processors are
executing i jobs. Define α and β as follows:

α
def= min{αi | 1 < i < m}, and

β
def=

S2(π)
S(π)− S2(π)

.

Given these values for α and β, Horvath, et al. [HLS77], determined the the maximum ratio
between the makespan of the level algorithm and an optimal schedule.

Theorem 12 ([HLS77]) Let π = [s1, s2, . . . , sm] be any uniform heterogeneous multiproces-
sor and let (J , <) be a set of jobs with precedence constraints. Assume the level algorithm
schedules (J , <) on π with a makespan of ω. Let ω′ be the minimal makespan of (J , <) on
π. Then

ω

ω′ ≤ 1 + min
{

1
β

,
s1(π)

αsm(π)

}
.

Example 2.11 For π = [s1 = 4, s2 = s3 = . . . = s9 = 1], the values of αi for i = 1, 2, . . . , 8
are

α1 =
4
8
, α2 =

5/2
7

, α3 =
6/3
6

, α4 =
7/4
5

, α5 =
8/5
4

, α6 =
9/6
3

, α7 =
10/7

2
, α8 =

11/8
1

.

Therefore

α = max{αi | 1 ≤ i ≤ 8} =
1
3

and β =
S2(π)

S(π)− S2(π)
=

5
7
.

Applying Theorem 12 to π, we have

ω

ω′ ≤ 1 + min
{

5
7
,

4
1/3 · 1

}
= 1

5
7
≈ 1.714,

so the makespan of the level algorithm will never exceed 1 5/7 times the optimal makespan.
Comparing the makespans found in Example 2.10, we see that

20.25 + ε/4
16.5 + ε/4

< 1.23 ≤ 1
5
7
.

In this section, we have examined reducing the completion time of non-real-time jobs.
In the next section, we will examine partitioned scheduling of real-time tasks on a uniform
heterogeneous multiprocessor.

38

2.2.2 Bin packing using different-sized bins

The optimality of EDF on uniprocessors suggests a correlation between bin packing and
partitioned scheduling. Recall that the bin-packing problem considers a set of items, each
with a given weight less than 1. Each item can be placed in a single bin and the total weight of
all items placed in any bin cannot exceed 1. The question posed by the bin-packing problem
is “Can a given set of items fit into k bins?” The variable-sized bin-packing problem is a
modification of the original bin-packing problem in which each bin has an associated size.
Instead of requiring that the total weight of items placed in a bin to be at most 1, this
problem requires that the total weight is at most the size of the bin. Therefore, the question
posed by this problem is “Can a given set of items fit into k bins with sizes b1, b2, . . . , bk?”.

Partitioning tasks onto a uniform heterogeneous multiprocessor can easily be reduced to
the variable-sized bin-packing problem: each bin of size b is equated with a processor of speed
b, and each item of weight w is equated with a task with utilization w. By the optimality
of EDF on uniprocessors [LL73], a set of tasks can be scheduled to meet all deadlines on a
processor of speed b if and only if the total utilization of the tasks is at most b. Therefore,
a set of tasks can be partitioned onto k processors of speed s1, s2, . . . , sk if and only if the
corresponding items can be placed into the k bins with sizes s1, s2, . . . , sk.

Johnson [Joh73] showed that the bin-packing problem is NP-hard in the strong sense even
when the bins are all the same size. Since bin-packing with variable bin sizes is a generalization
of the bin-packing problem, it, too, is NP-hard in the strong sense. Therefore, it is unlikely
that there exists an algorithm that runs in polynomial time and solves the variable sized bin-
packing problem exactly. Hochbaum and Shmoys [HS87, HS88] designed a polynomial-time
approximation scheme (PTAS) for the variable-sized bin-packing problem. For any ε, this
algorithm relaxes the variable-sized bin-packing problem by a factor of ε: Items with weight
totalling as much as (1 + ε) · b can be assigned to a bin of size b. The relaxed algorithm,
denoted Aε, either finds a packing of the items into the relaxed bins or states that there is
no solution to the original (unrelaxed) problem. Therefore, the approximation scheme gives
three possible answers to the variable-sized bin-packing problem:

Yes: If Aε finds a solution to the relaxed problem and none of the bins are overfilled, then
this is also a solution to the original (unrelaxed) problem.

No: If Aε cannot find a solution to the relaxed problem, then the original problem has no
solution.

Maybe: If Aε finds a solution to the relaxed problem and one or more bins are overfilled,
then it is unknown whether the original problem has a solution.

The approximation algorithm for the variable-sized bin-packing problem is a modification
of the approximation algorithm for the standard bin-packing problem, also developed by

39

Hochbaum and Shmoys [HS87]. The algorithm Aε approximates the standard bin-packing
problem by allowing bins to be filled up to a level of at most (1 + ε). This algorithm has two
phases. The first phase places all pieces whose size is larger than ε into bins and the second
phase places the smaller pieces into bins. The smaller pieces may be placed into any bin that
is not already overfilled. If all bins are overfilled, a new bin may be started. Notice that the
second phase can never cause the number of used bins to exceed the minimum number of
bins required since it only increases the number of bins when all the currently opened bins
are overfilled.

The first phase of Aε begins by partitioning each bin into q = d1/ε2e equal-sized segments,
(`1, `2], (`2, `3], . . . , (`q, `q+1], where `1 = ε and `q+1 = 1. It then maps each piece to the
interval which contains the piece’s size. Finally, the algorithm places the pieces into bins.
When a piece with weight w, where `i < w ≤ `i+1, is placed in a bin, i segments of the bin
become occupied. The amount of space reserved for each piece is always less than the actual
size of the piece by at most ε2. Since each bin contains at most b1/εc items (since only large
pieces are considered in the first phase), the total size of the pieces packed in each bin is at
most (1 + ε).

Thus, Aε reduces the bin-packing problem to one in which there are a fixed number of
piece sizes, which can be solved in polynomial time using dynamic programming (for example,
see [CLRS01]). The dynamic programming table has O(nq) entries and each entry takes at
most (1/ε)q time to compute. Therefore, the minimum number of required bins can be
calculated in O((n/ε)q) = O((n/ε)di/ε2e) time.

When extending this algorithm to account for variable-sized bins, the bin sizes (and hence
the pieces) are normalized so that the largest bin has a size of 1. Recall that when bin sizes
are identical, all bins are partitioned into d1/ε2e equal sized partitions. In the identical bin-
packing problem, the segment size is the same for every bin. However, when the bin sizes vary,
the segment sizes vary as well. Therefore, a piece reserves a different number of segments
depending on the bin in which it is placed. Moreover, the size that determines if a piece is
small depends on the bin in question. For example, if there is a bin whose size is ε2, a piece
whose size is ε will not fit in that bin. Therefore, it makes no sense to call such a piece small
with respect to the given bin.

In order to address these two issues, both bins and pieces are categorized according to
their sizes. A bin with size b is put into category if ε+1 < b ≤ ε and an item with weight
w is placed in the category ` if ε`+1 < w ≤ ε`. Moreover, pieces are rounded down to their
nearest multiple of ε`+2 — i.e., w is replaced by w′ = bp/ε`+2c ·ε`+2. Since the interval (b ·ε, b]
may overlap two piece categories, an additional “medium-sized” category is also considered
for each bin size. Table 2.2 describes the relationship between bins and pieces. Notice that a
small piece for a bin is never more than ε times the bin’s size.

As in the identical bin-packing algorithm, bins are packed one at a time. The bins are

40

w ≤ ε`+2 i is small for bin b b is enormous for i

w in category ` + 1 i is medium for bin b b is huge for i

w in category ` i is large for bin b b is large for i

Table 2.2: Relationship of an item i with weight w to bin b in size category `

packed starting with bins in category 0 (i.e., bins with weight between ε and 1) and working
to bins in category kε, where kε is the total number of categories. Each bin is packed in two
phases: The large and medium phase and the small phase. If the bin is not overfilled after the
large and medium phase, the small phase places pieces in the bin that are small with respect
to the bin. The large and medium phase is implemented using a layered graph rather than a
dynamic programming table due to the added complexity caused by the varied bin sizes.

Hochbaum and Shmoys show that the layered graph contains at most O(2m ·n2/ε2+3 ·1/ε6)
nodes, where m is the number of bins and n is the number if items, and that the number of
arcs originating at each node is O((1/ε2)2/ε2), giving a total of O(2m(n/ε2)(2/ε2+3)) arcs in
the graph. Each arc evaluation requires at most (2/ε2) − 1 additions and one comparison.
Furthermore, the updates between stages require at most n additions and 3 comparisons.
This gives a total complexity of O((2m(n/ε2)(2/ε2+3)) · 2/ε2 + kε · n), where kε is the number
of bin categories of π for the given ε.

2.2.3 Real-time scheduling on uniform heterogeneous multiprocessors

The use of uniform heterogeneous multiprocessors for real-time scheduling has not received
much attention until recently. This dissertation presents EDF-schedulability tests for uniform
heterogeneous multiprocessors. The full migration test relies on a result developed by Baruah
concerning the robustness of f-EDF on uniform heterogeneous multiprocessors. In addition,
Baruah and Goossens developed an RM-schedulability test for uniform heterogeneous multi-
processors. These results will be described in more detail in this section, beginning with the
RM-schedulability test.

Rate monotonic scheduling. Baruah and Goossens [BG03a, BG03b] developed a schedu-
lability test for the rate monotonic (RM) scheduling algorithm with full migration on uniform
heterogeneous multiprocessors. Recall that RM is a fixed-priority scheduling algorithm that
assigns higher priority to tasks with smaller periods. All the jobs generated by a given task
have the same priority. Baruah and Goossens developed the following schedulability test for

41

RM on uniform heterogeneous multiprocessors.

Theorem 13 ([BG03a, BG03b]) Let τ be any task set and let π be any uniform heteroge-
neous multiprocessor. If

Usum(τ) ≤ 1
2
(
S(π)− (1 + λ(π)) · umax(τ)

)
,

where S(π) is the total speed of π and λ(π) = max{(
∑m

i=k+1 si)/sk | 1 ≤ k < m} is π’s iden-
ticalness parameter, then τ can be successfully scheduled on π using RM with full migration.

This utilization bound is quite similar to the full migration EDF bound found in Chapter 3
of this dissertation. The bound for RM is smaller than the bound for EDF. In EDF, active jobs
gain higher priority as their deadlines approach. By contrast, RM’s jobs always have the same
priority even if they are about to reach their deadlines. The decreased bound compensates
for the difficulties inherent in fixed-priority scheduling.

Baruah also developed results concerning the dynamic scheduling algorithm f-EDF on
uniform heterogeneous multiprocessors. In the remainder of this section, we will present
these results.

The robustness of f-EDF.

We can determine if a set of jobs is schedulable on the multiprocessor π if we consider
multiprocessors that are “less powerful” than π. The following definition provides a structure
by which some processors can be seen to be more powerful than others.

Definition 4 (π dominates π′ (π � π′)) Let π and π′ be two uniform heterogeneous mul-
tiprocessors. Then π dominates π′ if (i) m(π) ≥ m(π′), and (ii) si(π) ≥ si(π′) for all
i = 1, 2, . . . ,m(π′) .

If a scheduling algorithm A is guaranteed to successfully schedule any real-time instance
I on π whenever I is A-schedulable on some multiprocessor π′ dominated by π, then A is said
to be robust with respect to domination. Baruah [Bar02] showed that f-EDF is robust with
respect to domination. Robustness is desirable because processors can be upgraded without
requiring rigorous re-analysis of the entire system. Theorem 14 below asserts that f-EDF is
robust with respect to domination.

Theorem 14 (Baruah [Bar02]) Let I be any real-time instance that is f-EDF-schedulable
on a uniform heterogeneous multiprocessor π′. Let π denote any uniform heterogeneous mul-
tiprocessor such that π � π′. Then I is f-EDF-schedulable upon π.

Baruah’s work on robustness of f-EDF can be used to extend the f-EDF-schedulability test
presented in Chapter 3, which identifies a subset f-EDF-schedulability region associated with

42

10 20 30 40 50

10

20

30

40

50

60

70

(50,50)

Max speed (s)

T
ot

al
sp

ee
d

(S
)

Rπ

Figure 2.10: The region Rπ for π = [50, 11, 4, 4] contains all points (s, S) with S ≤ S(π) −
s · λ(π). Any instance I is guaranteed to be f-EDF-schedulable on π if I is feasible on some
multiprocessor with fastest speed s and total speed S, where (s, S) is in the region Rπ.

each uniform heterogeneous multiprocessor π. This region, denoted Rπ, contains the points
(s, S) such that

S ≤ S(π)− λ(π) · s .

Any real-time instance I that is feasible on a uniform heterogeneous multiprocessor π′ with
s1(π′) = s and S(π′) = S is f-EDF-schedulable on π. For example, Figure 2.10 illustrates the
region Rπ for π = [50, 11, 4, 4].

Example 2.12 Let π = [50, 11, 4, 4]. Then λ(π) = max{19/50, 8/11, 4/4} = 1 and
S(π) = 69. Therefore, Rπ = {(s, S) | 0 < s ≤ S ≤ 69 − s}. Figure 2.10 illustrates this
area. If (s, S) is in the shaded area and I is feasible on some π′ with s1(π′) = s and S(π′) = S

then I is f-EDF-schedulable on π.

Unfortunately, Rπ does not necessarily contain all the points that guarantee f-EDF-
schedulability on π. Notice that (50, 50) 6∈ Rπ. This point represents multiprocessors whose
maximum and total speed are both equal to 50 — i.e., speed-50 uniprocessors. Clearly, any
instance that is feasible on a speed-50 uniprocessor is feasible on a “multiprocessor” dom-
inated by π — namely π′ = [50]. By the robustness of f-EDF on uniform heterogeneous

43

multiprocessors, any such instance is also f-EDF-schedulable on π. Therefore, all instances
feasible on speed-50 uniprocessors are guaranteed to be f-EDF-schedulable on π even though
(50, 50) 6∈ Rπ.

The robustness of f-EDF on uniform heterogeneous multiprocessors can help find the points
that guarantee f-EDF-schedulability but are not included in Rπ. In addition to the points in
Rπ, we also want to include all points in Rπ′ for every multiprocessor π′ such that π � π′.
Since the set of all such multiprocessors is quite large, it behooves us to try to consider only a
subset of the multiprocessors dominated by π. To that end, Baruah considered multiprocessors
cleanly dominated by π.

Definition 5 (π cleanly dominates π∗.) Uniform heterogeneous multiprocessor π cleanly

dominates uniform heterogeneous multiprocessor π∗ (denoted π
?
� π∗) if and only if (i) π�π∗,

and (ii) si(π∗) = si(π) for all i = 1, 2, . . . ,m(π∗)− 1.

Example 2.13 Let π = [50, 11, 4, 4]. Consider the uniform heterogeneous multiprocessors
π1 = [4, 3, 3, 1], π2 = [50, 11, 2] and π3 = [50, 4, 6]. Then π � π1 since the speed of each
processor of π is greater or equal to the speed of the corresponding processor of π1. Also,
π �∗ π2 since s1(π) = s1(π2) and s2(π) ≥ s2(π2). Finally, π does not dominate π3 since
s3(π) < s2(π3).

When trying to extend the region Rπ to include every point for which feasibility on any uni-
form heterogeneous multiprocessor represented by the point guarantees f-EDF-schedulability
on π, we need to find Rπ′ for all processors π′ dominated by π. If we can restrict our attention
to only the multiprocessors cleanly dominated by π, the number of new processors we need
to consider is substantially reduced. The following theorem states that we can restrict our
attention in this manner.

Theorem 15 Given a uniform heterogeneous multiprocessor π and constants s and S, if
there is a uniform heterogeneous multiprocessor π1 such that

(π � π1) and ((s, S) ∈ Rπ1)

then there is a uniform heterogeneous multiprocessor π2 such that

(π
?
� π2) and ((s, S) ∈ Rπ2) .

Thus, it suffices to consider only the multiprocessors cleanly dominated by π when apply-
ing the robustness of f-EDF on uniform heterogeneous multiprocessors. Chapter 3 develops
these concepts more fully.

44

2.3 Uniform heterogeneous multiprocessor architecture

Throughout this dissertation, we represent a uniform heterogeneous multiprocessor by a
vector of speeds, π = [s1, s2, . . . , sm]. In this section, we will explore the actual machines
represented by this notation. In particular, we will see that uniform heterogeneous multipro-
cessors can have different architectures. For example, their memory may be centrally located
or distributed. In this section, we will investigate how the execution requirement associated
with a job may be affected by the multiprocessor architectures.

This dissertation assumes that all jobs are independent and that each processor of the
system has an associated speed s, which is the amount of work that processor can complete
in one unit of time. We will see that these assumptions simplify the actual behavior of real
processors. Nonetheless, this model provides a close approximation of the actual behavior.
In the following sections, we will see how these simplifications manifest themselves and how
we can compensate for the associated errors. Sections 2.3.1 and 2.3.2 will introduce shared-
and distributed-memory multiprocessors, respectively.

2.3.1 Shared-memory multiprocessors

In shared-memory multiprocessors (SMPs), all the processors access the memory remotely.
Memory and processors connect over a bus or a general interconnection network. Figure 2.11
illustrates a shared-memory multiprocessor. Each processor has its own cache and the pro-
cessors retrieve data and code from the memory via a bus. Notice that this system does not
have a centralized clock — each processor operates at the speed dictated by its local clock.
For example, the Dell PowerEdge 2600 can have two processors with speeds ranging from 2.4
to 3.2 GHz [Del04]. The two processors may operate at different speeds and they may have
different sized caches.

In these systems the amount of time required to access memory is the same regardless of
which processor is accessing the memory. This can skew the relative speeds of the processors.
If a job executes on two processors, one of speed s and one of speed s′, the ratio of total time
it takes the job to complete executing on these two processors will probably not be s/s′. This
is illustrated in the following example.

Example 2.14 Consider a two-processor multiprocessor with processor speeds s1 = 2 and
s2 = 1. While it is natural to infer that a job will execute twice as quickly on processor
s1 as it will on s2, this is not necessarily the case. The difficulty arises because of the time
required to access memory. Assume a job executes for 3 time units on the unit-speed processor
s2 — 2 time units executing on the processor and 1 time unit accessing memory. Then the
same job executing on processor s2 will require half the amount of time for execution, but the
same amount of time required to access memory — i.e., a total of 2 units of time to complete

45

Figure 2.11: A shared-memory multiprocessor.

execution. Therefore, while the job does execute at twice the speed on processor s1, it does
not complete executing in half the time.

The above example illustrates a weakness in the model we use to describe these systems
— we do not make a distinction between the execution time and the total time to complete
executing. On identical SMPs, the memory access can be included in the execution time
without causing any skew. However, on uniform heterogeneous multiprocessors, we need to
make some adjustments. Recall that our model uses the maximum execution requirement, c,
for each job. We do not assume that the job executes for c time units every time it is submitted
— we only assume that it never executes for more than c time units. Below we describe a
method for determining c if we are given the amount of time the job spends executing on a
unit-speed processor and the amount of time spent accessing memory.

Assume a job J takes x units of time to execute on a unit-speed processor and y units of
time to access memory. Then the total amount of time the job takes to complete execution
on an s-speed processor is x/s + y. Clearly, the memory access becomes a larger proportion
of the total time to complete as the processor speed increases. We can address the skew
caused by the memory accesses by adjusting the job’s memory access time. If we inflate
y appropriately, then we can be sure the total processing time always remains within the

46

proscribed limits. In particular, instead of saying that J ’s execution requirement is (x + y),
we should scale up the memory access time by the fastest processing speed, s1, and set J ’s
execution requirement to (c = x + s1 · y). We can be sure that the total processing speed will
never exceed this value. If J were to execute in a processor of speed sk, then the total time
to complete would be (x/sk + y). According to our model, the total time to complete would
be c/sk = x/sk + (s1/sk)y. Therefore, the actual time to complete will never exceed the time
the calculated by this method. Therefore, this strategy can be used to find each job’s worst
case execution requirement.

The time required to access memory also belies our assumption that jobs are independent.
In order to access memory, the program must send a request to the memory, access the
memory and send the contents back to the requesting program. Each of these steps involves
accessing a resource that is shared among all the processors — namely the bus to send and
receive the memory contents, or the memory module. In addition to accounting for the time
required to operate each of the operations, the memory access time must include delay time
due to contention. In some cases, the contention delay can dominate the memory access time.
Throughout this discussion, the memory access time is assumed to include the worst-case
contention delay.

Migration costs. Migrating a job from one processor to another incurs overhead. If the
job were to remain on the same processor, it would be able to quickly access any cached
information — both the program and its associated data may be cached. When the job
restarts on a new processor, the cache in the new processor will not contain the necessary
information. Therefore, both the program and its associated data will need to be accessed in
memory instead of cache, which takes considerably more time. This added time is the cost
associated with migration.

