Comp 121 – Introduction to Data Structures. Spring 2000

Programming Assignment 3 -- Due March 28, 2000

Objective: To gain experience in implementing binary trees.

Goal. To implement the binary search tree ADT as an object template in C++. To use this ADT as the basis of a sorting program.
The binary search tree (bstree) abstract data type is specified as follows [p. 490 of your text]:

AbstractDataType bstree{
Instances: binary trees; each node has an element; all elements are distinct; elements in the left subtree of any node are smaller than the element in the node; elements in the right subtree are larger.

Operations:
create():

Create an empty binary search tree

destroy():

Erase a binary search tree

find(k):
Return true if the binary search tree contains the element k; false otherwise.

printSort():
Output all elements in the binary search tree in ascending order

delete(k):
Delete the element k from the binary search tree.

Insert(k):

Insert the element k into the binary search tree

}
You are to implement this ADT in the C++ programming language. Feel free to refer to the code in the text for help – however, your work should be your own, and not a copy of the text code.

Sorting. In a prior assignment (Programming Assignment 1), you implemented a program for sorting a number of points with the help of a priority-queue. You are to now compare the performance of that sorting program with the following:

 Given a file of elements that are to be sorted, we can insert these elements successively into a binary search tree, and then call printSort() to print out all the elements in the tree in sorted order.

 You will be required to collect timing information on the performance of both your sorting programs – the one using priority queues, and the current one – in sorting certain data-sets that will be made available on the class web-page prior to the assignment due-date. These data-sets will be in the same format as in Programming Assignment 1: you will be given the points to be sorted in a file, which contains the number of points in the file followed by a pair of coordinates for each point
.

Rules for submitting this program:

· Recall that you are not permitted to work in groups – all your work must be your own, and you must attest to this in a signed comment that begins each program.

· Include a (neatly typed – not handwritten) design plan. This design plan should contain a detailed description of all algorithms you use. Include some general comments on the structure and layout of your assignment.

· Include a complete listing of all your code, input files, and output files. Since you will be using the Point class that you implemented for Assignment 1, include a listing of this class as well.
· Your code must be appropriately commented – if we don’t understand your code with reasonable effort, you get no credit for it. Include comments on the “big-Oh” run-time complexity of all public methods. For this assignment, comments on the average run-time may also be useful.

· Include a test plan detailing how you tested your ADT, and why you believe it is correct. (Note that the sorting part of your assignment need not test the entire ADT – only the create, insert, and printSort functions.)

· A number of different data-sets will be made available on the course web page a few days prior to the assignment due-date. You are to collect and submit timing information on sorting these data-sets using both your priority queue implementation (from Assignment 1) and the binary search tree. You may find it useful to read Section 2.6 – Performance Measurement – of your text to help you with this.

All of the above should be placed in an envelope with your name and student-ID on the outside, and submitted at the beginning of class on the due date. Submissions will not be accepted after 10 minutes have elapsed from the start of class – no late submissions will be accepted without documented reasons.

� Points are compared according to their distance from the origin.

