Big Oh notation

Let $f(n)$ and $g(n)$ be non-negative, non-decreasing functions of n. We say $f(n)=O(g(n))$ iff
\exists +oe constants c and n_{0} such that

$$
f(n) \leq c \cdot g(n) \text { for all } n \geq n_{0}
$$

-I.e. $f(n)$ grows no faster than g $g(n)$ (ignoring constant factors)

- Since we re ignoring constant factors, typically choose $g(n)$ to be "simple "looking:

Big Oh notation

$$
\begin{array}{ll}
\mathcal{T}_{\mathfrak{A}}(n)=c_{1} \cdot n^{2}+c_{2} \cdot n & O\left(c_{1} \cdot n^{2}+c_{2} \cdot n\right) \\
& O\left(c_{1} \cdot n^{2}\right) \\
& O\left(n^{2}\right) \\
\mathcal{T}_{\mathcal{B}}(n)=c_{3} \cdot n & O(n) \\
\mathcal{T}_{c}(n)=4 \cdot n^{2}+10 \cdot n & O\left(n^{2}\right) \\
\mathcal{T}_{\mathfrak{D}}(n)=6 \cdot n^{2} & O\left(n^{2}\right)
\end{array}
$$

Big Oh notation

- Were typically interested inthe "tightest" bound we can obtain on an algoritfor's runtime complexity (the Theta bound)
- $\mathcal{E} \cdot \mathcal{G} ., \mathcal{T}_{\mathcal{B}}(n)=\mathcal{c}_{3} \cdot n$

$$
\begin{aligned}
& ==>\mathcal{T}_{b}(n)=O\left(n^{2}\right) \text { as well, } 6 \text { ut we re more } \\
& \text { interested in the bound } \mathcal{T}_{6}(n)=O(n)
\end{aligned}
$$

Common asymptotic functions

$\frac{\text { Function }}{1}$	$\frac{\text { Name }}{}$
$\log n$	constant function
n	logarithmic
linear	

$n \log n$

n^{2}	quadratic
n^{3}	cubic
2^{n}	exponential
$n!$	factorial

$f(n)$ is O (one of these functions) $==>f(n)$ is O(every lower [\downarrow] function as we (l)

Some results

Result: If $\mathcal{T}_{1}(n)=O(f(n))$ and $\mathcal{T}_{2}(n)=O(g(n))$ then
$-\mathcal{T}_{1}(n)+\mathcal{T}_{2}(n)=O(f(n)+g(n))$
$-\mathcal{T}_{1}(n) * \mathcal{T}_{2}(n)=O\left(f(n){ }^{*} g(n)\right)$
$-\mathcal{T}_{1}(n)-\mathcal{T}_{2}(n) \quad ? O(f(n)-g(n))$
$-\mathcal{T}_{1}(n) / \mathcal{T}_{2}(n) \quad ? O(f(n) / g(n))$

Some results

Result: If $a_{m}>0$ then

$$
\left(\sum_{i=0}^{m} a_{i} x^{i}\right)=O\left(x^{m}\right)
$$

Result: $f(n)=O(g(n))$ if

$$
\lim _{n \rightarrow \infty} f(n) / g(n) \leq c
$$

for some finite constant c