Of course, if migration is allowed the migration overhead will have to be included in
the evaluation of the execution requirement. If the worst case migration costs are evaluated
independently of the worst case execution requirements, they can simply be added to the
execution costs and the scaled memory-access costs. In this case, there is no need to multiply
the migration cost by the fastest processor speed, s1. However, this may overestimate the
execution requirement — the memory-access costs are evaluated assuming the job is executing
on the fastest processor whenever it accesses memory and the migration costs are evaluated
assuming the worst-case cost of migration is incurred. It is nearly impossible for the job to
migrate among processors with all memory accesses occurring while the job is assigned to
only one of the processors. The actual maximum overhead associated with memory accesses
and migration combined would be much more difficult to find.

Consider the configuration {y1, y2, . . . , ym, r}, where yi is the memory-access time that
occurred while J was assigned to the i’th processor and r is the total migration time. The

47

adjusted overhead associated with memory accesses and migration is

r +
m∑

i=1

si · yi ,

where si is the speed of the i’th processor of π. Therefore, the worst-case overhead is found
by maximizing this expression over all valid configurations of memory accesses with their
associated migration overheads. Determining this maximum is a complex problem that is
beyond the scope of this dissertation. It falls in the area of worst-case execution time analysis,
which is a rich area of research that is orthogonal to feasibility analysis, the subject of this
dissertation. However, since uniform heterogeneous multiprocessors have not received much
attention in real-time systems, we need to take note of how this architecture may affect
worst-case execution time analysis.

2.3.2 Distributed memory multiprocessors

As indicated by the name, the memory in distributed-memory multiprocessors is dis-
tributed among the processors. The connection between processors can be via a bus or a
more general network connection. Usually, a bus can only be used for smaller systems be-
cause bus traffic causes a bottleneck for larger systems [LLG+92]. Figure 2.12 illustrates a
distributed memory system in which each processor has its own associated memory. The SGI
Origin 2000 [BFS89] is a distributed memory multiprocessor. As with SMPs, the processors
in these systems may have different speeds. However, in these systems, the memories may also
have different speeds. Therefore, in our calculations we need to use both of these speeds to
evaluate the worst-case combination. We calculate the worst-case execution requirement by
finding the total execution time, including memory access time, on each processor and scaling
by that processor’s speed. We then pick the maximum among the results. This is equivalent
to scaling the normalized memory access time by the maximum ratio of the processing speed
to memory access speed, as the following example illustrates.

Example 2.15 Let J be a job that executes for 8 time units on a unit-speed processor and
accesses memory for 4 time units on a unit-speed memory module. Assume J executes on a
2-processor distributed memory multiprocessor where the first processor’s CPU speed is 8 and
a memory access speed is 2 and the second processor’s CPU speed is 2 and memory access
speed is 1. The total execution time on processor 1 is (8/8+4/2 = 3). Therefore the execution
requirement on this system after scaling up by the processor speed is 8 · 3 = 24. The total
execution time on processor 2 is (8/2 + 4/1 = 8) and the scaled execution requirement is
2 · 8 = 16. Therefore, the worst-case execution requirement for this job on this system is 24.

Notice that the maximum ratio between processing speed and memory access speed is
max{8/2, 2/1} = 4, and the worst-case execution requirement we found was 8 + 4 · 4 = 24.

48

Figure 2.12: A distributed memory multiprocessor.

It is easy to see that scaling the memory access requirement by this ratio will always find the
worst-case execution requirement.

It is interesting to note that in the above example, the worst-case execution occurs on
the first processor even though both the CPU- and the memory access speeds are faster on
this processor. This is because the slower processor’s memory access speed is closer to its
processing speed. Therefore, memory accesses do not disrupt the execution progress to the
same degree as they do on the faster processor, which has long memory access times relative
to its executing times.

The migration calculations for distributed memory multiprocessors are similar to those for
shared-memory multiprocessors. Either the worst-case migration costs should be added to the
execution cost and the scaled memory access cost or the total overhead for both migration
and memory access costs should be bounded by considering the worst-case configuration
of migrations. On distributed memory multiprocessors, it is essential that when a job is
migrated, its code and all its associated data is also migrated. This is because each migration
has a large cost regardless of the size, and migration of large amounts of information does not
take that much more time than migrating small amounts of information [LH86, BFS89].

2.4 Summary

This chapter has presented a variety of multiprocessor real-time scheduling results. Of
course, this is a rich area of research and we have only touched on a few of the many inter-
esting results on the subject of multiprocessor scheduling. The results presented here were

49

chosen because they are related to the research presented in this dissertation. The next three
chapters present EDF-schedulability tests for uniform heterogeneous multiprocessors under
three different migration strategies. The results in these chapters build upon those presented
above.

50

Chapter 3

FullmigrationEDF (f-EDF)

Recall that Theorems 1 and 2 in Chapter 2 state that no online job-level fixed-priority
scheduling algorithm can be optimal for uniform heterogeneous multiprocessors [HL88]. There-
fore, since deadlines do not change while jobs are active, EDF cannot be optimal on multi-
processors. Nonetheless, we can develop sufficient schedulability tests for EDF on uniform
heterogeneous multiprocessors. In this chapter, we develop a sufficient schedulability test
for EDF with full migration (f-EDF). In particular, this chapter describes the characteristic
region associated with π, denoted CRπ.

Definition 6 (Characteristic region of π) Let π be any uniform heterogeneous multipro-
cessor. Then the characteristic region of π, denoted CRπ, is the set of points (s, S) that
satisfy the following property:

Any real-time instance I that is feasible on some uniform heterogeneous multipro-
cessor π′ with fastest speed s1(π′) = s and total speed S(π′) = S is guaranteed to
be f-EDF-schedulable on π.

Example 3.1 Figure 3.5 considers the multiprocessor π = [50, 11, 4, 4] and divides all points
(s, S) into three categories: (i) points known to be in CRπ, (ii) points known to be out-
side CRπ, and (iii) points whose membership in CRπ is unknown. For every uniform
heterogeneous multiprocessor π′ represented by a point in CRπ, feasibility on π′ implies
f-EDF-schedulability on π. For example, the region in this graph includes the point (10, 20).
Therefore, any real-time instance feasible on a uniform heterogeneous multiprocessor π′ with
s1(π′) = 10 and S(π′) = 20 is f-EDF-schedulable on π. For every uniform heterogeneous
multiprocessor π′ represented by a point outside CRπ, feasibility on π′ does not imply f-EDF-
schedulability on π. For example, the point (30, 65) is outside CRπ. Therefore, there is some
real-time instance I and some uniform heterogenous multiprocessor π′ with s1(π′) = 30 and
S(π′) = 65 such that I is feasible on π′ but I is not f-EDF-schedulable on π.

Verifying that an instance will meet all its deadlines when scheduled using a specific
scheduling algorithm is often much more difficult than verifying that there is some way to

52

successfully schedule the instance. Furthermore, π′ is only described in terms of its fastest
and total processing speeds, allowing for even more flexibility in determining the feasibility
of I on π′. Therefore, the test that is presented in this chapter solves a complex problem —
determining f-EDF-schedulability on the specific multiprocessor π — by examining a relatively
easier problem — determining feasibility on a loosely defined multiprocessor π′.

This chapter is divided into three sections. Section 3.1 develops an f-EDF-schedulability
test for uniform heterogeneous multiprocessors using resource augmentation techniques. In
Section 3.2, we find that in some cases this test does not find the entire characteristic region.
We will exploit the robustness of f-EDF on uniform heterogeneous multiprocessors to extend
the original test and find the entire characteristic region CRπ associated with any uniform
heterogeneous multiprocessor π. Finally, Section 3.6 uses the characteristic region to develop
a utilization based f-EDF-schedulability test for periodic task sets on uniform heterogeneous
multiprocessors.

3.1 An f-EDF-schedulability test

Resource augmentation techniques are used to find a portion of the characteristic region
of π. Specifically, we assume that an instance I is known to be feasible (but not necessarily
online schedulable) on some other uniform heterogeneous multiprocessor π′. We then show
that if π is more powerful than π′ by at least a certain amount f , then I is f-EDF-schedulable
on π. The value of f depends on the processor speeds of both π and on π′.

Lemma 1 below specifies a condition upon the uniform heterogeneous multiprocessors π

and π′ under which any work-conserving algorithm A executing on π is guaranteed to complete
at least as much work by each time instant t as any other algorithm A′ executing on π′ when
both algorithms are scheduling the same real-time instance I. This condition depends on the
value of λ(π), the identicalness parameter associated with π, which was defined on page 6.
Using this condition, we can use Lemma 1 to compare work done by EDF to work done by
some optimal scheduling algorithm. Condition (3.1) expresses the amount by which the total
computing capacity of π must exceed that of π′ in order to ensure f-EDF-schedulability on π.
Notice that the smaller the value of λ(π), the smaller the amount of required excess processing
capacity. Therefore, the minimum difference between the total computing capacities of the
two multiprocessors is larger when π is closer to being an identical multiprocessor.

Lemma 1 Let π and π′ denote two uniform heterogeneous multiprocessors and let I be any
real-time instance. Let S and S′ denote schedules of I on π and π′, respectively, and assume
that S was generated by a work-conserving scheduling algorithm. If the following condition is
satisfied,

S(π) ≥ λ(π) · s1(π′) + S(π′) , (3.1)

53

then for any real-time instance I and any time instant t ≥ 0,

W (S, π, I, t) ≥W (S′, π′, I, t) . (3.2)

Proof: The proof is by contradiction. Suppose that Condition (3.2) does not hold; i.e., there
is some real-time instance I and some time instant by which work-conserving schedule S on
π has performed strictly less work than some other schedule S′ on π′. Let Ja = (ra, ca, da) be
a job in I with the earliest arrival time such that there is some time instant to satisfying

W (S, π, I, Ja, to) < W (S′, π′, I, Ja, to) , and (3.3)

W (S, π, I, to) < W (S′, π′, I, to) . (3.4)

By the choice of ra, it must be the case that

W (S, π, I, ra) ≥W (S′, π′, I, ra) .

Therefore, the progress toward completion of the jobs of I in schedule S′ during the interval
[ra, to) is strictly greater than the progress in schedule S during the same interval.

For each ` = 1, 2, . . . ,m(π), let x` denote the cumulative length of time during the interval
[ra, to) during which ` processors are executing jobs in schedule S. Observe the following:

• In schedule S, job Ja is active during the entire interval [ra, to). Therefore, there is
always at least one busy processor during this interval. Hence,

to − ra = x1 + x2 + · · ·+ xm(π) . (3.5)

• Consider the behavior of Ja on π′ during the interval [ra, to). In the best case, Ja is
always executing on the fastest processor of π′ in schedule S′. Therefore,

W (S′, π′, I, Ja, to) ≤ s1(π′) · (to − ra) . (3.6)

• Now consider the behavior of Ja on π during the same interval. Since S was generated
by a work-conserving scheduling algorithm, Ja must be executing whenever at least one
processor is idle. However, Ja may be forced to wait whenever all m(π) processors of
π are busy. Therefore, Ja is only guaranteed to be executing for (

∑m(π)−1
j=1 xj) units of

time. Furthermore, in the worst case, Ja executes the slowest processor that is executing
some job. By the work-conserving property, if j processors are executing jobs, the

54

slowest processor upon which Ja can be executing will have speed sj(π). Therefore,

W (S′, π′, I, Ja, to) ≥

m(π)−1∑
j=1

xjsj(π)

 . (3.7)

• In schedule S, the progress toward completion of the jobs of I is equal to
∑m(π)

j=1 (xjSj(π))
during [ra, to), while in schedule S′ the progress is at most (to − ra) · S(π′) during this
same interval. Thus, by Condition (3.4) the following condition holds:

m(π)∑
j=1

(xjSj(π)) < (to − ra) · S(π′) . (3.8)

Combining Conditions (3.3), (3.6) and (3.7) gives

m(π)−1∑
j=1

xjsj(π) < s1(π′) · (to − ra) . (3.9)

Multiplying both sides of Condition (3.9) above by λ(π), and noting that

(xj · sj(π)λ(π)) =
(

xj · sj(π) max
1≤i≤m(π)

{
S(π)− Si(π)

si(π)

})
(by definition of λ)

≥
(

xj · sj(π)
S(π)− Sj(π)

sj(π)

)
= xj(S(π)− Sj(π)) ,

gives
m(π)−1∑

j=1

(xj · (S(π)− Sj(π))) < s1(π′) · λ(π) (to − ra) . (3.10)

Adding Conditions (3.8) and (3.10) gives

m(π)∑
j=1

(xjSj(π)) +
m(π)−1∑

j=1

(xj(S(π)− Sj(π))) < (to − ra) (s1(π′) · λ(π) + S(π′)) .

Combining the two summations gives

xmS(π) +
m(π)−1∑

j=1

[xj(Sj(π) + S(π)− Sj(π))] < (to − ra) (s1(π′) · λ(π) + S(π′)) .

55

Cancelling the Sj(π) terms gives

xmS(π) +
m(π)−1∑

j=1

xjS(π) < (to − ra) (s1(π′) · λ(π) + S(π′)) .

Combining the two left-hand side terms gives

S(π) ·
m(π)∑
j=1

xj < (to − ra) (s1(π′) · λ(π) + S(π′)) .

Substituting Condition (3.5) gives

S(π) · (to − ra) < (to − ra)(s1(π′) · λ(π) + S(π′)) .

Dividing by (to − ra) gives
S(π) < s1(π′) · λ(π) + S(π′) ,

which contradicts the assumption made in the statement of the lemma (Condition (3.1)).

Lemma 1 allows us to reason about the total execution of work-conserving algorithms. The
next theorem shows that we can use this knowledge to deduce whether a particular work-
conserving algorithm (namely, f-EDF) can feasibly schedule a real-time instance. It states
that if uniform heterogeneous multiprocessors π and π′ satisfy Condition (3.1) of Lemma 1
then any real-time instance I that is feasible on π′ will be f-EDF-schedulable on π.

Theorem 16 Let I denote a real-time instance that is feasible on some uniform heteroge-
neous multiprocessor π′, and let π denote another uniform heterogeneous multiprocessor. If
Condition (3.1) of Lemma 1 is satisfied – i.e., S(π) ≥ λ(π) · s1(π′) + S(π′) — then I is
f-EDF-schedulable on π.

Proof: Let opt be a valid schedule of I on π′. Since π and π′ satisfy Condition (3.1), it
follows from Lemma 1 that the work done by f-EDF scheduling I on π during the interval
[0, t) is at least as much as the work done by opt scheduling I on π′ during the same interval:

W (f-EDF, π, I, t) ≥W (opt, π′, I, t) for all t ≥ 0 .

This condition can be used to prove inductively that f-EDF schedules I to meet all deadlines
on π. The induction is on the number of jobs in I. Specifically, let Ik

def= {J1, . . . , Jk} denote
the k jobs of I with the highest f-EDF-priority.

Claim. Ik is f-EDF-schedulable on π for all 1 ≤ k ≤ |I|.

56

Base case. Since Io denotes the empty set, f-EDF clearly schedules Io to meet all
deadlines on π.

Induction step. Assume that f-EDF can schedule Ik on π for some k with Ik 6= I

and consider the f-EDF-generated schedule of Ik+1 on π. Note that Ik ⊂ Ik+1 and that the
job Jk+1 does not effect the scheduling decisions made by f-EDF on the jobs {J1, J2, . . . , Jk}
while it is scheduling Ik+1. That is, the schedule generated by f-EDF for {J1, J2, . . . , Jk} while
scheduling Ik+1, is identical to the schedule generated by f-EDF while scheduling Ik. Hence
by the induction hypothesis, the k highest priority jobs of Ik+1 all meet their deadlines. It
remains to prove that Jk+1 also meets its deadline.

Consider the schedules generated by opt executing on π′. Since I is assumed to be feasible
on π′, it follows that Ik+1 is also feasible on π′ and hence opt will schedule Ik+1 on π′ to meet
all deadlines. That is,

W (opt, π′, Ik+1, dk+1) =
k+1∑
i=1

ci ,

where dk+1 denotes the deadline of Jk+1, which is the latest deadline of all the jobs of Ik+1.
By Lemma 1,

W (f-EDF, π, Ik+1, dk+1) ≥W (opt, π′, Ik+1, dk+1) =
k+1∑
i=1

ci .

Since the total execution requirement of all the jobs in Ik+1 is
∑k+1

i=1 ci it follows that job
Jk+1 meets its deadline.

Therefore, f-EDF successfully schedules all the jobs of Ik+1 to meet their deadlines on π.

The result of Phillips, Stein, Torng, and Wein [PSTW97] concerning f-EDF-scheduling on
identical multiprocessors is an immediate corollary to Theorem 16 above.

Corollary 1 If a set of jobs is feasible on an identical m-processor multiprocessor, then the
same set of jobs will be scheduled to meet all deadlines by f-EDF on an identical m-processor
multiprocessor in which the individual processors are (2− 1

m) times as fast as in the original
platform.

Proof: Assume the multiprocessors π and π′ of the statement of Theorem 16 are each
comprised of m identical multiprocessors. Let the speeds of the processors of π and π′ be s

and s′ respectively. The parameter λ(π) evaluates to (m(π)− 1):

λ(π) def= max
1≤j≤m(π)

∑m(π)

k=j+1 sk(π)

sj(π)

 = max
1≤j≤m(π)

{
(j − 1)s

s

}
= m(π)− 1 .

57

Substituting this into the condition S(π) ≥ λ(π) · s1(π′) + S(π′) from the statement of Theo-
rem 16 gives

m(π) · s ≥ (m(π)− 1) · s′ + m(π′) · s′ .

By assumption, m(π) = m(π′) = m. Therefore

m · s ≥ (m− 1) · s′ + m · s′ .

Combining the two right-hand side terms gives

m · s ≥ (2m− 1) · s′ .

Dividing by m gives

s ≥
(

2− 1
m

)
· s′ ,

from which the corollary follows.

3.2 The Characteristic Region of π (CRπ)

Section 3.1 introduces a test to determine f-EDF-schedulability of an instance that is
known to be feasible on some other multiprocessor π′. Chapter 2 discusses the robustness of
f-EDF with respect to multiprocessor domination. This section combines these two methods
to determine the characteristic region of π.

Theorem 16 can be used to determine some of the points in CRπ — if Condition (3.1)
of this theorem is satisfied for some π′, then any instance feasible on π′ is also feasible on π.
Of course, since s1(π′) is a processor speed, it must be a positive value. Also, since S(π′) is
the cumulative processing power, S(π′) must be at least as large as s1(π′). Condition (3.1)
combined with these restrictions on s1(π′) and S(π′) can be used to define a set Rπ that is a
subset of CRπ.

Definition 7 (Rπ) Let π be any uniform heterogeneous multiprocessor. The set of points
satisfying the conditions of Theorem 16 is denoted Rπ. Specifically,

Rπ
def= {(s, S) | 0 < s ≤ S and S ≤ S(π)− λ(π) · s}.

Example 3.2 Let π = [50, 11, 4, 4]. Then λ(π) = max{19/50, 8/11, 4/4} = 1 and S(π) =
69. Therefore, Rπ = {(s, S) | 0 < s ≤ S ≤ 69−s} ⊆ CRπ. Figure 3.1 illustrates this area.
If (s, S) is in the shaded area and I is feasible on some π′ with s1(π′) = s and S(π′) = S then
I is f-EDF-schedulable on π.

Unfortunately, Figure 3.1 does not illustrate the entire characteristic region of π. Consider,

58

10 20 30 40 50

10

20

30

40

50

60

70

(50,50)

Max speed (s)

T
ot

al
sp

ee
d

(S
)

Rπ

Figure 3.1: The region Rπ for π = [50, 11, 4, 4] contains all points (s, S) with S ≤ S(π) −
s · λ(π). Any instance I is guaranteed to be f-EDF-schedulable on π if I is feasible on some
multiprocessor with fastest speed s and total speed S, where (s, S) is in the region Rπ.

59

10 20 30 40 50

10

20

30

40

50

60

70

(50,50)

Max speed (s)

T
ot

al
sp

ee
d

(S
)

Rπ

Rπ′

Figure 3.2: The regions associated with π = [50, 11, 4, 4] and π′ = [50].

for example, the point (50, 50), which is not in the region Rπ. This point represents the
uniprocessor with speed 50. If we let π′ be this uniprocessor, then any instance I feasible on
π′ is clearly EDF-schedulable on π′ by the optimality of EDF on uniprocessors. Since EDF

and f-EDF generate the same schedule on uniprocessors, any instance I that is feasible on
π′ must also be f-EDF-schedulable on π′. Furthermore, since π

∗
� π′ and f-EDF is robust on

uniform heterogeneous multiprocessors, any instance f-EDF-schedulable on π′ = [50] must
also be f-EDF-schedulable on π = [50, 11, 4, 4]. Figure 3.2 illustrates Rπ and Rπ′ . Notice
there are many points in Rπ′ that are not in Rπ. Therefore, the region Rπ must be a proper
subset of CRπ.

