Big Oh notation

Let f(n)and g(n) be non-negative, non-decreasing
functions of n. We say f(n) = O(g(n)) Iff

[J+ve constants ¢ and n, such that
f(n) <c.g(n) for all n = n,

el.e. f(n) grows no faster than g(n) (ignoring
constant factors)

eSince we're ignoring constant factors, typically
choose g(n) to be “simple” looking:




Big Oh notation

Tr(nN)=c,.n?+cC,.n

Tg(n)=c5.n
T(nN)=4.n>+10.n

To(N) =6.n?

O(c, . n?+c,.n)
O(c, . n?)

O(n?)

O(n)

O(n?)

O(n?)



Big Oh notation

 We're typically interested In the “tightest”
bound we can obtain on an algorithm’s

runtime complexity (the Theta bound)

« Eg, Tg(n)=C5.n

==>T,(n) = O(n?) as well, but we're more
Interested In the bound T,(n) = O(n)



Common asymptotic functions

Function Name

1 constant function
log n logarithmic
n linear
nlog n ---

n2 quadratic nk for any constant k:
ns cubic polynomial function
2" exponential
n! factorial

f(n) i1s O(one of these functions) ==> f(n) is O(every lower[! ]
function as well)




Some results

Result: If T,(n) = O(f(n)) and T,(n) = O(g(n)) then
- Ty(n) + T»(n) = O(f(n) + g(n))
- Ty(n) * T,(n) = O(f(n) * g(n))

- Ty(n) - To(n) ? O(F(n) - g(n))
- Ty(n) 7/ Ty(n) ? O(f(n) /7 g(n))



Some results

Result : 1fa, >0 then

Result : f(n) = O(g(n)) Iff
lim__ . f(n)/g(n) <c
for some finite constant c




