
Big Oh notationBig Oh notation
Let f(n) and g(n) be non-negative, non-decreasing
functions of n. We say f(n) = O(g(n)) iff
∃∃∃∃ +ve constants c and no such that

f(n) ≤≤≤≤ c . g(n) for all n ≥≥≥≥ no
•I.e. f(n) grows no faster than g(n) (ignoring
constant factors)
•Since we’re ignoring constant factors, typically
choose g(n) to be “simple” looking:

Big Oh notationBig Oh notation

TA(n) = c1 . n2 + c2 . n

TB(n) = c3 . n

TC(n) = 4. n2 + 10 . n

TD(n) = 6 . n2

O(c1 . n2 + c2 . n)
O(c1 . n2)
O(n2)

O(n)

O(n2)

O(n2)

Big Oh notationBig Oh notation

• We’re typically interested in the “tightest”
bound we can obtain on an algorithm’s
runtime complexity (the Theta bound)

• E.g., TB(n) = c3 . n
==> Tb(n) = O(n2) as well, but we’re more
interested in the bound Tb(n) = O(n)

Common asymptotic functionsCommon asymptotic functions
Function

1
log n

n
n log n

n2

n3

2n

n!

Name
constant function

logarithmic
linear

quadratic

cubic
exponential

factorial

nk for any constant k:
polynomial function

f(n) is O(one of these functions) ==> f(n) is O(every lower[↓]
function as well)

Some resultsSome results
ResultResult: : If T1(n) = O(f(n)) and T2(n) = O(g(n)) then

– T1(n) + T2(n) = O(f(n) + g(n))
– T1(n) * T2(n) = O(f(n) * g(n))

– T1(n) - T2(n) ? O(f(n) - g(n))
– T1(n) / T2(n) ? O(f(n) / g(n))

Some resultsSome results
Result Result : : If am > 0 then

)(
0

m
m

i

i
i xOxa =�

�
��

�
��

=

Result Result :: f(n) = O(g(n)) iff
limn→∞ f(n)/g(n) ≤ c

for some finite constant c