This demonstrates that Theorem 14 in Chapter 2 can be used to extend the region provided
by Theorem 16 above. In fact, this technique provides us with the following lower bound on
the region CRπ. Recall π cleanly dominates π∗ (denoted π

∗
� π∗) if m(π) ≥ m(π∗) and

si(π) = si(π∗) for every i = 1, 2, . . . ,m(π∗)− 1 and sm(π∗)(π) ≥ sm(π∗)(π∗).

Definition 8 (crπ) Let π be any uniform heterogeneous multiprocessor. The set of points
(s, S) ∈ Rπ∗ for some π∗ cleanly dominated by π is denoted crπ:

crπ
def=
⋃

π
∗
�π∗

Rπ∗ .

60

According to this definition, all the points in shaded areas of Figure 3.2 are in crπ. In
addition, there may be other points in crπ that are included due to other multiprocessors
dominated by π. For example, consider the multiprocessor π∗ = [50, 11, 3]. Clearly, π �∗ π∗.
In this case λ(π∗) = max{14/50, 3/11} = 14/50. Since 64 − 30 · 14/50 = 55.6, the point
(30,55) is in Rπ∗ . Therefore, this point is also in crπ even though it is not in either shaded
region of Figure 3.2.

Clearly, crπ is a subset of CRπ. In addition to finding points in CRπ, we need to determine
what points are outside of CRπ. While Section 3.3 finds an efficient way to describe all
the points in crπ, Section 3.4 proves that many points outside crπ are also outside CRπ.
Section 3.5 describes the points whose membership in CRπ is currently unknown.

3.3 Finding the subset crπ of CRπ

Recall that crπ is the union of the regions Rπ∗ where π cleanly dominates π∗. Lemma 2
below shows the following set of points must be above or on the border of Rπ∗ for any π∗

such that π
∗
� π∗.

Definition 9 (Aπ) Let π = [s1, s2, . . . , sm] be any uniform heterogeneous multiprocessor.
Then

Aπ
def= {(s1, S1), (s2, S2), . . . , (sm, Sm), (sm+1, Sm+1)}, where (sm+1, Sm+1)

def= (0, S(π)) .

Each of the first m points of Aπ may be viewed as a prefix of π. If we consider πi =
[s1, s2, . . . , si] to be the uniform heterogeneous multiprocessor comprised of the i fastest pro-
cessors of π, then the first m points in Aπ pair the slowest processor speed of πi with S(πi).
The (m + 1)st point can be viewed the same way if we add a “zero-speed” processor to π. Of
course, no processor can have a speed of 0. Nonetheless, this point belongs in Aπ because, as
we shall see below, it is one of the points that forms an upper bound for CRπ.

Example 3.3 Let π = [50, 11, 4, 4]. Then π1 = [50] and the first point in Aπ is (50,50).
Similarly, π2 = [50, 11] and the second point in Aπ is (11,61). In total Aπ contains m(π)+1 =
5 points, Aπ = {(50, 50), (11, 61), (4, 65), (4, 69), (0, 69)}.

Lemma 2 Let π be any uniform heterogeneous multiprocessor and let (si(π), Si(π)) be some

point in Aπ. Then for any π∗ such that π
∗
� π∗

Si(π) ≥ S(π∗)− λ(π∗) · si(π) . (3.11)

Proof: The theorem is proved considering three cases depending on the value of S(π∗).

61

Case 1: S(π∗) < s1(π). Since π
∗
� π∗, we know that the speed each processor speed of

each processor of π∗ — except, possibly the slowest processor — is the same as the speed
of the corresponding processor of π. Since S(π∗) < s1(π), it follows that π∗ the must be a
uniprocessor. Therefore, λ(π∗) = 0, and

S(π∗)− λ(π∗) · si(π) = S(π∗) .

Furthermore, for all i with 1 ≤ i ≤ m + 1,

Si(π) > s1(π) > S(π∗) .

Combining these two conditions gives

Si(π) > S(π∗)− λ(π∗) · si(π)

so Condition (3.11) holds for every i = 1, 2, . . . ,m + 1 whenever S(π∗) < s1(π).

Case 2: S(π∗) = S(π). In this case π and π∗ must have the exact same parameters —
i.e., m(π) = m(π∗) and si(π) = si(π∗) for all i such that 1 ≤ i ≤ m(π). Recall that
λ(π) = max1≤i≤m{

∑m
k=i+1 sk(π)

si(π) } Therefore, for all i such that 1 ≤ i ≤ m, the following holds

λ(π) ≥
∑m

k=i+1 sk(π)
si(π)

.

Multiplying both sides of this condition by si(π) and noting that
∑m

k=1+i sk(π) = S(π)−Si(π)
gives

λ(π) · si(π) ≥ S(π)− Si(π) .

Adding Si(π)− λ(π) · si(π) to both sides of this inequality gives

Si(π) ≥ S(π)− λ(π) · si(π) .

Since π and π∗ have the same processor speeds, we know that λ(π) = λ(π∗). Substituting
λ(π∗) for λ(π) gives

Si(π) ≥ S(π∗)− λ(π∗) · si(π) .

Case 3: S(π) > S(π∗) ≥ s1(π). Let β be the largest index such that sβ(π) = sβ(π′). Since
S(π) > S(π∗) ≥ s1(π), it follows that m(π) > β ≥ 1. Consider the following two possibilities
for the value of i.

Case 3a: β < i ≤ m(π) + 1. By definition of β, Si(π) > S(π∗). Furthermore, since
λ(π∗) ≥ 0, we know S(π∗) ≥ S(π∗)−λ(π∗) ·si(π). Therefore, Condition (3.11) holds for every
i such that β < i ≤ m(π) + 1.

62

Case 3b: 1 ≤ i ≤ β. Assume Condition (3.11) does not hold for some point (si(π), Si(π)).
Then

Si(π) < S(π∗)− λ(π∗) · si(π) .

Since π
∗
� π∗ and i ≤ β, we know si(π) = si(π∗) and Si(π) = Si(π∗). Substituting into the

inequality above gives
Si(π∗) < S(π∗)− λ(π∗) · si(π∗) .

Adding λ(π∗) · si(π∗)− Si(π∗) to both sides of the inequality gives

λ(π∗) · si(π∗) < S(π∗)− Si(π∗) .

Dividing by si(π∗) gives

λ(π∗) <

∑m(π∗)
i=i+1 si(π∗)
si(π∗)

,

which violates the definition of λ(π∗). Therefore, Condition (3.11) holds for every i such that
1 ≤ i ≤ β.

Since the three cases above are exhaustive, Condition (3.11) holds.

Lemma 2 states that the points in Aπ are either above or on the upper border of Rπ∗

for any π∗ such that π
∗
� π∗. Therefore, Aπ may be useful in understanding the shape of

crπ. Below we define a specific subset, Hπ, of Aπ. This subset is the lower portion of the
convex hull of the points of Aπ. The piecewise linear function Lπ(s) formed by connecting
consecutive points in Hπ can be used to fully describe crπ.

Definition 10 (Hπ, Lπ(s)) Let π = [s1, s2, . . . , sm] be any uniform heterogeneous multipro-
cessor. Define the set

Hπ
def= {(sh1 , Sh1), (sh2 , Sh2), . . . , (shm′ , Shm′)} ⊆ Aπ

recursively as follows.

• sh1 = s1(π) .

• If shi
6= 0, then shi+1

is the slowest processor speed less than shi
such that all points in

Aπ are either on or above the line defined by (shi
, Shi

) and (shi+1
, Shi+1

). Specifically,

shi+1
= min

{
sk(π) < shi

| S`(π) ≥ Sk −
Sk − Shi

shi
− sk

(sk − s`)∀` = 1, 2, . . . ,m + 1
}

.

• If shi
= 0 then i = m′ (thus, Hπ is completely defined).

Finally, define the function Lπ(s) with domain 0 < s ≤ s1(π) to be the piecewise linear

63

10 20 30 40 50

10

20

30

40

50

60

(50,50)

(11,61)
(4,65)
(4,69)(0,69)

Max speed (s)

T
ot

al
sp

ee
d

(S
)

Figure 3.3: The set Aπ and the function Lπ(s) for π = [50, 11, 4, 4].

function found by joining consecutive points in Hπ.

Lπ(s) = Shi+1
−

Shi+1
− Shi

shi
− shi+1

(s− shi+1
) where shi+1

≤ s ≤ shi
and i = 1, 2, . . . ,m′ − 1.

Figure 3.3 illustrates the points in Aπ and the function Lπ(s) for π = [50, 11, 4, 4]. Hπ is
comprised of all the points along the line Lπ(s) — i.e., all of Aπ except the point (4, 69).

The remainder of this section proves that for every uniform heterogeneous multiprocessor
π, Lπ(s) is the upper bound of crπ. Lemma 4 below states that each segment of Lπ(s) is a

segment of the upper bound of Rπ∗ for some π
∗
� π. Theorem 17 uses this result to show that

crπ = {(s, S) | (0 < s ≤ s1) ∧ (s ≤ S ≤ Lπ(s))}.

These results rely on the following lemma (Lemma 3) which proves specific properties
about the upper bound of Rπ for any uniform heterogeneous multiprocessor π.

Lemma 3 Let π = [s1, s2, . . . , sm] be any uniform heterogeneous multiprocessor and let L be
a line on the (s, S)-plane with the following properties:

• L contains the points (0, S(π)) and (sk, Sk) for some k = 1, 2, . . . ,m, and

64

• All points in Aπ are on or above L.

Then the equation of the line L is S = S(π) − λ(π) · s. Moreover, λ(π) = (
∑k

i=k+1 si)/sk.

Proof: The slope of L is (S(π)− Sk)/(0− sk) = −(
∑m

i=k+1 si)/sk. Therefore the equation

of this line is S = S(π)−
∑m

i=k+1 si

sk
· s. Since all points in Aπ are on or above L, the following

inequalities must hold for ` = 1, 2, . . . ,m.

S` ≥ S(π)−
∑m

i=k+1 si

sk
· s`

⇒
∑m

i=k+1 si

sk
· s` ≥ S(π)− S`

⇒
∑m

i=k+1 si

sk
≥

∑m
i=`+1 si

s`
.

Therefore,
∑m

i=k+1 si

sk
= max1≤`≤m

{∑m
i=`+1 si

s`

}
= λ(π).

Lemma 4 Let π be any uniform heterogeneous multiprocessor and let the lower portion of the
convex hull of Aπ be Hπ = {(sh1 , Sh1), (sh2 , Sh2), . . . , (shm′ , Shm′)}. Then for every i such that

1 ≤ i < m′, there exists a multiprocessor π∗ such that π
∗
� π∗, and both the points (shi

, Shi
)

and (shi+1
, Shi+1

) are on the line S = S(π∗)− λ(π∗) · s.

Proof: Consider any two consecutive points in Hπ, namely (shi
, Shi

) and (shi+1
, Shi+1

).
Let L be the line defined by these points. Then the equation of this line is S = Shi+1

−
Shi+1

−Shi

shi
−shi+1

(s− shi+1
). Let α be the S-intercept of L — i.e.,

α = Shi+1
+ shi+1

·
Shi+1

− Shi

shi
− shi+1

. (3.12)

Since the point (0, S(π)) is in Aπ, it must be on or above L. Therefore, α ≤ S(π) and there
exists a uniform heterogeneous multiprocessor cleanly dominated by π with total capacity α

— let π∗ be this multiprocessor.

Note that Shi+1
≥ Shi

and shi
> shi+1

. Therefore, by Equation (3.12), α ≥ Shi+1
≥ s1(π).

Furthermore, note that α ≥ Shi+1
> Shi

. Therefore, (shi
, Shi

) and (shi+1
, Shi+1

) are both in
Aπ∗ . Thus, L contains the points (0, S(π∗)) and (sk(π∗), Sk(π∗)) for some k = 1, 2, . . . ,m(π∗).
If all points in Aπ∗ can be proven to be on or above L then, by Lemma 3, L must be the line
S = S(π∗)− λ(π∗) · s.

Since π
∗
� π∗, at most two points in Aπ∗ are not in Aπ — namely (sm(π∗)(π∗), S(π∗)) and

(0, S(π∗)). Therefore, since all points in Aπ are known to be on or above L and (0, S(π∗))
is known to be on L, (sm(π∗)(π∗), S(π∗)) is the only point in Aπ∗ whose relationship to L is
unknown. Clearly, this point is above L because the S-intercept of L is (0, S(π∗)) and its
slope is negative. Therefore, by Lemma 3, L must be the line S = S(π∗)− λ(π∗) · s.

65

By Lemma 4 we see that all points on or below Lπ(s) are in some region Rπ∗ for some π∗

cleanly dominated by π. It remains to be shown that no other points can be in any region
Rπ∗ .

Theorem 17 Let π = [s1, s2, . . . , sm] be any uniform heterogeneous multiprocessor and let
the lower portion of the convex hull of Aπ be Hπ = {(sh1 , Sh1), (sh2 , Sh2), . . . , (shm′ , Shm′)}.
Define the function Lπ(s) to be the piecewise linear function connecting the points of Hπ. Let

Q = {(s, S) | (0 < s ≤ s1) ∧ (s ≤ S ≤ Lπ(s))}.

Then Q =crπ.

Proof: Lemma 4 demonstrates that Q ⊆ crπ. Clearly 0 < s ≤ S for any (s, S) ∈ crπ

because processor speeds must be positive and S is the total of positive values including s.
Also s cannot be greater than s1 since the 1-job instance {(0, s, 1)} will be schedulable on
any multiprocessor with fastest speed equal to s, but it will be feasible on π only if s ≤ s1.
It remains to show that S ≤ Lπ(s) for any (s, S) ∈ crπ.

Assume there is some multiprocessor π∗ and some point (ŝ, Ŝ) such that

• π
∗
� π∗,

• Ŝ = S(π∗)− λ(π∗) · ŝ, and

• Ŝ > Lπ(ŝ).

Let L denote the line S = S(π∗) − λ(π∗) · s. Notice that L contains the points (0, S(π∗))
and (ŝ, Ŝ). Since Lπ(0) = S(π) ≥ S(π∗) and Lπ(ŝ) < Ŝ, L and Lπ(s) must have at least
one point of intersection between 0 and ŝ. Furthermore, this must be a single point of
intersection, because no line containing a segment of Lπ(s) can have any point above Lπ(s)
(by the construction of Lπ(s)). Let (s∗, S∗) be the point of intersection between the two lines.
Note that for s > s∗, Lπ(s) is below L. Since two straight non-collinear lines can have only
one point of intersection, Lπ(s) must remain below L until its slope changes. But the slope
changes only at points in Hπ ⊆ Aπ. This implies that there is a point in Aπ below L. This
contradicts Lemma 2. Therefore, there can be no point in crπ above Lπ(s)

Theorem 17 provides a simple method for determining a lower bound for the characteristic
region of π — namely find the convex hull of the points in Aπ. Figure 3.4 shows this region
for the uniform heterogeneous multiprocessor π = [50, 11, 4, 4]. The next section proves that
in many cases this is the entire characteristic region of π.

66

10 20 30 40 50

10

20

30

40

50

60

(50,50)

(11,61)
(4,65)
(4,69)(0,69)

Max speed (s)

T
ot

al
sp

ee
d

(S
)

Figure 3.4: The region crπ for π = [50, 11, 4, 4]

3.4 Finding points outside CRπ

While we have shown that crπ ⊆ CRπ, we have not yet shown that any points outside crπ

are definitely not in CRπ. The points shown to be in both crπ and CRπ are all on or below
the line Lπ(s). In this section, we show that for any 1 < k ≤ m + 1, all points above the line
between (s1, s1) and (sk, Sk) are not in CRπ. We do this by finding, for any point (ŝ, Ŝ) above
the line between (s1, s1) and (sk, Sk), a specific a uniform heterogeneous multiprocessor π′

with s1(π′) = ŝ and S(π′) = Ŝ, and a specific real-time instance I such that I is feasible on
π′ but is not f-EDF-schedulable on π.

Theorem 18 Let π = [s1, s2, . . . , sm] be any uniform heterogeneous multiprocessor and let
sk < ŝ ≤ s1 for some 1 < k ≤ m + 1. If (ŝ, Ŝ) is above the line between (s1, s1) and (sk, Sk)
then (ŝ, Ŝ) 6∈ CRπ.

Proof: The proof is by construction. For any point (ŝ, Ŝ) above the given line, we find
a real-time instance I and a uniform heterogeneous multiprocessor π′ with s1(π′) = ŝ and
S(π′) = Ŝ such that I is feasible on π′ but is not f-EDF-schedulable on π.

67

The equation of the line between (s1, s1) and (sk, Sk) is

f(s) = s1 +
Sk − s1

s1 − sk
· (s1 − s).

Define ρ as follows

ρ
def=

⌈
s1(Ŝ − ŝ)

ŝSk−1

⌉
.

Let π′ be the uniform heterogeneous multiprocessor consisting of ((ρ − 1)m + k) processors
with the following speeds:

1 processor with speed ŝ,

1 processor with speed si(Ŝ−ŝ)
ρSk−1

for each 1 ≤ i ≤ k − 1,

(ρ− 1) processors with speed si(Ŝ−ŝ)
ρSm

for each 1 ≤ i ≤ m.

Claim: umax(π′) = ŝ and Usum(π′) = Ŝ.

Proof of claim: By construction,

umax(π′) = max

{
ŝ, max

1≤i<k

{
si(Ŝ − ŝ)
ρSk−1

}
, max
1≤i≤m

{
si(Ŝ − ŝ)

ρSm

}}
.

Since s1 ≥ si for each i = 1, 2, ...,m, this gives

umax(π′) = max

{
ŝ,

s1(Ŝ − ŝ)
ρSk−1

,
s1(Ŝ − ŝ)

ρSm

}
.

By our choice of ρ, the maximum of these three values is ŝ. This proves the first
half the claim.

By construction,

Usum(π′) = ŝ +
k−1∑
i=1

si(Ŝ − ŝ)
ρSk−1

+ (ρ− 1)
m∑

i=1

si(Ŝ − ŝ)
ρSm

= ŝ +
Sk−1(Ŝ − ŝ)

ρSk−1
+ (ρ− 1)

Sm(Ŝ − ŝ)
ρSm

= ŝ +
Ŝ − ŝ

ρ
+ (ρ− 1)

Ŝ − ŝ

ρ

= ŝ .

Therefore, the second half of the claim also holds.

68

Choose any positive numbers ε and δh,i, where 1 ≤ h ≤ ρ and 1 ≤ i ≤ m, such that

ε < (Ŝ − f(ŝ))
s1 − sk

ρSk−1(s1 − ŝ)
,

δh,i < δh,i+1 for 1 ≤ h ≤ ρ and 1 ≤ i < m,

δh,m < δh+1,1 for 1 ≤ h < ρ, and

δρ,k−1 < ε .

Define eh,i and dh,i as follows

eh,i
def=

si(Ŝ−ŝ)

ρSm
if 1 ≤ h < ρ and 1 ≤ i ≤ m

si(Ŝ−ŝ)
ρSk−1

if h = ρ and 1 ≤ i < k

ŝ(1 + ε) if h = ρ and i = k

and

dh,i
def=

1 + δh,i if (1 ≤ h < ρ and 1 ≤ i ≤ m) or if (h = ρ and 1 ≤ i < k)

1 + ε if h = ρ and i = k

Let I be the real-time instance comprised of ((ρ− 1)m + k) jobs

I =
{
Jh,i = (0, eh,i, dh,i) | 1 ≤ h < ρ, 1 ≤ i ≤ m

}⋃{
Jρ,i = (0, eh,i, dh,i) | 1 ≤ i ≤ k

}
.

Note that if ρ = 1 then π′ consists of k processors and I consists of k jobs.

To show that I is feasible on π′ consider the schedule where Jρ,k is scheduled on the
processor with speed ŝ and the remaining jobs are scheduled on the processors with speed
equal to their execution requirement. Thus, Jρ,k completes at t = (1 + ε) and the remaining
jobs complete at t = 1.

Now consider the f-EDF schedule of I on π. The jobs in I are listed in increasing order of
deadlines. Therefore, assuming ρ > 1, jobs J1,1, J1,2, . . . , J1,m will be scheduled on processor
with speeds s1, s2, . . . , sm, respectively. Furthermore, all these jobs will complete simultane-
ously at t = (Ŝ− ŝ)/(ρSm), at which point the next m jobs will be scheduled. This will repeat
(ρ− 1) times with the final group of m jobs completing at t = (ρ− 1)(Ŝ − ŝ)/(ρSm). Note if
ρ = 1, this expression evaluates to 0 and will not affect the subsequent calculations.

Once the (ρ − 1)m jobs with the earliest deadlines have executed, the final k jobs are
scheduled in a similar manner — job Jρ,i will be scheduled on the processor with speed si for
1 ≤ i ≤ k. Jobs Jρ,1, Jρ,2, . . . , Jρ,k−1 will all complete simultaneously after (Ŝ − ŝ)/(ρSk−1)
time units at which point Jρ,k will migrate to the fastest processor. Assuming Jρ,k meets its

69

deadline, we have the following inequality:

(ρ− 1)(Ŝ − ŝ)
ρSm

+
(Ŝ − ŝ)
ρSk−1

+
ŝ(1 + ε)− Ŝ−ŝ

ρSk−1
sk

s1
≤ 1 + ε .

Subtracting the leftmost term from both sides and multiplying by ρSk−1 gives

Ŝ − ŝ +
ρSk−1

s1
ŝ(1 + ε)− sk

s1
(Ŝ − ŝ) ≤ ρSk−1(1 + ε)− (ρ− 1)Sk−1(Ŝ − ŝ)

Sm
.

Combining the two Ŝ terms on the left-hand side of the inequality and subtracting ρSk−1

s1
ŝ(1+

ε)− ŝ(1− sk
s1

) from both sides gives

Ŝ

(
1− sk

s1

)
≤ ρSk−1(1 + ε)− ρSk−1

s1
ŝ(1 + ε) + ŝ

(
1− sk

s1

)
− (ρ− 1)Sk−1(Ŝ − ŝ)

Sm
.

Multiplying by s1/(s1 − sk) gives

Ŝ ≤ ρSk−1
s1 − ŝ

s1 − sk
+ ŝ + ερSk−1

s1 − ŝ

s1 − sk
− (ρ− 1)s1Sk−1(Ŝ − ŝ)

Sm(s1 − sk)
.

Noting that ρ = 1 + (ρ− 1) gives

Ŝ ≤ Sk−1
s1 − ŝ

s1 − sk
+ ŝ + ερSk−1

s1 − ŝ

s1 − sk
− (ρ− 1)

(
s1Sk−1(Ŝ − ŝ)
Sm(s1 − sk)

+ Sk−1
s1 − ŝ

s1 − sk

)
.

Combining terms gives

Ŝ ≤ Sk−1
s1

s1 − sk
+ ŝ

(
1− Sk−1

s1 − sk

)
+ ερSk−1

s1 − ŝ

s1 − sk
− (ρ− 1)Sk−1

s1 − sk

(
s1 − ŝ +

s1(Ŝ − ŝ)
Sm

)
.

Noting that Sk−1
s1

s1−sk
= s1 + s1

(
Sk−1

s1−sk
− 1
)

and that the last term of the above inequality
cannot be negative, we have

Ŝ ≤ s1 + s1

(
Sk−1

s1 − sk
− 1
)

+ ŝ

(
1− Sk−1

s1 − sk

)
+ ερSk−1

s1 − ŝ

s1 − sk

= s1 +
Sk − s1

s1 − sk
(s1 − ŝ) + ερSk−1

s1 − ŝ

s1 − sk
.

The first two terms of the right-hand side of the final inequality equal f(ŝ). Therefore, we
have (

Ŝ − f(ŝ)
) s1 − sk

ρSk−1(s1 − ŝ)
≤ ε.

This contradicts our choice of ε. Therefore, Jρ,k cannot meet its deadline.

70

s

S

crπ

not in CRπ

Region not
yet
determined

10 20 30 40 50

10

20

30

40
50

60

70

80

60 700
0

Figure 3.5: Points inside and outside of CRπ for π = [50, 11, 4, 4].

Each line can be found in constant time and there are at most m lines, therefore the region
that is definitely outside CRπ can also be found in O(m) time.

3.5 Identifying points whose membership in CRπ has not been

determined

We have seen that all points on or below the piecewise linear function Lπ(s) are in CRπ

and that all points above any line segment connecting (s1, s1) to (sk, Sk) are not in CRπ.
Therefore, the remaining points are those that are above Lπ(s) and below every line segment
between (s1, s1) and (sk, Sk). For simplicity, we will call this region M . Figure 3.5 illustrates
this region for the multiprocessor π = [50, 11, 4, 4]. We shall see that this region is always
comprised of a group of triangles.

Use Hπ to partition 0 < s ≤ s1 and consider the points in M one partition at a time,
beginning with sh2 ≤ s ≤ sh1 . By Theorem 17, we know that every point on or below the
line segment between (sh1 , Sh1) and (sh2 , Sh2) is in CRπ. Furthermore, by Theorem 18, every
point above this line segment is proved not to be in CRπ. Therefore, all points (s, S) ∈ M

have the property that s < sh2 .

Now consider shi
≤ s ≤ shi−1

for some 3 ≤ i ≤ m′. By Theorem 17, we know that
every point below the line segment between (shi−1

, Shi−1
) and (shi

, Shi
) is in CRπ. Also,

71

by Theorem 18, every point above the line segment between (shi−1
, Shi−1

) and (s1, s1) is
proved not to be in CRπ. Furthermore, this is the lowest segment that borders points not in
CRπ because Hπ is the lower edge of the convex hull. Therefore, if we let gk(s) be the line
between (s1, s1) and (sk, Sk), the region M is the set of points above the line segment between
(shi−1

, Shi−1
) and (shi

, Shi
) and below or on ghi

(s) for 3 ≤ i ≤ m′. For each i, the region
between these two lines is the triangle defined by the three points (shi−1

, Shi−1
), (shi

, Shi
),

and (shi−1
, ghi

(shi−1
)).

Notice that M is empty when |Hπ| = 2 and in this case CRπ = crπ. Whenever λ(π) =∑m
i=2 si/s1, CRπ =crπ and hence CRπ is fully determined. For example, the characteristic

region of π = [2, 2, 2, 1] (with λ(π) = 5/2) is completely identified. Similarly, if π is an
identical multiprocessor, then CRπ is completely identified.

3.6 Scheduling task sets on uniform heterogeneous multipro-

cessors using f-EDF

This section applies the theory developed in the previous sections to study the deadline-
based scheduling of task sets on uniform heterogeneous multiprocessors. The results of the
previous section can easily be applied to periodic and sporadic task sets to determine a
sufficient condition for ensuring f-EDF-schedulability on any uniform heterogeneous multipro-
cessor π.

Theorem 19 Let τ be any periodic or sporadic task set and let π be any uniform heteroge-
neous multiprocessor. If (umax(τ), Usum(τ)) ∈ CRπ, then τ is f-EDF-schedulable on π.

Proof: Let π′ be the n-processor uniform heterogeneous multiprocessor whose i′th processor
has speed ui, the utilization of the i’th task of τ . Clearly, τ is feasible on π′ — simply schedule
all jobs generated by a given task on the processor whose speed matches that task’s utilization.
By construction, s1(π′) = umax and S(π′) = Usum. Thus, (s1(π′), S(π′)) ∈ CRπ and by the
definition of CRπ, τ is f-EDF-schedulable on π.

Computational complexity. Evaluating (umax(τ), Usum(τ)) takes O(n) time. Finding
the segment of the piecewise function Lπ(s) that corresponds to umax takes O(log ·|Hπ|) =
O(log m) time. Therefore, evaluating Lπ(umax) takes O(log m). Hence, if Lπ(s) has been
calculated ahead of time the test takes O(n + log m) time, otherwise it takes O(n + m) time.

3.7 Summary

This chapter has presented an f-EDF-schedulability test for any uniform heterogeneous
multiprocessor π. This test was determined by considering feasibility on a less powerful

72

platform π′. In many cases, feasibility is easier to determine than schedulability using a
specific scheduling algorithm. Therefore, this chapter takes the difficult question of whether
f-EDF can be used to schedule a real-time instance I on π and reduces it to the relatively
easier question of whether any scheduling algorithm can be used to schedule I on a different
(less powerful) platform π′.

In O(m) time, one can divide all classes of uniform multiprocessors into three regions:
those that are definitely in CRπ, those that are definitely not in CRπ, and those whose
membership in CRπ is currently not determined. Moreover, in many cases the third region
is empty.

Chapter 4

Partitioned EDF (p-EDF)

Section 2.2.2 in Chapter 2 described a polynomial-time approximation scheme (PTAS)
developed by Hochbaum and Shmoys [HS86, HS87, HS88] for partitioning a task set τ onto
a uniform heterogeneous multiprocessor π. Given any constant δ < 1, this method attempts
to schedule τ onto a uniform heterogeneous multiprocessor π′ in which the speed of each
processor of π′ is (1 + δ) times as fast as the speed of the corresponding processor of π. If τ

can be successfully partitioned onto π, this method will successfully partition τ onto π′. On
the other hand, if this method cannot successfully partition τ onto π′, then we can conclude
that τ cannot be partitioned onto π.

This PTAS resolves the important theoretical question of whether an approximate so-
lution to the problem of determining partitioned EDF-schedulability can be determined in
polynomial time. However, it evaluates an expensive calculation for each task set τ . Instead,
we would like to determine a test that tells us if all task sets with maximum utilization umax

and total utilization Usum can be partitioned onto π. To this end, we take an alternative ap-
proach to partitioning task sets onto uniform heterogeneous multiprocessors. The approach
in this dissertation sorts the tasks by utilization prior to assigning them to processors and
uses uniprocessor EDF to schedule the individual processors.

First-fit- and any-fit-decreasing task assignment. This dissertation considers two
task assignment heuristics — Any Fit Decreasing (AFD) and First Fit Decreasing (FFD).
Both heuristics sort the tasks and assign them to processors in decreasing order of utilization.
A task can be assigned to processor si if its utilization is no greater than (si − Ui), where Ui

is the total utilization of tasks already assigned to the processor — in this case, we say the
task fits on the processor. Once the tasks are assigned to the processors, they are scheduled
using uniprocessor EDF. These scheduling algorithms are called AFD-EDF and FFD-EDF.
Figure 4.1 shows the FFD-EDF task assignment algorithm in which each task is assigned
to the fastest processor upon which it will fit. The variable gap(j) denotes the amount of
remaining capacity available on si. According to the FFD-EDF task assignment algorithm,
each task Ti is assigned to processor sj , where j is the smallest-indexed processor with gap(j)

74

FFD-EDF task assignment (τ, π)

Let τ = {T1, T2, . . . , Tn} denote the tasks, with ei/pi ≥ ei+1/pi+1 for all i
Let π = {s1, s2, . . . , sm} denote the processors, with sj ≥ sj+1 for all j

1. for j ← 1 to m do gap(j) := sj

2. for i← 1 to n do
3. Let jo denote the smallest index such that gap(jo) ≥ ei/pi

4. If no such jo exists declare τ FFD-EDF-infeasible on π; return
5. Assign Ti to processor jo

6. gap(jo) := gap(jo)− ei/pi

7. od

Figure 4.1: The FFD-EDF task-assignment algorithm.

at least as large as ui, the utilization of Ti. If FFD-EDF attempts to assign task Ti to
a processor and all the processors’ gaps are smaller than ui, then τ is said to be FFD-EDF-
infeasible on π. Otherwise, τ is said to be FFD-EDF-feasible on π. The only difference between
the AFD-EDF and FFD-EDF algorithms is that AFD-EDF assigns each task to any processor
upon which it will fit, while FFD-EDF must assign the task to the fastest processor. The
run-time computational complexity of FFD-EDF task assignment is O(n log n) (for sorting
the tasks in non-increasing order of utilizations) + O(m log m) (for sorting the processors
in non-increasing order of capacities) + O(n ×m) (for doing the actual assignment of tasks
to processors), for an overall computational complexity of O(n · (log n + m)) assuming the
number of processors does not exceed the number of tasks.

These task partitioning algorithms are a scheduling application of the bin packing algo-
rithms FFD and AFD. While both AFD-EDF and FFD-EDF have been studied in detail for
identical bins, less attention has been paid to these algorithms for the variable bin packing
problem. These are known to be superior bin-packing algorithms for identical bins (e.g., they
have the best known competitive ratio for identical bin sizes [Joh73]).

4.1 The utilization bound for FFD-EDF and AFD-EDF

In this section, we will estimate the utilization bound for partitioned EDF scheduling on
uniform heterogeneous multiprocessors. More specifically, given any uniform heterogeneous
multiprocessor π and any value u, we will find a value U such that every task set τ with
umax(τ) ≤ u and Usum(τ) ≤ U can be partitioned onto π. Of course the bound will vary
depending on what method we use to assign tasks to processors. The expression UA

π (u)
denotes the bound associated with task assignment algorithm A:

75

UA
π (u) def= max{U | every τ with Usum(τ) ≤ U ∧ umax(τ) ≤ u is A-schedulable on π}.

The notation UA
π refers to the utilization bound over the full range of maximum utilization

values — i.e., this refers to the entire function. We will consider the algorithms FFD-EDF and
AFD-EDF — the p-EDF scheduling algorithm using the partitioning heuristics FFD and AFD,
respectively. In the remainder of this section, we will determine a method of approximating
UAFD-EDF

π . Since FFD-EDF is a special case of AFD-EDF, UFFD-EDF
π (u) ≥ UAFD-EDF

π (u)
for all u. Therefore, the approximation we find in this chapter will also provide a utilization
bound for FFD-EDF, but it is not guaranteed to be an approximation of UFFD-EDF

π .

The approximation algorithm presented in this chapter is not very efficient — it takes
time exponential in the number of processors in π. However, it needs to be run only once for
each uniform heterogeneous multiprocessor π. The utilization bound can be provided with
any uniform heterogeneous multiprocessor along with other system parameters such as the
individual processor speeds, interprocessor migration costs, and voltage information. Once
the bound is determined, performing a sufficient schedulability test for task set τ reduces to
the linear-time computation of Usum(τ) and umax(τ), followed by table look-up to determine
whether Usum(τ) ≤ UAFD-EDF

π (umax(τ)). Figure 4.9 on page 88 illustrates an approximate
utilization bound for the uniform multiprocessor π = [2.5, 2, 1.5, 1]. Given any task set τ , if
(umax(τ), U(τ)) is below the line shown in the graph, then τ is AFD-EDF-feasible on π. This
example is discussed in more detail in Section 4.2

The remainder of this chapter is organized as follows. We begin by exploring properties
of task sets that are AFD-EDF-schedulable. Based on insights gained from this exploration,
we modify the problem so as to greatly reduce the complexity of the problem. Finally, we
present an approximation algorithm for the utilization bound of the modified problem.

Consider the AFD-EDF task-assignment of any task set τ that is AFD-EDF-infeasible on
π. We observe the following about the AFD-EDF task-assignment of τ prior to attempting to
assign the first unschedulable task to a processor.

Observation 1 Let τ = {T1, T2, . . . , Tn} be any task set that is AFD-EDF-infeasible on π.
Assume the tasks of τ are indexed so that ui ≥ ui+1 for 1 ≤ i < n and let Tk be the first
task of τ that cannot fit on any processor. Thus, there is some feasible task assignment of
τ ′ = {T1, T2, . . . , Tk−1} on π. Let gap(j) denote the gap on the j’th processor after this feasible
AFD-EDF task-assignment of τ ′. Then

ui > max{gap(j) | 1 ≤ j ≤ m} for all i such that 1 ≤ i ≤ k . (4.1)

Proof: Since Tk cannot fit on any of the processors, uk must be strictly greater than the

76

maximum gap. By assumption, uk ≤ ui for all i < k. Therefore, the condition holds.

This important property is used to develop our approximation algorithm. Based on this
observation, we convert any FFD-EDF-infeasible task set τ to another task set τ ′ with a very
specific structure — this structure can be exploited to approximate UAFD-EDF

π . We call these
highly structured task sets modular on π.

Definition 11 (modular on π) Let π = [s1, . . . , sm] denote an m-processor uniform het-
erogeneous multiprocessor and let τ = {T1, T2, . . . , Tn} denote a task set. Then τ is said to
be modular on π if the tasks of τ have at most (m + 1) distinct utilizations v1, v2, . . . , vm+1

and there exists a partitioning of the tasks in τ among the m processors of π that satisfies the
following properties.

1. For all i, j < n, if Ti and Tj are both assigned to the k’th processor then ui = uj — we
denote this utilization vk,

2. for all k ≤ m, there are bsk/vkc tasks of utilization vk assigned to the k’th processor,
and

3. Tn fits on the processor with the largest gap — i.e., un = vm+1 = max1≤i≤m{si mod vi}.

The m-tuple (v1, v2, . . . , vm) represents this task set. The utilization of task Tn is implicitly
included in this m-tuple since it is a function of the v1, v2, . . . , vm.

Prior to assigning task Tn to a processor, the gap on the i’th processor is (si mod vi)
for each i = 1, 2, . . . ,m. Thus, S(π)−

∑m
i=1(si mod vi) is the total utilization of the tasks in

τ \{Tn}. By the third property in Definition 11 above, the utilization of Tn is max{si mod vi |
1 ≤ i ≤ m}. Therefore, the utilization of the modular task set (v1, v2, . . . , vm), is given by
the following equation:

ModUtil(v1, v2, . . . , vm) = S(π)−
m∑

i=1

(si mod vi) + max
1≤i≤m

{si mod vi}. (4.2)

Example 4.1 Let π = [7, 6, 3] and let τ be a task set with u1 = 4, u2 = u3 = 3, and
u4 = u5 = 2. Then τ is modular on π. Figure 4.2 illustrates an AFD-EDF partitioning of
τ onto π that satisfies the condition of Definition 11. Throughout this chapter, illustrations
of partitioned assignments reflect the correspondence between the partitioning problem and
the bin packing problem — processors are represented as bins with their size reflecting the
processor speed, and tasks are represented as items with their size reflecting their utilization.
Unused processor capacity is drawn hatched.

The total utilization of τ is 4 + 2 · 3 + 2 · 2 = 14, which satisfies Equation (4.2),

14 = 16− ((7 mod 3) + (6 mod 4) + (3 mod 2)) + max{(7 mod 3), (6 mod 4), (3 mod 2)}.

77

s1 = 7 s2 = 6 s3 = 3

u1 = 4
u2 = 3

u3 = 3

u4 = 2

u5 = 2

Figure 4.2: A modular task set.

s1 = 7 s2 = 6 s3 = 3

u1 = 4

u2 = 3

u3 = 3

u4 = 2

u5 = 2

Figure 4.3: FFD-EDF may not generate a modular schedule.

While the modular partition can be produced by an AFD-EDF assignment, the FFD-EDF

assignment may not satisfy the conditions of Definition 11. For example, Figure 4.3 illustrates
the FFD-EDF task assignment of the system discussed in Example 4.1. In this example, both s1

and s2 have tasks assigned to them with different utilizations. Furthermore, both of the tasks
with utilization 2 are assigned to processors that have slack. In a modular task assignment,
there is no slack on the processor to which the final task is assigned. Nevertheless, modular
task sets are useful for finding the approximation of UAFD-EDF

π — for small m, the modular
tasks sets can be exhaustively searched to approximate a utilization bound. Below we will see
that all AFD-EDF-infeasible tasks sets have a corresponding AFD-EDF-feasible task set that
is modular on π.

Notice that Property 3 of the modular task set definition bears a close resemblance to
the observation about infeasible task sets (Equation (4.1)). Taking note of this similarity, we
can find a modular task set τ ′ that corresponds to any AFD-EDF-infeasible task set τ by first
reducing the utilization of τ appropriately until the task set is “just about feasible,” and then
“averaging” the feasible task set to make it modular on π. Both these steps are described in

78

s1 = 7 s2 = 6 s3 = 3

u1 = 4

u2 = 3

u3 = 3

u4 = 2

u5 = 2

T6 does not fit

(a)

s1 = 7 s2 = 6 s3 = 3

u1 = 4

u2 = 3

u3 = 3

u4 = 2

u5 = 2

u′
6 = 1

T ′
6 fits

(b)

Figure 4.4: A feasible reduction.

more detail below.

Definition 12 (feasible reduction) Let τ = {T1, T2, . . . , Tn} be AFD-EDF-infeasible on π.
Assume the tasks of τ are indexed so that ui ≥ ui+1 for all 1 ≤ i < n and let Tk be the task of
τ upon which the AFD-EDF task-assignment algorithm reports failure. Let gap(j) denote the
gap on the j’th processor after performing the AFD-EDF task-partitioning algorithm on the
first (k − 1) tasks of τ and let g

def= max{gap(j) | 1 ≤ j ≤ m}. Then the AFD-EDF-feasible

reduction of τ , denoted τ ′, is defined as follows:

• If g = 0, τ ′ = {T1, T2, . . . , Tk−1},

• otherwise τ ′ = {T1, T2, . . . , Tk−1, Tg}, where Tg is any task with utilization equal to g.

Thus, in a feasible reduction, tasks T1, T2, . . . , Tk−1 are unchanged, tasks Tk+1, Tk+2, . . . , Tn

are removed from the task set, and the utilization of Tk is reduced to fit into the largest gap,
if any gap exists, or removed altogether if no processors have any gap.

The following example illustrates an AFD-EDF-infeasible task set and its feasible reduction.

Example 4.2 Let π = [7, 6, 3] and let τ be a task set with u1 = 4, u2 = u3 = 3, and
u4 = u5 = u6 = 2. Then τ is AFD-EDF-infeasible on π. Inset (a) of Figure 4.4 illustrates
the AFD-EDF partitioning of τ onto π and inset (b) illustrates its feasible reduction. When
AFD-EDF attempts to assign T6, there is no processor with a large enough gap. In the feasible
reduction, the utilization of T ′

6 is 1, the maximum gap when AFD-EDF failed to assign T6.

79

s1 = 7 s2 = 6 s3 = 3

u′
1 =

3.5

u′
2 =

3.5

u′
3 =

2.5

u′
4 =

2.5

u′
5 = 2

u′
6 = 1

Figure 4.5: A modularized feasible reduction.

The AFD-EDF-feasible reduction of τ relates Equation (4.1), our observation about infea-
sible task sets, to Property 3 of modular task sets. However, the AFD-EDF-feasible reduction
of τ may not be a modular task set since tasks on the same processor do not necessarily have
the same utilization. In such cases, we will “modularize” the task set as follows.

Definition 13 (modularization of τ) Let π = [s1, s2, . . . , sm] be a uniform heterogeneous
multiprocessor and let τ = {T1, T2, . . . , Tn} be a feasible reduction of some AFD-EDF-infeasible
task set on π with ui+1 ≤ ui for all i = 1, 2, ..., n − 1. Let A be an assignment of τ onto π

in which the largest gap remaining on any processor is un after assigning T1, T2, . . . , Tn−1 —
i.e., Tn exactly fits onto the processor to which it is assigned. Define τi as follows:

τi
def=

{Tj | 1 ≤ j ≤ n ∧ A assigns Tj to si} if Usum(τ) = S(π)

{Tj | 1 ≤ j < n ∧ A assigns Tj to si} if Usum(τ) < S(π)

Let vi
def= Usum(τi)/|τi|. Thus, vi is the average utilization of the tasks of τ (if Usum(τ) = S(π))

or of τ \ {Tn} (if Usum(τ) < S(π)) that are assigned to the i’th processor of π. Then the
modularization of τ is represented by the m-tuple (v1, v2, . . . , vm).

Notice that if Usum(τ) = S(π) then all the tasks of τ assigned to each processor will have
the same utilization. On the other hand, if Usum(τ) < S(π) then all the tasks of τ \ {Tn}
assigned to each processor will have the same utilization and Tn’s utilization will be exactly
equal to the largest gap. Figure 4.5 illustrates the “modularization” of the task set illustrated
in inset (b) of Figure 4.4.

The following lemma states that modularizing any AFD-EDF-feasible reduction in this
way will not change the total utilization, nor will it increase the maximum utilization. In
this lemma, we restrict our attention to those task sets whose total utilization is strictly less
than S(π). A feasible reduction can have total utilization equal to S(π) if AFD-EDF is able

80

to assign tasks to π until all the processors have no gap. In this case, Tk in Definition 12
is removed from the task set and the feasible reduction is {T1, T2, . . . , Tk−1}. This type of
feasible reduction occurs only when g = 0. Since we know that no partitioning algorithm is
optimal on multiprocessors, it must be the case that UAFD-EDF

π < S(π). Therefore, we can
ignore any AFD-EDF-feasible reduction whose utilization equals S(π) without affecting the
accuracy of our analysis.

Lemma 5 Let π = [s1, s2, . . . , sm] be a uniform heterogeneous multiprocessor and let τ =
{T1, T2, . . . , Tn} be a feasible reduction of some AFD-EDF-infeasible task set on π with ui+1 ≤
ui for all i = 1, 2, ..., n−1 and Usum(τ) < S(π). Let τ ′ = (v1, v2, . . . , vm) be the modularization
of τ as described in Definition 13. Then the following three conditions hold:

• un = max{si mod vi|1 ≤ i ≤ m},

• Usum(τ ′) = Usum(τ), and

• umax(τ ′) ≤ umax(τ).

Proof: By the definition of feasible reduction, if there is a gap on any processor when
AFD-EDF reports failure while trying to assign task Tk to a processor, the utilization of Tk

is reduced so it will fit onto the processor with the largest gap. Therefore, task Tn was
found by reducing the utilization of some task and un is exactly equal to the largest gap
when Tn is assigned to a processor. This implies un is strictly smaller than the utilization of
any other task in τ . Moreover, since Tn fits exactly into the maximum gap, it follows that
uk > max{gap(j) | 1 ≤ j ≤ m} for every k < n.

We now show that the number of tasks on each processor is not changed by modularizing
τ . Consider the tasks of τ \ {Tn} assigned to processor si. Recall these tasks are denoted τi.
In τ ′, these tasks are replaced by bsi/vic tasks with utilization vi = Usum(τi)/|τi|. Therefore,
we need to demonstrate that bsi/vic = |τi|.

Let gi be the gap on the i’th processor prior to assigning task Tn to a processor — i.e.,
gi

def= si − Usum(τi). Therefore, gi < uj for each Tj ∈ τi. Since vi is the average utilization of
the tasks in τi, we have gi < vi. Furthermore,

si − gi = Usum(τi) =
Usum(τi)
|τi|

· |τi| = vi · |τi| .

Therefore,
vi(|τi|+ 1) = si − gi + vi > si ≥ vi|τi| ,

so |τi| = bsi/vic and Usum(τi) = vi · |τi|.
By the above argument, Usum(τi) = si − (si mod vi) for each i = 1, 2, . . . ,m, so the gap

on each processor is unchanged by the process of modularization. Therefore, both the first
and the second conditions must hold.

81

s1 = 7 s2 = 6 s3 = 3

u1 =
3.5

u2 =
3.5

u3 =
2.5

u4 =
2.5

u6 = 1

u5 = 2

Figure 4.6: A modularized system.

It remains to demonstrate the third condition holds — i.e., umax(τ) ≥ umax(τ ′) = max{vi |
1 ≤ i ≤ m} . This must hold since the utilizations of τ ′ were found by averaging utilization
values of τ and the result of an averaging operation will always fall between the minimum
and maximum values averaged.

Therefore, any feasible reduction on π can be “modularized.” Furthermore, the process of
modularizing a feasible reduction τ will not change the total utilization and will not increase
the maximum utilization. Figure 4.6 illustrates the “modularization” of the system discussed
in Example 4.2.

Theorem 20 states these modular task sets can be used to find UAFD-EDF
π (u).

Theorem 20 Let π = [s1, s2, . . . , sm] be any uniform heterogeneous multiprocessor and let

Mπ(u) def= min{U(τ) | τ is modular on π and umax(τ) ≤ u}. (4.3)

Then UAFD-EDF
π (u) =Mπ(u) for all u ∈ (0, s1].

Proof: By Lemma 5 every AFD-EDF-feasible reduction on π has a corresponding modular
task set with the same total utilization and with the same or smaller maximum utilization.
Furthermore, every modular task set is an AFD-EDF-feasible reduction of some infeasible task
set — increasing the utilization of the smallest task set slightly will cause the modular task
set to become AFD-EDF-infeasible. Therefore, there can be no AFD-EDF-infeasible task set τ

with umax(τ) ≤ u and Usum(τ) < Mπ(u). The result follows.

This section has demonstrated that we can find UAFD-EDF
π by considering only modular

task sets. The following section describes how to accurately estimateMπ (thereby estimating
UAFD-EDF

π) by considering discrete utilization values.

82

4.2 Estimating the utilization bound

Because modular task sets have a limited number of distinct utilizations and they have
such a rigid structure, for small values of m we can approximate UAFD-EDF

π (u) by do-
ing a thorough search of valid m-tuples (u1, u2, . . . , um) with ui ∈ (0, si]. Since this is a
continuous region, we cannot search every possibility within this range. Instead, we al-
low the utilizations to be chosen from a finite set V . Figure 4.7 illustrates the approxi-
mation algorithm that considers all the valid utilization combinations in the set V m (the
set of m-tuples of elements in V). The function MinUtilGraph(π, V) finds the graph of
UAFD-EDF

π (u) for u ∈ (0, s1]. It calls the function MinUtilLeqA(π, V, u), which returns the
value of UAFD-EDF

π (u) for a specific value of u by considering all valid m-tuples in the
subset V bounded by u. MinUtilLeqA(π, V, u) chooses a utilization for processor s1 and
calls ConsiderAnotherProc(π,maxgap,maxsum,minutil), which recursively chooses utiliza-
tions between maxgap and umax for the remaining processors.

Of course, the values in V must be chosen carefully to ensure the V contains the fewest
possible number of elements that will approximate UAFD-EDF

π within a reasonable margin of
the actual bound. In particular, given any ε > 0 we want to find Vε so that for all u ∈ (0, s1],
the difference between MinUtilLeqA(π, Vε, u) and UAFD-EDF

π (u) is at most ε.

Assume that opt= (u1, u2, . . . , um) is a modular set whose total utilization equals the
bound: Usum(opt) = UAFD-EDF

π (umax(opt)). We wish to choose Vε so as to ensure
MinUtilLeqA will consider some m-tuple (u′1, u

′
2, . . . , u

′
m) with maximum utilization no more

than umax and |ModUtil(u′i, u′2, . . . , u′m)− ModUtil(opt)| ≤ ε. The remainder of this section
first describes a condition that guarantees that there is an m-tuple (u′i, u

′
2, . . . , u

′
m) ∈ Vε

with |ModUtil(u′i, u′2, . . . , u′m) − ModUtil(opt)| ≤ ε and then finds a set Vε satisfying the
condition. The condition states that for every two consecutive elements vk and vk+1 of Vε , if
vk < v ≤ vk+1 then (si mod v) must be within ε/(m− 1) of (si mod vk) for each processor si.

Lemma 6 Consider any uniform heterogeneous multiprocessor π = [s1, s2, . . . , sm] and any
ε > 0. Let (u1, u2, . . . , um) represent a modular task set τ with UAFD-EDF

π (umax(τ)) =
Usum(τ). Choose a set Vε = {v1, v2, . . . , vr} with vi < vi+1 for all i < r and vr = s1. If the
minimum utilization of τ at least ε/(m− 1) and the following two conditions hold

v1 ≤ ε

m− 1
, and (4.4)

v − vi ≤
ε

m− 1
for all v ∈ (vi−1 − vi] where i = 2, 3, . . . , r, (4.5)

then there exists a modular task set represented by (u′1, u
′
2, . . . , u

′
m) ∈ V m

ε with maximum
utilization at most umax such that

ModUtil(u′1, u
′
2, . . . , u

′
m)− ModUtil(u1, u2, . . . , um) ≤ ε.

83

function MinUtilGraph(π, V)
% π = [s1, s2, ..., sm] is the uniform multiprocessor
% V = {v1, v2, ..., vr} is the set of allowable utilizations in decreasing order
U = S(π)
while umax > vr

% min util is the minimum total utilization
% min a is the minimum of the set {umax(τ) | U(τ) = U and umax(τ) ≤ umax}
(min util, min u) =MinUtilLeqA(π, V, umax)
if min util > U

draw a line from (umax,U) to (min u,U)
umax = min u;U = min util

function MinUtilLeqA(π, V, umax)
% uses a recursive function to find the minimum feasible utilization
min util = S(π);min u = s1 % global variables for the recursion
for ((u1 in V) and (u1 ≤ umax))

% call ConsiderNextProc recursively
ConsiderNextProc(2, (s1 mod u1), (s1 mod u1), u1)

return (min util, min u)

function ConsiderNextProc(proc, ,max gap, gap sum, min util)
% there are two exit conditions
% — proc = m + 1 or none of the current tasks fit on proc
if ((proc = m+1) or ((sproc < min util) and ((sproc < max gap) or (max gap = 0))))

util =
∑proc−1

i=1 si − gap sum + max gap
a = max{si | 1 ≤ i < proc}
if ((util < min util) or ((util = min util) and (u < min u)))

min util = util;min u = u
return

% the exit conditions are not yet, consider next processor (proc + 1)
for ((uproc in V) and (uproc ≤ max{umax, sproc}))

ConsiderNextProc(proc + 1,max{max gap, (sproc mod uproc)},
(gap sum + (sproc mod uproc)),min{min util, uproc})

Figure 4.7: Approximating the minimum utilization bound of modular task sets.

84

Proof: Let u′i = max{v | v ∈ Vε ∧ v ≤ ui}. Since ui ≥ ε
m−1 ≥ v1, u′i exists for each

i = 1, 2, . . . ,m. Assume sj is the processor with the maximum gap prior to assigning task Tn

— i.e., (sj mod uj) ≥ (si mod ui) for each i = 1, 2, . . . ,m. Then

ModUtil(u1, u2, . . . , um) = S(π)−
m∑

i=1

(si mod ui) + (sj mod uj) = S(π)−
∑
i6=j

(si mod ui).

And

ModUtil(u′1, u
′
2, . . . , u

′
m) = S(π)−

m∑
i=1

(si mod u′i) + max
1≤i≤m

(si mod u′i)

≤ S(π)−
∑
i6=j

(si mod u′i).

Therefore,

ModUtil(u′1, u
′
2, . . . , u

′
m)− ModUtil(u1, u2, . . . , um)

≤
∑
i6=j

[(si mod u′i)− (si mod ui)]

≤ (m− 1)
ε

m− 1
(by Condition (4.5) above)

= ε.

Therefore, we need to construct Vε so that Conditions (4.4) and (4.5) hold. In order
to determine the values in Vε, we need to consider the function (si mod x) more carefully.
Figure 4.8 illustrates the graph of y = (6 mod x). Consider the value of y as x increases. If x

does not divide 6, y decreases as x increases until x divides 6, at which point (6 mod x) = 0.
Once x increases beyond this point, the function suffers a discontinuity — the value increases
to the line y = x and then begins decreasing once again. Thus, this graph is a series of
straight lines between the points (6/(k + 1), 6/(k + 1)) and (6/k, 0) — each with slope (−k).
It is easy to see that the graph of (si mod x) follows this general pattern for every value si.

Using this understanding of the function (si mod x), we will construct a set Vε satisfying
Conditions (4.4) and (4.5) above.

Since the slope of (si mod x) is (−k) when si/(k + 1) ≤ x ≤ si/k and we want to ensure
Condition (4.5) holds, the elements of Vε must be at most ε/(k · (m − 1)) units apart. This
value is minimized when k is maximized — i.e., when considering the function (s1 mod x).
Therefore, the following must hold for Vε

vi+1 − vi ≤
ε

k(m− 1)
=

ε

ds1/vie(m− 1)
.

85

-

6

1 2 3 4 5 6

x

1

2

3

y

@
@

@
@

@
@

@
@

@
@

@

A
A
A
A
A
A
A
A

B
B
B
B
B
B

C
C
C
C
C

D
D
D
D

E
E
E
E

E
E
E

E
E
E

E
E
E
E
E
E
E
E
E

Figure 4.8: The graph of y = 6 mod x

In addition, Vε must contain all the points where (si mod x) jumps from the line y = x to
the x-axis for some processor si. If these points were not included, Condition (4.5) would be
violated.

Given this, we will we construct Vε as follows:

Vε
def=
{

si

k

∣∣∣∣1 ≤ i ≤ m ∧ 1 ≤ k ≤
⌊

si(m− 1)
ε

⌋}⋃
{

s1

k
− j · ε

k(m− 1)

∣∣∣∣1 ≤ k ≤
⌊

s1(m− 1)
ε

⌋
∧ 1 ≤ j <

⌊
s1(m− 1)
ε(k + 1)

⌋}
. (4.6)

With this construction of Vε, we can ensure our estimate of UAFD-EDF
π is sufficiently close

to the actual bound.

Theorem 21 Let π = (s1, s2, . . . , sm) be any uniform multiprocessor. Then for any ε, there
exists a set Vε such that MinUtilLeqA(π, Vε, u) ≤ UAFD-EDF

π (u) + ε for all u > 0. Moreover,

|Vε| ≤
m− 1

ε

[
S(π) + s1 ·

(
H(s1(m−1)/ε)+1 − 1

)]
,

where Hi is the i’th harmonic number — Hi
def=
∑i

k=1(i/k).

Proof: Equation (4.6) defines a set Vε that satisfies the conditions of the theorem. This
contains (i) all points of the form (si/j) between ε/(m − 1) and s1, and (ii) all points that
are ε/(k(m − 1)) distance apart in the same range, where (−k) is the slope of the function
(s1 mod u).

Consider the following two cases.

Case 1 : UAFD-EDF
π (u) > S(π)− ε.

86

In this case UAFD-EDF
π (u) + ε > S(π). The value of MinUtilLeqA(π, Vε, u) never exceeds

S(π) since MinUtilLeqA returns the total utilization of some task set that is feasible on π.
Therefore, MinUtilLeqA(π, Vε, u) ≤ UAFD-EDF

π (u) + ε for all u such that UAFD-EDF
π (u) >

S(π)− ε.

Case 2 : UAFD-EDF
π (u) ≤ S(π)− ε.

Let τ = (u1, u2, . . . , um) be a modular task set such that Usum(τ) = UAFD-EDF
π (u) and

umax(τ) ≤ u. By assumption, Usum(τ) ≤ S(π) − ε. Also, modular task sets always have at
least one processor with no gap. Therefore, the average gap on the remaining processors is
at least ε/(m− 1) so ui > ε/(m− 1) for all i = 1, 2, . . . ,m.

By construction of Vε, we know (i) v1 ≤ ε/(m− 1), and (ii) for all i = 2, 3, . . . , r,
if v ∈ (vi−1 − vi] then v − vi ≤ ε/(m− 1). Therefore, Lemma 6 applies and there
exists a modular task set represented by (u′1, u

′
2, . . . , u

′
m) ∈ V m

ε with maximum utilization
at most umax(τ) such that ModUtil(u′1, u

′
2, . . . , u

′
m) − ModUtil(u1, u2, . . . , um) ≤ ε. More-

over, since MinUtilLeqA will consider this m-tuple in its search for UAFD-EDF
π (u), we know

MinUtilLeqA(π, Vε, u) ≤ ModUtil(u′1, u
′
2, . . . , u

′
m). Therefore,

MinUtilLeqA(π, Vε, u) ≤ ModUtil(u1, u2, . . . , um) + ε .

By assumption, ModUtil(u1, u2, . . . , um) = UAFD-EDF
π (j) so we must have

MinUtilLeqA(π, Vε, u) ≤ UAFD-EDF
π (j) + ε .

It remains to find a bound on the size of Vε. By definition, the first subset of Vε contains
bsi(m− 1)/εc elements for each i = 1, 2, . . . m and the second subset of Vε contains bs1(m−
1)/(ε(k + 1))c elements for each k = 1, 2, . . . bs1(m− 1)/εc. Therefore the union of these two
subsets contains at most the sum of their sizes:

|Vε| ≤
m∑

i=1

⌊
si(m− 1)

ε

⌋
+

bs1(m−1)/εc∑
i=1

⌊
s1(m− 1)
ε(i + 1)

⌋
.

Dropping the floors in these sums can only increase the right-hand side of this inequality.
Therefore,

|Vε| ≤
m∑

i=1

(
si(m− 1)

ε

)
+

s1(m−1)/ε∑
i=1

(
s1(m− 1)
ε(i + 1)

)
.

The first sum above is equal to (m − 1)/ε ·
∑m

i=1 si = (m − 1)/ε · S(π). The second sum
above contains the constant expression s1(m − 1)/ε. Therefore, the inequality above can be

87

simplified as follows.

|Vε| ≤
m− 1

ε
S(π) +

s1(m− 1)
ε

s1(m−1)/ε∑
i=1

1
i + 1

.

The sum above is the sum of 1/i for i = 2, 3, . . . , s1(m − 1)/ε + 1, which is 1 less than the
harmonic number of s1(m−1)/ε+1. Substituting this in for the sum and factoring (m−1)/ε

from the two addends gives

|Vε| ≤
m− 1

ε

[
S(π) + s1

(
H(s1(m−1)/ε)+1 − 1

)]
,

so the theorem holds.

Since AFD-EDF is a special AFD-EDF bin-packing heuristic, the following corollary holds.

Corollary 2 Let π be any uniform multiprocessor and τ be any task set. For any ε > 0, let
Vε be the set specified in Theorem 21. If Usum(τ) ≤ MinUtilLeqA(π, Vε, umax(τ)) − ε then τ

is FFD-EDF-schedulable on π.

The size of Vε may be reduced somewhat without sacrificing the accuracy of MinUtilLeqA.
First, the number of processor-speed divisors is not necessarily as much as S(π)(m − 1)/ε.
Since the divisors of s1 are included in the second set, these values do not need to be included
in the first set as well. Also, some of these divisors may be double counted if several processor
speeds have divisors in common. For example, if π contains a 12- and a 15-speed processor,
then the divisor 3 is double counted. In the extreme case, all of π’s processor speeds divide
s1 and the first set adds no new points to Vε. If there are processors whose speeds do not
divide s1, the size of the second set can be reduced slightly. Instead of finding all the points
that are sufficiently close together and then adding the divisors of the other processor speeds,
we can first find the divisors of the processor speeds and then add points to ensure all points
are sufficiently close together, as the following example illustrates.

Example 4.3 Consider the uniform heterogeneous multiprocessor π = [2.5, 2, 1.5, 1]. Assume
we want to estimate the AFD-EDF utilization bound with ε = 0.4. Then between 2.5 and 1.25,
the distance between elements of Vε must be at least 0.4/3 = 0.133. If we first find all the
points (2.5−0.233k) and then insert the two points 2 and 1.5 (the only divisors of some speed
between 2.5 and 1.25), we get the the following twelve elements: 2.5, 2.367, 2.233, 2.1, 2,
1.967, 1.833, 1.7, 1.567, 1.5 1.433 and 1.3. If, on the other hand, we start with the three
points 2.5, 2 and 1.5, and then insert points to insure consecutive points are at most 0.13
units apart, we get the following ten elements: 2.5, 2.3667, 2.233, 2.1, 2, 1.8667, 1.733, 1.6,
1.5 and 1.3667.

The subroutine MinUtilLeqA examines all valid modular task sets whose task utilizations

88

-

6

1 2 3
u

3

4

5

6

7

UAFD-EDF
π (u)

Figure 4.9: The graph of UAFD-EDF
π (u) for π = [2.5, 2, 1.5, 1] with error bound ε = 0.1.

are in Vε. Thus the complexity of this subroutine is O(|Vε|m). The algorithm MinUtilGraph

calls MinUtilLeqA at most |Vε| times. Therefore, the complexity of MinModUtil is

O(|Vε|m+1) = O

m− 1

ε

S(π) + s1

(s1(m−1)/ε)+1∑
i=1

(
1
i

)
− 1

(m+1)
 .

Example 4.4 Figure 4.9 illustrates the graph that results from executing MinUtilGraph on
the uniform multiprocessor π = [2.5, 2, 1.5, 1] with a maximum error of ε = 0.1. For u ∈
(2.025, 2.5], the value of MinUtilGraph(π, Vε) is 4.025. By Theorem 21,

3.925 ≤ UAFD-EDF
π (u) ≤ 4.025 for all u ∈ (2.025, 2.5].

Thus, if τ is a task set with umax(τ) ∈ (2.025, 2.5] and U(τ) ≤ 3.925, τ is AFD-EDF-feasible
on π. As u approaches 0, the value returned by MinUtilGraph approaches S(π) in a near-
linear fashion. This is because when u is small, the gaps on each processor must also be small
(recall that the gaps are smaller than the task utilizations).

4.3 Summary

This chapter has explored partitioned scheduling on uniform heterogeneous multiproces-
sors. We have developed a method of approximating the AFD-EDF utilization bound for any
uniform heterogeneous multiprocessor. While this method has time complexity exponential
in the number of processors, it needs to be executed only once for any given uniform het-
erogeneous multiprocessor. Once the bound is determined, a task set τ can be tested for

89

AFD-EDF-feasibility by a linear calculation to determine umax(τ) and Usum(τ) and a lookup
to verify if Usum(τ) is below the bound associated with umax(τ).

Partitioned EDF scheduling can be efficiently scheduled by executing a uniprocessor EDF

scheduler on each processor. It has the advantage of incurring no migration overhead. How-
ever, there are several disadvantages to partitioning. First, we cannot schedule dynamic task
sets using the methods discussed in this chapter. If a new task arrives, we may need to repar-
tition the entire task set, which would cause several migrations. Second, partitioning does
not allow us to adjust the load on individual processors. When a task generates a job, that
job must execute on a specific processor. In the next section, we discuss restricted migration,
which keeps migration overhead down while still permitting flexibility in the schedule and
allowing tasks to arrive dynamically.

90

Chapter 5

RestrictedmigrationEDF (r-EDF)

In the previous two chapters, we determined two EDF schedulability tests — one allow-
ing full migration and another allowing no migration. In this chapter, we will determine a
schedulability test for EDF scheduling with restricted migration on uniform multiprocessors,
denoted r-EDF. Recall that the r-EDF scheduling algorithm allows tasks to migrate only at
job boundaries. Thus, a global scheduler assigns jobs to processors and each processor uses a
uniprocessor EDF algorithm to schedule jobs. Figure 5.1 illustrates this algorithm.

The global scheduler keeps track of the slack on each processor. For each k, with 1 ≤ k ≤
m, the quantity slacki is the available capacity on processor sk. Any job generated by a task
of utilization u can be assigned to any processor that has a slack of at least u. If a job is
generated by a task with utilization u at a time when each of the processors of π have slack
less than u, then the schedule is invalid even if enough capacity may become available to
accommodate the job at a later point in time. Initially, slackk = sk for all k, with 1 ≤ k ≤ m.
When the global scheduler assigns a job Ti,j to processor sk at time t, the value of slackk

is immediately reduced by ui. In addition to decreasing the slack, the global scheduler also
schedules an interrupt to increase the slack by ui units at the job’s deadline — i.e., at time
t + di.

In the special case when a job completes execution at a point when there are no jobs
waiting to execute on processor sk, the value or slackk is reset to sk. This can be done
because EDF will only miss deadlines if there is no processor idle time between the earliest
release time and the deadline miss [LL73]. Of course, in this case, all of the interrupts
scheduled to increase the slack on sk should be disregarded. This can be done either by
cancelling all scheduled increases or, alternatively, by keeping track of when the last reset
occurred and ignoring increases associated with jobs that arrived before the most recent reset
time. Allowing the slack to be reset also requires a minor change to the local EDF schedulers:
When the local EDF scheduler attempts to schedule a new job and the job queue is empty, it
must send a “reset slack” signal to the global scheduler. Note that by this definition, r-EDF

may generate many different valid r-EDF schedules for the same system. This is illustrated
in the following example.

92

Tasks
Global
Task

Scheduler

Jo
bs

Jobs

Jobs

Uniprocessor
EDF

Scheduler
1

Uniprocessor
EDF

Scheduler
2

...

Uniprocessor
EDF

Scheduler
m

Processor
1

Processor
2

...

Processor
m

Figure 5.1: EDFwith restricted migration (r-EDF).

Example 5.1 Let τ = {T1 = (1, 2, 3), T2 = (1, 3, 4), T3 = (0, 6, 8)} be a periodic task set and
let π = [2, 1] be a uniform heterogeneous multiprocessor. Insets (b) and (c) of Figures 5.2
illustrate two valid r-EDF schedules of τ on π. Inset (a) of Figure 5.2 illustrates the slack
of processor s1 during the schedule illustrated in inset (b). Recall the up arrows in insets (b)
and (c) indicate both the arrival of a job and the deadline of the previous job. Also, the height
of the rectangle indicates the speed of execution. Thus, taller rectangles indicate the task is
executing on processor s1 and shorter rectangles indicate the task is executing on processor
s2.

Since s1 = 2, the slack shown in inset (a) is initially 2. At t = 0, T3 has a job scheduled
on s1, so the slack is immediately reduced by the utilization of T3 to 13

4 . At t = 1, task T1 has
a job scheduled on s1, so the slack is once again reduced, this time by the utilization of T1,
to 7

12 . The slack increases back to 13
4 at t = 4, when task T1’s deadline occurs. Notice that

at t = 121
2 the slack increases to 2 even though there are no deadlines at that time. This is

because the processor becomes idle at that point and the slack is reset.

A task Ti is said to be present on processor sk at time t if that task’s utilization contributes
to the calculation of slackk — i.e., if there exists a job Ti,j = (ri,j , ei, di,j) assigned to processor
sk such that ri,j ≤ t < di,j and the most recent reset of slackk occurred at or before ri,j .

Lemma 7 Let π be any m-processor uniform heterogeneous multiprocessor and let τ be any
periodic or sporadic task set such that

Usum(τ) ≤ S(π)− (m− 1) · umax(τ) . (5.1)

Then whenever any task Ti ∈ τ generates a job, there exists at least one processor sk of π

93

-
· ·
· ·

(a) Slack of s1 from inset (b)

-

-

-6 6 6 6 6 6 6 6 6T1

6 6 6 6 6 6 6T2

6 6 6 6T3

. . .

. . .

. . .

(b) Valid r-EDF schedule

-

-

-6 6 6 6 6 6 6 6 6T1

6 6 6 6 6 6 6T2

6 6 6 6T3

. . .

. . .

. . .

(c) Valid r-EDF schedule

Figure 5.2: Two valid r-EDF schedules of task set τ = {T1 = (1, 2, 3), T2 = (1, 3, 4), T3 =
(0, 6, 8)} on π = [2, 1].

94

such that slackk ≥ ui.

Proof: (By contradiction.) Let to be the earliest time at which some task Ti generates a
job Ti,j and each of the processors has slack less than ui. Therefore, Ti,j cannot be assigned
to any processor at to. By the optimality of EDF on uniprocessors all jobs with deadlines at
or before to meet their deadlines.

Let P (to) be the set of tasks that are present on some processor at time to. Since Ti has a
job that has just arrived and all earlier jobs of Ti meet their deadlines, Ti cannot be in P (to).
On the other hand, every task of τ other than Ti may be in P (to). Therefore,∑

Tj∈P (to)

uj ≤ Usum(τ)− ui . (5.2)

Since slackk < ui for all k, 1 ≤ k ≤ m,

m∑
k=1

slackk < m · ui . (5.3)

Since the total slack is equal to the total speed of π minus the utilization of all active tasks,
we can replace the right-hand side of Inequality (5.3) as follows,

S(π)−
∑

Tj∈P (to)

uj < m · ui .

Subtracting S(π) from both sides and multiplying by (-1) gives

⇒
∑

Tj∈P (to)

uj > S(π)−m · ui . (5.4)

Combining Inequalities (5.2) and (5.4) gives

Usum(τ)− ui > S(π)−m · ui .

Adding ui to both sides gives

⇒ Usum(τ) > S(π)− (m− 1) · ui

Since ui ≤ umax(τ), we have

⇒ Usum(τ) > S(π)− (m− 1) · umax(τ) ,

which contradicts the condition of the lemma.

95

Notice that if umax(τ) > sm,

S(π)− (m− 1)umax(τ) > Sm−1(π)− (m− 2)umax(τ) ,

and it may be possible that Lemma 7 applies to the r-EDF schedule of τ on the (m − 1)
fastest processors of π, but not to the r-EDF schedule of τ on π. In this case, it is beneficial
to consider only a subset of the processors of π when applying the Lemma 7. Theorem 22
below takes note of this improvement and also shows that the resulting test is a tight one.

First some notation:

Definition 14 (mu(π)) Let π be any uniform heterogeneous multiprocessor and let u be any
value. Then mu(π) is the index of the slowest processor of π whose speed is at least u.
Specifically,

mu(π) def=

max{j | 1 ≤ j ≤ m ∧ sj ≥ u} if u ≤ s1(π), and

∞ otherwise.

Theorem 22 Let π be any m-processor uniform heterogeneous multiprocessor. Let τ be any
task set and let m′ = mumax(π). Then if

Usum(τ) ≤ Sm′(π)− (m′ − 1)umax(τ) (5.5)

τ is r-EDF-schedulable on π. Moreover, this is a tight bound — i.e., for any û there exists a
task set τ ′ with umax(τ ′) = û and mû(π) = m′′ such that

Usum(τ ′) = Sm′′(π)− (m′′ − 1)û + ε (5.6)

that is not r-EDF-schedulable on π, where ε is an arbitrarily small value.

Proof: Let S be some r-EDF schedule of τ . Let to be any time at which some task Ti

generates a job Ti,j and every job generated before to was able to fit on some processor. It
suffices to show that at least one processor sk has slackk ≥ ui at time to.

Let π′ = [s1, s2, . . . , sm′] and consider the set of jobs that S schedules on π′. These
jobs could be generated by a sporadic task set, τ ′, containing tasks with the same execution
requirements and periods as the tasks in τ — the only difference between τ and τ ′ is that
interarrival times may be longer in τ ′. Let τ ′ be this sporadic task set and let S′ be the
schedule of S on π′ during the interval [0, to). Clearly, S′ is a valid r-EDF schedule of τ ′ on π′.

Since the tasks of τ ′ have the same parameters as the tasks of τ , the utilizations Usum(τ ′) =
Usum(τ) and umax(τ ′) = umax(τ). Therefore,

Usum(τ ′) = Usum(τ) ≤ Sm′(π′)− (m′ − 1)umax(τ) = S(π′)− (m(π′)− 1)umax(τ ′),

96

so Lemma 7 applies to any r-EDF schedule of τ ′ on π′. Therefore, whenever a job of τ ′ is
generated, there will always be at least one processor of π′ with enough slack to successfully
schedule that job. In particular, any r-EDF schedule of τ ′ on π′ (such as S′) will be able to
successfully schedule Ti,j . Since the slack on the processors of π′ is always the same during
the two schedules S and S′, Ti,j will also fit on at least one processor of π at time t = to.

It remains to show that the bound is tight. Consider any arbitrary value û and let
m′′ = mû(π). If û > s1, then no task set τ ′ with umax(τ ′) = û can be scheduled on π

regardless of the algorithm chosen.

Assume û ≤ s1 and define kj as follows:

kj =

dsj−ûe

û + 1 if 1 ≤ j ≤ m′′,

1 if j = m′′ + 1.

Clearly 0 <
sj−û

kj
< û for all j, where 1 ≤ j ≤ m′′. Choose any values ε and δ such that

0 < ε ≤ min
{

m′′ ·
(

û− sj − û

kj

)
| 1 ≤ j ≤ m′′

}
and

δ =
ε

m′′ .

Define ej,` as follows:

ej,` =

sj−û

kj
if 1 ≤ j ≤ m′′ and ` < kj ,

sj−û
kj

+ δ if 1 ≤ j ≤ m′′ and ` = kj ,

û if j = m′′ + 1 .

Let τ ′ be comprised of tasks Tj,`, where 1 ≤ j ≤ m′′ + 1, and 1 ≤ ` ≤ kj , each with execution
requirement equal to ej,` and period equal to 1.

Claim. umax(τ ′) = û and Usum(τ ′) = Sm′′(π)− (m′′ − 1)û + ε .

Proof of claim. Since all the tasks in τ ′ have a period of 1, their utilizations are
equal to their execution requirements. Hence,

umax(τ ′) = max
{

max
1≤j≤m′′

{
sj − û

kj

}
, max
1≤j≤m′′

{
sj − û

kj
+ δ

}
, û

}
,

so it suffices to show that û ≥ sj−û
kj

+ δ for all j, where 1 ≤ j ≤ m′′.

97

By definition of δ,
sj − û

kj
+ δ =

sj − û

kj
+

ε

m′′ .

Combining this with the bound on ε gives

sj − û

kj
+ δ ≤ sj − û

kj
+

m′′ ·
(
û− sj−û

kj

)
m′′ = û .

Also, by definition of τ ′,

Usum(τ ′) = (kj − 1)
m′′∑
j=1

kj∑
`=1

ej,`

= (kj − 1)
m′′∑
j=1

sj − û

kj
+

m′′∑
j=1

(
sj − û

kj
+ δ) + û

= kj

m′′∑
j=1

sj − û

kj
+ m′′δ + û

= Sm′′(π)−m′′ · û + m′′ · δ + û

= Sm′′(π)− (m′′ − 1)û + ε ,

where the last step follows because δ = ε/m′′. Therefore, the claim is proved.

By the claim, Condition (5.6) of the theorem is satisfied. Assume each task other than
Tm′′+1,1 generates a job at t = 0 and that the global scheduler assigns the jobs generated
by tasks Tj,1, Tj,2, . . . , Tj,kj

to processor sj . Then the spare capacity on processor sj , j =
1, 2, . . . ,m′′ is û − δ. If task Tm′′+1,1 generates a job before any other jobs become inactive,
the job will miss its deadline since no processor of π has enough spare capacity. Therefore,
τ ′ is not r-EDF-schedulable. This proves that Condition (5.5) is a tight bound.

The result of Baruah and Carpenter [BC03] concerning r-EDF-scheduling on identical
multiprocessors is an immediate corollary to Theorem 22 above since the total speed of m

unit-speed processors is m.

Corollary 3 Any periodic task set τ satisfying

Usum(τ) ≤ m− (m− 1)umax(τ)

will meet all its deadlines when scheduled on m unit-speed processors using r-EDF.

There are cases where the utilization bound proven in Theorem 22 may be too restric-
tive. For example, if τ consists of a few tasks with large utilization and several tasks with
significantly smaller utilization, it may make more sense to reserve the fastest processors for

98

the higher-utilization tasks and allow the lower-utilization tasks to execute only on slower
processors.

Example 5.2 Consider the uniform heterogeneous multiprocessor π = [8, 3, 3] and the task
set τ comprised of 21 tasks with u1 = 4, u2 = u3 = 1, u4 = u5 = . . . = u11 = 0.5, and
u12 = u13 = . . . = u21 = 0.1. Thus, Usum(τ) = 11 and umax(τ) = 4. Notice that mumax = 1
and S1(π) = 8, so Condition (5.5) does not hold (11 > 8− 0 · 4) and this system may not be
r-EDF-schedulable. However, if we let τ1 be the task set containing the three highest-utilization
tasks of τ , the system is schedulable since the utilization of τ1 is 6 so these jobs can be r-EDF

scheduled on the fastest processor of π. Also, applying Theorem 22 to π′ = [3, 3] and τ2 with
umax(τ ′) = 0.5 and Usum(τ2) = 5, we see that (5 ≤ 6− 1 · 0.5), therefore the 18 low-utilization
tasks of τ2 can be r-EDF scheduled on the two slowest processors of π.

A task set that fails Condition (5.5) may become schedulable by using a minor modifi-
cation of r-EDF which takes this observation into account. We call this modification semi-
partitioning.

5.1 Semi-partitioning

Since Condition (5.5) may not hold for systems where the maximum and minimum utiliza-
tions of τ are significantly different, we may wish to consider a scheme whereby jobs generated
by a given task may be assigned to only a subset of the processors of π. This is not a fully
partitioned system because each task may be assigned to several processors. In this modifi-
cation of r-EDF, called r-EDF(τ1, `), τ is divided into two disjoint groups, τ1 and τ2. All jobs
generated by τ1 are scheduled on the ` fastest processors of π and the jobs generated by τ2

are scheduled on the remaining processors. In general, τ1 will contain the higher-utilization
tasks of τ , since these ar the tasks that require the faster processors, and τ2 will contain the
the lower-utilization tasks of τ .

Example 5.2 illustrates that a system which fails Condition (5.5) may be schedulable using
semi-partitioning. Notice that r-EDF(k, `)-schedulability can be tested by simply applying
Condition (5.5) twice. The following theorem formalizes this observation.

Theorem 23 Let π be any uniform heterogeneous multiprocessor and let τ be any task set.
Assume τ = τ1 ∪ τ2, where τ1 and τ2 are disjoint. If

Usum(τ1) ≤ S`(π)− (`− 1) · umax(τ1) and

Usum(τ2) ≤ (S(π)− S`(π))− (m− `− 1) · umax(τ2) ,

then τ is r-EDF(τ1, `)-schedulable on π.

99

If the two conditions in Theorem 23 are added together, the resulting condition is

Usum(τ) ≤ S(π)− (`− 1)umax(τ1)− (m− `− 1)umax(τ2) .

Thus, Theorem 23 always imposes a looser bound on Usum(τ) than Theorem 22 since

S(π)− (`− 1)umax(τ1)− (m− `− 1)umax(τ2) ≥ S(π)− (m− 2`− 2)umax(τ)

> S(π)− (m− 1)umax(τ) .

The difference between these two bounds may be significant if uk+1 � umax(τ) or if ` is
large. Also, if umax(τ) is larger than the speed of one or more processors of π some of the
tasks are defacto semi-partitioned. For example, since the task of τ with highest utilization
in Example 5.2 has utilization larger than the speed of the two slower processors of π, we
can see that it can only be executed on the fastest processor of π even if the system had not
been semi-partitioned. Thus, task sets with widely divergent utilizations may benefit from
semi-partitioning — particularly if umax(τ) > sm. These two observations lead us to the
following two heuristics for determining how to semi-partition a system, which are applied to
the system after τ is sorted by utilization.

• If umax(τ) > sm, determine the index ` such that s` ≥ umax(τ) > s`+1 and determine
the largest index k for which the first condition of Theorem 23 holds:

k = max{j | 1 ≤ j ≤ n ∧
j∑

i=1

ui ≤ S`(π)− (`− 1)umax} .

Let τ1 = {T1, T2, . . . , Tk}.

• Otherwise, consider the tasks of τ . If umax(τ) � umin(τ), then semi-partitioning may
be useful because of the widely divergent utilizations of τ . If there is some point where
the utilization decreases significantly, let Tk be the highest-utilization task before this
decrease. (For example, let A equal the average of (ui/ui+1) for all i, i = 1, 2, . . . , n− 1,
and choose the smallest k such that uk/uk+1 > thresh×A for some threshold thresh.)
If there is no point at which the utilization decreases significantly, then let k = bn2 c. Let
τ1 = {T1, T2, . . . , Tk} and determine the smallest index ` for which the first condition of
Theorem 23 holds:

` = min{j | 1 ≤ j ≤ m ∧ Usum(τ1) ≤ Sj(π)− (j − 1)umax(τ1)} .

Once an appropriate τ1 and ` have been chosen, test if the the second condition of The-
orem 23 holds. Of course, it is possible that the second condition does not hold. In this
case, semi-partitioning can be done several times. The system can be semi-partitioned as

100

many as (m − 1) times, where (m − 1) semi-partitions results in a fully partitioned system.
The notation r-EDF(τ1,m1; τ2,m2; . . . ; τr,mr) denotes the r-EDF schedule with the following
restrictions

τ1 executes only on processors s1, s2, . . . , sm1

τ2 executes only on processors sm1+1, sm1+2, . . . , sm2

...
Tasks τr+1 execute only on processors smr+1, smr+2, . . . , sm.

Thus, the test for r-EDF(τ1,m1; τ2,m2; . . . ; τr,mr)-schedulability would involve (r + 1) appli-
cations of Theorem 22, each of which must be satisfied.

Theorem 24 Let π be any uniform heterogeneous multiprocessor and let τ be any task set.
Assume τ1, τ2, . . . , τr+1 are disjoint and τ1 ∪ τ2 ∪ . . . ∪ τr+1 = τ . If

Usum(τ1) ≤ Sm1(π)− (m1 − 1) · umax(τ1) ,

Usum(τ2) ≤ (Sm2(π)− Sm1(π))− (m2 −m1 − 1) · umax(τ2) and
...

Usum(τr+1) ≤ (S(π)− Smr(π))− (m−mr − 1) · umax(τr+1) .

then τ is r-EDF(τ1,m1; τ2,m2; . . . ; τr,mr)-schedulable on π.

5.2 Virtual processors

Example 5.2 in the previous section illustrates that a system that does not satisfy Condi-
tion (5.5) of Theorem 22 can still be schedulable using a minor modification of r-EDF. Notice
that the first partition in this example schedules the three highest-utilization tasks on a single
processor of speed 8. Since the total utilization of these three tasks is 6, there are two units
of spare capacity available which can be “loaned” to the system (π′, τ2) if necessary. For
example, if 6 more tasks with execution utilization 0.1 were added to τ , Usum(τ2) becomes
5.6 and Condition (5.5) fails on the system (π′, τ2) since (5.6 > 6 − 1 · 0.5). If π′ “borrows”
capacity from the faster partition, the fastest processor of π would be divided into 2 virtual
processors — one processor of speed 6 devoted to the highest-utilization tasks of τ and one
processor of speed 2 devoted to τ2. Once the 2 units of capacity are borrowed, Condition (5.5)
is satisfied since 5.6 ≤ (6+2)−2 ·0.5. (We now subtract 2 ·0.5 instead of 1 ·0.5 because π′ has
an extra processor with speed = 2.) The implementation of virtual processors only affects
the global scheduling algorithm. Once a job is assigned to a certain processor, the local EDF

scheduling algorithm is used regardless of which partition the job belongs to.

If capacity can be borrowed, we have more flexibility in determining the semi-partitioning

101

(i.e., in determining τ1 and `). For example, since the highest-utilization task of τ in Exam-
ple 5.2 can only be executed on the fastest processor of π and all the remaining tasks can be
executed on any of the processors of π, a natural semi-partition would be to let τ1 = {T1}
and ` = 1. Therefore, T1 would be restricted to the fastest processor and the remaining tasks
would be restricted to the slower two processors. Applying the conditions of Theorem 23 to
this semi-partition gives (4 ≤ 8−0) and (7 ≤ 6−1) . The second test clearly fails. However, if
the four units of spare capacity remaining from the first test are given to the second partition,
we have (4 ≤ 4 − 0) and (7 ≤ 10 − 2) . Therefore, this system can be scheduled with the
given semi-partition provided the fastest processor is divided into two virtual processors. We
use the notation r-SVP(τ1, `, b) to denote r-EDF scheduling with semi-partitioning and virtual
processors, where τ1 are the tasks restricted to the ` fastest processors and the remaining
tasks, executing on the m − ` slower processors, can borrow as much as b units of capacity.
Thus, the semi-partition with virtual processor discussed above is denoted r-SVP({T1}, 1, 4).

By Theorem 22, a set τ ′ of k tasks scheduled on m′ processors using r-EDF requires at
least R = Usum(τ ′) + (m′ − 1)umax(τ ′) units of capacity to ensure all deadlines are met. If
S is the total capacity of the m′ processors and S > R, there will be S − R units of wasted
capacity in this system. Therefore, this capacity can be loaned to a semi-partition with lower-
utilization tasks. The following lemma states that there will always be at least one processor
with enough capacity to loan to the τ2 provided umax(τ1) ≥ umax(τ2) and no more than S−R

units are ever loaned to τ2 at one time.

Lemma 8 Let π be any uniform heterogeneous multiprocessor and let τ be any task set. Let
τ1 and τ2 be two disjoint task sets such that τ = τ1 ∪ τ2 and umax(τ1) ≥ umax(τ2). Choose `

and b such that
0 ≤ b ≤ S`(π)− Usum(τ1)− (`− 1)umax(τ1) ,

and schedule τ on π using algorithm r-SVP(τ1, `, b). Assume a job Ti,j arrives at time to,
where Ti ∈ τ2 and let Pi(to), i = 1, 2, be the set of tasks in τi that are present on some
processor sk, 1 ≤ k ≤ `. If the following condition holds:

b−
∑

Tj∈P2(to)

uj ≥ ui (5.7)

then there exists at least one processor sk, 1 ≤ k ≤ `, with slackk ≥ ui.

Proof: (By contradiction.) Assume slackk < ui for all 1 ≤ k ≤ ` at time to. Therefore,

∑̀
r=1

slackr < ` · ui . (5.8)

102

Since P1(to) ⊆ τ1, we know ∑
Tj∈P1(to)

uj ≤ Usum(τ1) . (5.9)

Rearranging Condition (5.7) gives ∑
Tj∈P2(to)

uj ≤ b− ui (5.10)

Since all the jobs executing on the processors of S`(π) at time to are generated either by tasks
in P1(to) or in P2(to), we have

S`(π) =
∑

Tj∈P1(to)

uj +
∑

Tj∈P2(to)

ui +
∑̀
r=1

slackr . (5.11)

Substituting Conditions (5.9) and (5.10) into Equation 5.11 gives

S`(π) ≤ Usum(τ1) + (b− ui) +
∑̀
r=1

slackr .

Substituting Condition (5.8) gives

S`(π) < Usum(τ1) + (b− ui) + ` · ui .

Subtracting (Usum(τ1) + b) from both sides gives

(`− 1)ui > S`(π)− Usum(τ1)− b .

Recall, b ≤ S`(π) − Usum(τ1) − (` − 1)umax(τ1) . Substituting this into the inequality above
gives

(`− 1)ui > b + Usum(τ1) + (`− 1)umax(τ1)− Usum(τ1)− b .

Notice that the right-hand side of the above inequality equals (`− 1)umax(τ1). Therefore, we
have ui > umax(τ1), which contradicts the assumption that umax(τ2) ≤ umax(τ1).

By Lemma 8, a task Ti ∈ τ2 will not fit on any of the ` fastest processors only if assigning
Ti,j to the first semi-partition would cause the borrowed capacity to exceed b. Therefore, we
can think of the total capacity that gets loaned to the lower-utilization semi-partition as a
single processor even if the loaned capacity is spread over several processors.

Definition 15 (r-SVP(τ1, `, b)) Let π be any uniform multiprocessor and let τ = τ1 ∪ τ2 be
any task set such that umax(τ1) ≥ umax(τ2) and τ1 and τ2 are disjoint. Then r-SVP(τ1, `, b)
indicates the scheduling algorithm in which the jobs generated by τ1 are r-EDF-scheduled on
processors s1, s2, . . . , s` and the jobs generated on τ2 are scheduled on any processor provided

103

that the total utilization of tasks in τ2 that are present on the ` fastest processors of π never
exceeds b.

Determining appropriate semi-partitions with virtual processors is similar to determin-
ing appropriate semi-partitions without virtual processors, though one step is added to the
process. Once an appropriate τ1 and ` have been determined, let

b = S`(π)− Usum(τ1)− (`− 1)umax(τ1).

Then b is the spare capacity in the first semi-partition which can be loaned to the second
semi-partition. Test if τ2 is r-EDF-schedulable a multiprocessor π′, where S(π′) = S(π)−S`(π)
and m(π′) = m − ` + 1. (Since the heuristics are applied to sorted task sets, it is clear that
umax(τ1) ≥ umax(τ2).)

The following theorem formalizes these steps for finding allowable semi-partitions.

Theorem 25 Let π be any uniform heterogeneous multiprocessor and let τ = τ1 ∪ τ2 be any
task set such that umax(τ1) ≥ umax(τ2) and τ1 and τ2 are disjoint. If

0 ≤ b ≤ S`(π)− Usum(τ1)− (`− 1) · umax(τ1), and

Usum(τ2) ≤ S(π)− S`(π) + b− (m− `) · umax(τ2),

then τ is r-SVP(τ1, `, b)-schedulable on π.

Proof: The conditions on b ensure that there will always be enough capacity for the higher-
utilization tasks to meet their deadlines. The second condition is an application of Theorem 22
on the (m− `) slowest processors plus the virtual processor of capacity b.

Semi-partitioning with virtual processors can be repeated several times in the same manner
as semi-partitioning without virtual processors. Allowing more semi-partitions with virtual
processors will allow some task sets to be successfully scheduled on π even though they would
be unschedulable if fewer semi-partitions are used. The main difference between having
several semi-partitions with virtual processors as opposed to without virtual processors is
that while (m − 1) semi-partitions without virtual processors results in a fully partitioned
system, the same does not hold for semi-partitioning with virtual processors. Thus, the
scheduling algorithm r-SVP(τ1,m1, b1; τ2,m2, b2; . . . ; τr,mr, br) generates an r-EDF schedule
with the following restrictions

The task sets τ1, τ2, . . . , τr+1 are disjoint
τ1 can execute only on processors s1, s2, . . . , sm1

τ2 can execute only on processors s1, s2, . . . , sm2

104

At most b1 units of τ2 can be present on s1, s2, . . . , sm1

...

τr can execute only on processors smr−2+1, smr−2+2, . . . , smr

At most br−1 units of τr can be present on smr−2+1, smr−2+2, . . . , smr−1

τr+1 can execute only on processors smr−1+1, smr−1+2, . . . , sm

At most br units of τr+1 can be present on smr−1+1, smr−1+2, . . . , smr

Thus, the test for r-SVP(τ1,m1, b1; τ2,m2, b2; . . . ; τr,mr, br)-schedulability would involve (r +
1) applications of Theorem 22, each of which must be satisfied.

Theorem 26 Let π be any uniform heterogeneous multiprocessor and let τ be any task set.
Assume τ is comprised of (r +1) disjoint task sets τ1, τ2, . . . , τr+1 with umax(τi) ≥ umax(τi+1)
for all 1 ≤ i ≤ r. If

0 ≤ b1 ≤ Sm1(π)− Usum(τ1)− (m1 − 1) · umax(τ1),

0 ≤ b2 ≤ Sm2(π)− Sm1(π) + b1 − Usum(τ2)− (m2 −m1) · umax(τ2),
...

0 ≤ bj ≤ Smj (π)− Smj−1(π) + bj−1 − Usum(τj)− (mj −mj−1) · umax(τj),
...

0 ≤ Sm(π)− Smr(π) + br − Usum(τ1)− (m−mr) · umax(τr+1)

then τ is r-SVP(τ1,m1, b1; τ2,m2, b2; . . . ; τr,mr, br)-schedulable on π.

Notice that the i’th semi-partition can only borrow from the (i − 1)’th semi-partition.
This is because the bk units of spare capacity in the k’th semi-partition are reserved for τk+1

— if some other task uses some of that capacity then τk+1 is no longer guaranteed to meet
all of its deadlines.

5.3 The r-SVP scheduling algorithm

The previous two sections introduce three variations of r-EDF — one with no partitioning,
one with semi-partitioning and one with semi-partitioning and virtual processors (r-SVP).
The difference between these variations of r-EDF is the global scheduler they use to assign
jobs to processors as the tasks generate them. This section introduces r-SVP — the restricted-
migration, semi-partitioning, global scheduler with virtual processors. The other variations
of global schedulers can be derived by removing the implementation of the semi-partitioning

105

and/or the virtual processor from the r-SVP scheduler. This scheduling algorithm can suc-
cessfully schedule any task sets satisfying the conditions of Theorem 26.

The r-SVP scheduler is illustrated in Figure 5.3. This algorithm maintains two vari-
ables, SemiPartMap and Slack. SemiPartMap is an (s × 3) array, where s is the number of
semi-partitions in the system. It maintains the minimum and maximum processor indices
associated with each semi-partition, denoted SemiPartMap[∗,min] and SemiPartMap[∗,max],
respectively, and the capacity available to loan to the next lower-utilization semi-partition,
SemiPartMap[∗, loan]. Slack is an array of m elements, where m is the number of processors
in the system. Slack[k] is the slack on the k’th processor of π. Initially, Slack[k] = sk for each
k, 1 ≤ k ≤ m. Slack[k] is modified whenever the set of tasks present on sk changes — i.e.,
when a job is assigned to sk, a job’s deadline elapses, or sk becomes idle. In the first and
second cases, Slack[k] is reduced or increased, respectively, by the utilization associated with
the job. In the third case, Slack[k] is reset to sk.

When a job is generated by a task and submitted to the r-SVP global scheduler, it must
provide three parameters: the semi-partition to which the task belongs, sp, the task’s utiliza-
tion, util, and the job’s deadline d. r-SVP begins in lines 7 and 8 by finding the processors in
the semi-partition sp. It then determines which processor to assign the job to. In line 9 r-SVP

finds the processor sk in semi-partition sp with the most slack. If this processor has enough
slack (i.e., if slackk ≥ util), then the job will be assigned to sk on line 25. Otherwise, r-SVP

will search for a processor in semi-partition sp − 1 to assign to job to. In lines 12 through
14, r-SVP finds the processor in the prior semi-partition with the largest slack. If this slack is
at least util, then r-SVP selects this processor, decreases SemiPartMap[sp − 1, loan] by util,
and sets an interrupt to increase SemiPartMap[sp − 1, loan] when the job’s deadline elapses
on lines 16 and 17. If there was no processor with enough slack to fit the job in semi-partition
sp-1 or if sp=1 and there is not enough slack to fit the job in semi-partition sp, r-SVP reports
an error on line 19 or 22. Assuming a processor is found on which the job will fit, the slack of
this processor is decreased by the task’s utilization (line 26) and an interrupt is set to increase
the utilization once the task’s next deadline arrives (line 27). Since r-SVP uses the values in
Slack[*] to determine the processor assignments, it is essential that the interrupts that occur
at job deadlines have higher priority than the r-SVP algorithm. Otherwise, if a job arrives
at another job’s deadline, r-SVP may erroneously determine that the arriving job can not fit
onto any processor.

The version of r-SVP shown in Figure 5.3 can be varied in several ways — either to address
different system requirements or to optimize the algorithm. For example, in Figure 5.3, r-SVP

assigns jobs to the processor with the most slack. However, any method may be used to select
among the eligible processors (e.g., first fit, best fit, worst fit, random fit). The choice depends
on the load-balancing goal for the given system.

106

function r-SVP(job, sp, util, d)
1 %Submit job with utilization = util and
2 % deadline = d to some processor in
3 % semi-partition sp
4 if sp < 1 or sp > maxsp
5 error: invalid sp value
6 fi
7 minproc← SemiPartMap[sp,min]
8 maxproc← SemiPartMap[sp,max]
9 j ←index in [minproc, maxproc] with maximum Slack
10 if Slack[j] < util
11 if sp > 1
12 minproc← SemiPartMap[sp− 1,min]
13 maxproc← SemiPartMap[sp− 1,max]
14 j ←index in [minproc, maxproc] with maximum Slack
15 if Slack[j] ≥ util
16 SemiPartMap[sp− 1, loan]← SemiPartMap[sp− 1, loan]− util
17 set interrupt to increase SemiPartMap[sp− 1, loan] by util at time d
18 else
19 error
20 fi
21 else
22 error
23 fi
24 fi
25 submit job to processor j
26 Slack[j]← Slack[j]− util
27 set interrupt to increase Slack[j] by util at time d
return

Figure 5.3: The r-SVP global scheduler.

107

5.4 Summary

This chapter presents the r-EDF scheduling algorithm and its associated utilization bound.
It then presents conditions under which the utilization bound is too restrictive, making r-EDF

impractical in the sense that an excessive amount of computing power is forced to remain
idle if we are to ensure that all deadlines will be met. This shortcoming is addressed by
introducing the concept of semi-partitioning and virtual processors. Finally, an algorithm is
presented for scheduling r-SVP, the global r-EDF scheduler with semi-partitions and virtual
processors.

108

Chapter 6

Conclusions and futurework

Real-time systems can now be found in our cars, our cell phones — even some of our
standard home appliances. As the uses for real-time systems become more diverse, these
systems require a larger variety of platforms. This dissertation has provided a first step in
availing uniform heterogeneous multiprocessors to the real-time community. To date, research
on real-time systems has focussed primarily on uniprocessors and identical multiprocessors.
Since multiprocessors are currently being designed with processors that operate at different
speeds, it behooves the real-time community to take advantage of uniform heterogeneous
multiprocessor technology.

This dissertation presents EDF-schedulability tests for uniform heterogeneous multiproces-
sors under three different migration strategies — full migration, partitioning, and restricted
migration. Table 6.1 illustrates the context in which this research has been developed. While
EDF-schedulability tests using each of these three migration strategies have been developed
for identical multiprocessors, no such tests existed for uniform heterogeneous multiprocessors.
This dissertation provides tests for each of the migration strategies, thereby remedying this
deficiency in the current research.

Both the full and restricted migration tests can be performed in polynomial time. The
partitioning test requires exponential time. We anticipate this test will be executed by the
manufacturers and the results will be provided with other parameters of the system upon
delivery, such as the clock speed, bus speed and cache size. After performing this expensive
calculation, it is a simple polynomial time calculation to confirm whether a task set is guaran-
teed to meet all deadlines using partitioned EDF. The research presented in this dissertation
is intended to provide a theoretical foundation for the real-time community to use this new
type of computing platform.

The remainder of this chapter is divided into 2 sections. Section 6.1 discusses the three
EDF-schedulability tests presented in this dissertation in more detail. Section 6.2 discusses
some future work.

110

Uniform Unrelated
Identical Heterogeneous Heterogeneous

Phillips,
Full et al. [PSTW97]

Baruah and This Future
Restricted Carpenter [BC03, BC] Research Research

Lopez,
Partitioning et al. [LGDG00]

Table 6.1: Context for this research and future research.

6.1 The EDF-schedulability tests

Chapter 3 discusses the full migration EDF test (f-EDF) in detail. Developing this test
requires two fundamental techniques. First, resource augmentation [KP98, PSTW97] is a
technique whereby the behavior of a real-time instance I on one multiprocessor is evaluated
by considering the behavior of the same real-time instance on a less powerful multiprocessor.
In particular, this chapter infers the f-EDF-schedulability of a real-time instance on a processor
π by considering the feasibility of the same real-time instance on a less powerful processor π′.
If the following condition is satisfied:

S(π) ≥ S(π′) + λ(π) · s1(π′) ,

then any real-time instance that is feasible on π′ will be f-EDF-schedulable on π. Unfortu-
nately, resource augmentation does not identify all multiprocessors π′ for which feasibility
on π′ guarantees f-EDF-schedulability on π. We applied the robustness of f-EDF on uniform
heterogeneous multiprocessors [Bar02] to find the remaining processors. Using these two tech-
niques, we were able to find all points (s, S) for which feasibility on some multiprocessor with
total speed S and fastest speed s implies f-EDF-schedulability on π. Finally, we applied these
results to tasks sets to find a utilization-based f-EDF-schedulability test.

Unfortunately, f-EDF is not always a practical scheduling algorithm. For example, in
systems with high migration overhead, migration must be either restricted or prohibited
altogether. With this in mind, we developed two other schedulability tests for EDF on uniform
heterogeneous multiprocessors.

Chapter 4 develops a schedulability test for partitioned EDF on uniform heterogeneous

111

multiprocessors. We show that determining whether a task set τ can be partitioned onto
a uniform heterogeneous multiprocessor π is equivalent to the variable-sized bin packing
problem, which is known to be NP-complete in the strong sense. Given this observation, we
explore methods for approximating the p-EDF schedulability test for uniform heterogeneous
multiprocessors. We first sort the tasks by utilization before partitioning. We show that if
the tasks are sorted, we can estimate the bound by considering highly simplified tasks sets
and discrete utilization values. The complexity of finding the p-EDF utilization bounds is

O
(
m

S(π)+log2(bs1(π)/εc)
ε

)
,

where ε is the maximum error in the estimated bound. This is admittedly an expensive cal-
culation. However, the bound need only be evaluated once for a given uniform heterogeneous
multiprocessor π. Once the bound is known, a task set can be checked in polynomial time to
verify whether it meets the bound.

p-EDF has advantages and disadvantages. One advantage is that is is fairly easy to
implement — simply execute the uniprocessor algorithm in parallel. Furthermore, it clearly
reduces the migration overhead. One disadvantage of using p-EDF is that it can only schedule
static task sets. If tasks join the system, all tasks may need to be repartitioned, which would
violate the policy of no migrations. Another disadvantage of p-EDF is that the scheduler has
no control over processor loads. If the scheduler could migrate jobs, it could make decisions
with an overall system goal in mind. For example, jobs may be assigned to processors in an
attempt to balance loads as much as possible. Alternatively, the scheduler may try to keep
one of the processors free to execute non-real-time jobs. Either way, these goals cannot be
achieved using p-EDF. Instead, we may choose to restrict migration so that the migration costs
are kept low while the system still can have dynamic tasks and direct processor assignments
according to a specific load profile.

Chapter 5 developed a schedulability test for EDF with restricted migration. We developed
this test by considering the worst possible configuration of job assignments that could cause
a job to miss its deadline. Based on this analysis, we found that if

Usum(τ) ≤ S(π)− (m− 1) · umax(τ)

then τ is r-EDF-schedulable on π. Because we found that this test may force us to leave a large
portion of the system idle, we considered semi-partitioning — dividing both the processors
and the tasks into two or more groups and restricting all jobs generated by a task to execute
only on processors in the task’s group. The schedulability test for semi-partitioned r-EDF

is a repeated application of the original r-EDF-schedulability test. Finally, we considered
virtual processors, which allow the excess idle capacity in one partition to be used by another
semi-partition and we presented the algorithm r-SVP, which implements r-EDF with semi-

112

partitioning and virtual processors.

6.2 Future work

The work presented in this dissertation generalizes known results for EDF scheduling on
identical multiprocessors. For both the full and restricted migration, the generalized tests
reduce to the known tests when applied to identical multiprocessors. For partitioning, the
uniform heterogeneous multiprocessor test cannot be expressed as a simple mathematical
expression so the two tests cannot be compared.

Every generalization of the model expands the number of systems that can be used by
the real-time community. Therefore, further extensions of this work include generalizing the
processing model and the job (or task) model. Furthermore, many of these generalized models
will require new scheduling algorithms. The remainder of this section discusses each of these
future goals.

6.2.1 Generalizing the processing model

There are a variety of ways in which the processor model can be generalized. For example,
processing speeds can vary by processor and job or they can vary over time. In addition the
system speeds can refer to communication speeds as opposed to processing speeds.

Unrelated multiprocessors

Just as uniform heterogeneous multiprocessors are a generalization of the identical

multiprocessor model, unrelated multiprocessors are a generalization of the uniform

heterogeneous multiprocessor model. Recall that in unrelated multiprocessors, the rate

of execution depends upon both the processor and the job. These systems are comprised

of processors with different architectures — oftentimes, some of the processors, such as

graphics co-processors or digital signal processors, are specialized for specific operations.

Extending the EDF-schedulability tests to apply to this type of system would be an

important contribution to the real-time community. While some of the techniques

employed in this dissertation may be extended to apply to this more general model, the

extensions are not straightforward because the processors cannot be sorted according

to speed — the sort order would depend on both the job and the processor. Much

of the analysis performed in this dissertation relied on the sorting of the processors

according to speed.

Variable voltage processors

Rather than having processing speeds vary over jobs, we could instead have the

processing speeds vary over time. In this case, the model is still uniform in the sense

113

that processing speeds apply uniformly to all jobs. However, these speeds are no longer

fixed. This kind of model arises for variable voltage processors, in which the adjusting

the voltage available to the processor adjusts its speed. These processors are often used

in mobile devices such as laptops. When the voltage is increased, both the processor

speed and the power consumption are also increased. There are a variety of reasons

why a system designer may choose to reduce the power consumption at the expense of

reducing the processing speed.

• If battery power dictates design decisions, the system designer may choose to

reduce the voltage in order to extend the battery life.

• If heat generation dictates design decisions, the system designer may choose to

reduce the voltage whenever possible. Since faster clock speeds generate more

heat, reducing the voltage would reduce clock speed, which in turn reduces the

heat generated by the system.

• If heat generation dictates design decisions, the system designer may choose to

reduce the power consumption in order to reduce the system operating costs.

• Finally, if environmental factors dictate design decisions, the system designer may

choose to reduce the power consumption in order to reduce the impact to the

environment.

It is easy to see how the research presented in this dissertation extends to fixed

variable voltage multiprocessors — i.e., systems comprised of variable voltage multi-

processors in which the voltage level of each processor is set before the system begins

executing and is not changed thereafter. The tricky question is what voltage settings

minimize power consumption while still ensuring jobs meet their deadlines. Another

interesting question is how to analyze these systems if the voltage levels can change

dynamically over time. The results presented in this dissertation assume fixed process-

ing speeds. Extending this results to account for dynamically changing speeds would

be an interesting and important problem.

Storage area networks

Another generalization of the processor model is to reinterpret the processing speed

as communication speed. In this case, all the jobs would be managing data stored in

a storage area network — i.e., a subnetwork of storage devices. Instead of schedul-

ing jobs to ensure they complete before their deadline, this interpretation would be

scheduling data retrievals to ensure they complete in a timely manner. However, the

114

data is written as well as read. Therefore, the scheduling may also benefit from mov-

ing regularly-accessed data to the fastest locations. While this problem is significantly

different than the hard-real-time scheduling problem, the two problems do share sim-

ilarities. In particular, the techniques employed in this dissertation such as resource

augmentation for full migration, finding the worst-case scenario for restricted migra-

tion, and modularizing utilization per processor for partitioning may translate into

analysis of storage area networks by replacing processing speeds with communication

costs. Of course, some of the analysis would have to be modified to reflect the different

application. For example, data retrieval jobs cannot be preempted at arbitrary times

so the analysis would have to account for a delay before a preemption can occur.

6.2.2 Generalizing the job model

All of the results presented in this dissertation assume a preemptive model in which

jobs are independent. There are many problems in which independence is an unrea-

sonable assumption. Also, in some cases preemption may not be allowed.

Dependent jobs

Jobs may have dependencies for a variety of reasons. Two types of job dependencies

are resource sharing and precedence constraints. If jobs J1 and J2 share an exclusive

resource, they cannot execute simultaneously. Once one job accesses the resource, the

other job will stall until the first job stops using it. If job J1 has precedence over J2,

then J2 cannot be scheduled until J1 has completed executing even if J2 has already

been released. Thus, in addition to not being allowed to execute simultaneously, jobs

with a precedence constraint must execute in a particular order. Job J1 is generally

given precedence over J2 when J2’s correct execution depends on values generated by

job J1.

Incorporating resource sharing and precedence constraints into the results presented

in this dissertation would be a natural and important extension. However, both of

these extensions can cause priority inversions — situations where a higher priority

job is blocked while a lower priority job executes. The research presented in this

dissertation assumes that a job can execute whenever it is active and has high enough

priority. Priority inversions may violate this assumption. Therefore, the results in this

dissertation do not account for either type of job dependence.

Non-preemptive systems

While preemption is a common assumption in real-time systems, there are situations

when jobs may not be preempted. For example, communication devices often have non-

115

preemptable jobs. Removing the ability to preempt jobs may cause priority inversions.

Moreover, non-preemptive systems can also suffer from scheduling anomalies whereby a

feasible system may miss deadlines if one or more jobs are removed from the system or

complete executing early. Accounting for priority inversions and scheduling anomalies

is another important extension to the research presented in this dissertation.

6.2.3 Algorithm development

This dissertation considers several variations of the EDF scheduling algorithm. Even

though there are a variety of reasons why EDF is a reasonable algorithm to consider,

there are times when a job’s urgency is not reflected by its deadline alone. For example,

a high-utilization job may be more critical than a low-utilization job even if the high-

utilization job has a later deadline. While EDF cannot account for such a situation

when setting priorities, there may be other algorithms that can address these issues. Of

course, any such algorithm would have to either be efficient or the schedule would have

to be determined off-line. Whether the new algorithm is online or off-line, developing

an algorithm tailored to take advantage of the different processing speeds available in

uniform heterogeneous multiprocessors would be a valuable contribution to the field.

6.2.4 Combining models

While each of the areas of research mentioned above valid and challenging, com-

bining two or more models could also result in valuable contributions. One possible

combination of the challenges listed here would be to develop an algorithm for schedul-

ing non-preemptive real-time systems with precedence constraints on variable voltage

processors. Even if each of the three components — an algorithm for scheduling non-

preemptive real-time systems on uniform heterogeneous multiprocessors, analysis of

systems with precedence constraints, and strategy for effectively using variable voltage

processors in the multiprocessor context — had already been developed combining the

three contributions would be another significant development. Furthermore, the com-

bination would very likely not be an incremental extension of any of the three original

results. Real-time systems have very complex characteristics. Changing one aspect of

the system can result in a very different problem. While the approaches used to find a

schedulability test within each of the models would be helpful in determining a schedu-

lability test in the combined model, developing the final schedulability test that takes

all the constraints into consideration may involve developing new analysis techniques

as well.

116

6.3 Summary

This dissertation presents several EDF-schedulability tests for real-time scheduling

on uniform heterogeneous multiprocessors. We have seen that changing the migration

strategy while leaving all other aspects of the system the same results in a very different

problem which requires a completely different approach to analyze. Allowing processors

to execute at different speeds gives the systems designer more flexibility to develop a

system tailored specifically to the application at hand — particularly if the application

has tasks with widely different utilization characteristics. Lifting further assumptions

can provide even more flexibility for the system designer.

Just as varying migration strategies requires different analysis techniques, changing

any of the parameters discussed in this section could have a major impact on the best

approach for finding a good schedulability test. The goal of this dissertation and the

goal of all future work is to extend the types of systems available to designers of real-

time systems. As real-time systems become more common in industry and computing

platforms become more diverse, any of the extensions mentioned here can provide

important contributions to the real-time community.

117

INDEX

Aπ, 60

CRπ, 51

Hπ, 62

Lπ(s), 62

Rπ, 57

S(π), 6

Si(π), 6

Vε, 82, 85

W (A, π, I, J, t), W (A, π, I, t), 4

Ψ(umax, Usum), 4

δ(A, π, si, I, J, t), 4

λ(π), 6
∗
�, 43

π, 6

r-SVP(τ1, `, b), 102

�, 41

m(π), 6

mu(π), 95

si, 6

AFD-EDF, 73

EDF, 2

FFD-EDF, 73

crπ, 59

AFD, 73

FFD, 73

Bin packing, 38

Capacity, 14

Characteristic region of π, 51

Competitive ratio, 24

Distributed-memory multiprocessor, 47

Dominates, 41

Dominates, cleanly, 43

Dynamic priority, 9

Feasible reduction, 78

Fixed priority, 9

Identical multiprocessor, 5

Job-level dynamic-priority, 10

Job-level fixed-priority, 9

Level algorithm, 33

Makespan, 32

Modular on π, 76

Modularize, 79

Offline, 7

Online, 7

Optimal, 10

Precedence constraint, 32

Predictable, 29

Preemption, 3

Resource augmentation, 26

Robust, 41

Shared-memory multiprocessor, 44

SMP, 44

Time slicing, 23

Uniform heterogeneous multiprocessor,

2, 5

Unrelated heterogeneous multiprocessor,

5

Variable-sized bin packing, 38

Work conserving, 7

118

119

BIBLIOGRAPHY

[Bar02] Sanjoy K. Baruah. Robustness results concerning EDF scheduling upon uni-

form multiprocessors. In Proceedings of the EuroMicro Conference on Real-Time

Systems, pages 95–102, Vienna, Austria, June 2002. IEEE Computer Society

Press.

[Bar04] Sanjoy K. Baruah. Optimal utilization bounds for the fixed-priority scheduling

of periodic task systems on identical multiprocessors. IEEE Transactions on

Computers, 53(6):781–784, 2004.

[BC] Sanjoy K. Baruah and John Carpenter. Multiprocessor fixed-priority schedul-

ing with restricted interprocessor migrations. Journal of Embedded Computing.

Accepted for publication.

[BC03] Sanjoy K. Baruah and John Carpenter. Multiprocessor fixed-priority scheduling

with restricted interprocessor migrations. In Proceedings of the Euromicro Con-

ference on Real-time Systems, Porto, Portugal, 2003. IEEE Computer Society

Press.

[BCPV96] Sanjoy K. Baruah, Neil Cohen, C. Greg Plaxton, and Don Varvel. Pro-

portionate progress: A notion of fairness in resource allocation. Algorithmica,

15(6):600–625, June 1996.

[BFG03] Sanjoy K. Baruah, Shelby Funk, and Joël Goossens. Robustness results con-

cerning EDF scheduling upon uniform multiprocessors. IEEE Transactions on

Computers, 52(9):1185–1195, 2003.

[BFS89] William J. Bolosky, Robert P. Fitzgerald, and Michael L. Scott. Simple but ef-

fective techniques for NUMA memory management. In Proceedings of the Twelfth

ACM Symposium on Operating Systems Principles, pages 19–31. ACM Press,

1989.

[BG03a] Sanjoy K. Baruah and Joël Goossens. Rate-monotonic scheduling on uniform

multiprocessors. IEEE Transactions on Computers, 52(7):966–970, 2003.

[BG03b] Sanjoy K. Baruah and Joël Goossens. Rate-monotonic scheduling on uni-

form multiprocessors. In Proceeding of the 23rd International Conference on Dis-

tributed Computing Systems, Providence, RI, April 2003. IEEE Computer Society

Press.

120

[CFH+03] John Carpenter, Shelby Funk, Phil Holman, Anand Srinivasan, Jim An-

derson, and Sanjoy K. Baruah. A categorization of real-time multiprocessor

scheduling problems and algorithms. In Joseph Y.-T Leung, editor, Handbook

of Scheduling: Algorithms, Models, and Performance Analysis. CRC Press LLC,

2003.

[CLRS01] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford

Stein. Introduction to Algorithms. /, 2 edition, 2001.

[Del04] Dell, Inc. Dell PowerEdge 2600 Server. February 2004.

http://www.dell.com/downloads/global/products/pedge/en/2600 specs.pdf.

[Der74] Michael Dertouzos. Control robotics : the procedural control of physical pro-

cessors. In Proceedings of the IFIP Congress, pages 807–813, 1974.

[DM89] Michael Dertouzos and Aloysius K. Mok. Multiprocessor scheduling in a hard

real-time environment. IEEE Transactions on Software Engineering, 15(12):1497–

1506, 1989.

[HL88] Kwang Soo Hong and Joseph Y.-T. Leung. On-line scheduling of real-time tasks.

In Proceedings of the Real-Time Systems Symposium, pages 244–250, Huntsville,

Alabama, December 1988. IEEE.

[HL94] Rhan Ha and Jane W.-S. Liu. Validating timing constraints in multiproces-

sor and distributed real-time systems. In Proceedings of the 14th International

Conference on Distributed Computing Systems (ICDCS), pages 162–171, Poznan,

Poland, June 1994.

[HLS77] Edward C. Horvath, Shui Lam, and Ravi Sethi. A level algorithm for preemp-

tive scheduling. Journal of the ACM, 24(1):32–43, 1977.

[HS86] Dorit S. Hochbaum and David B. Shmoys. A unified approach to approximation

algorithms for bottleneck problems. Journal of the ACM, 33:533–550, 1986.

[HS87] Dorit S. Hochbaum and David B. Shmoys. Using dual approximation algorithms

for scheduling problems: Theoretical and practical results. Journal of the ACM,

34(1):144–162, January 1987.

[HS88] Dorit S. Hochbaum and David B. Shmoys. A polynomial time approximation

scheme for scheduling on uniform processors using the dual approximation ap-

proach. SIAM Journal on Computing, 17(3):539–551, June 1988.

121

[Joh73] David S. Johnson. Near-optimal Bin Packing Algorithms. PhD thesis, Depart-

ment of Mathematics, Massachusetts Institute of Technology, 1973.

[KP95] Bala Kalyanasundaram and Kirk R. Pruhs. Speed is as powerful as clairvoyance.

In 36th Annual Symposium on Foundations of Computer Science (FOCS’95),

pages 214–223, Los Alamitos, October 1995. IEEE Computer Society Press.

[KP98] Bala Kalyanasundaram and Kirk R. Pruhs. Maximizing job completions online.

Lecture Notes in Computer Science, 1461:235–246, 1998.

[LGDG00] Jose Maria López, M. Garcia, José Luis Diaz, and Daniel F. Garcia. Worst-

case utilization bound for EDF scheduling on real-time multiprocessor systems.

In Proceedings of the EuroMicro Conference on Real-Time Systems, pages 25–34,

Stockholm, Sweden, June 2000. IEEE Computer Society Press.

[LH86] Kai Li and Paul Hudak. Memory coherence in shared virtual memory systems.

In Proceedings of the Fifth Annual ACM Symposium on Principles of Distributed

Computing, pages 229–239. ACM Press, 1986.

[LL73] Chung Laung Liu and James W. Layland. Scheduling algorithms for multipro-

gramming in a hard real-time environment. Journal of the ACM, 20(1):46–61,

1973.

[LL74] Jand W.-S. Liu and Chung Laung Liu. Bounds on scheduling algorithms for het-

erogeneous computing platforms. In Proceedings of the IFIP Congress, volume 30,

pages 483–485, Stockholm, Sweden, 1974. North-Holland Publishing Company.

[LLG+92] Daniel Lenoski, James Laudon, Kourosh Gharachorloo, Wolf-Dietrich We-

ber, Anoop Gupta, John Hennessy, Mark Horowitz, and Monica S. Lam. The

Stanford Dash multiprocessor. Computer, 25(3):63–79, 1992.

[LT99] Tak Wah Lam and Kar Keung To. Trade-offs between speed and processor

in hard-deadline scheduling. In Proceedings of the Tenth Annual ACM-SIAM

Symposium on Discrete Algorithms, pages 623 – 632, Baltimore, Maryland, 1999.

[McN59] R. McNaughton. Scheduling with deadlines and loss functions. Machine

Science, 6(1):1–12, October 1959.

[Mok88] Aloysius K. Mok. Task management techniques for enforcing ED scheduling

on a periodic task set. In Proc. 5th IEEE Workshop on Real-Time Software and

Operating Systems, pages 42–46, Washington D.C., May 1988.

122

[PSTW97] Cynthia A. Phillips, Cliff Stein, Eric Torng, and Joel Wein. Optimal time-

critical scheduling via resource augmentation. In Proceedings of the Twenty-

Ninth Annual ACM Symposium on Theory of Computing, pages 140–149, El Paso,

Texas, 4–6 May 1997.

[SA] Anand Srinivasan and James Anderson. Fair scheduling of dynamic task systems

on multiprocessors. Journal of Systems and Software. Scheduled for publication.

