Big Oh notation

Let f(n) and g(n) be non-negative, non-decreasing functions of n. We say f(n) = O(g(n)) iff

 \exists +ve constants c and n_0 such that

 $f(n) \le c \cdot g(n)$ for all $n \ge n_0$

•I.e. *f(n)* grows no faster than *g(n)* (ignoring constant factors)

•Since we're ignoring constant factors, typically choose *g(n)* to be "simple" looking:

Big Oh notation

$$\begin{split} T_A(n) &= c_1 \cdot n^2 + c_2 \cdot n & O(c_1 \cdot n^2 + c_2 \cdot n) \\ & O(c_1 \cdot n^2) \\ O(n^2) \\ T_B(n) &= c_3 \cdot n & O(n) \\ T_C(n) &= 4 \cdot n^2 + 10 \cdot n & O(n^2) \\ T_D(n) &= 6 \cdot n^2 & O(n^2) \end{split}$$

Big Oh notation

- We're typically interested in the "tightest" bound we can obtain on an algorithm's runtime complexity (the Theta bound)
- E.g., $T_B(n) = C_3 \cdot n$ ==> $T_b(n) = O(n^2)$ as well, but we're more interested in the bound $T_b(n) = O(n)$

Function	Name	
1	constant function	n
log n	logarithmic	
n	linear	
n log n		
n ²	quadratic	n ^k for any constant k:
n ³	cubic	polynomial function
2 ⁿ	exponential	
n!	factorial	
is O(one o	f these functions function a) ==> f(n) is O(every lowe is well)

f

Some results

<u>Result</u>: If $T_1(n) = O(f(n))$ and $T_2(n) = O(g(n))$ then - $T_1(n) + T_2(n) = O(f(n) + g(n))$

 $- T_1(n) * T_2(n) = O(f(n) * g(n))$

-
$$T_1(n) - T_2(n)$$
 ? $O(f(n) - g(n))$
- $T_1(n) / T_2(n)$? $O(f(n) / g(n))$

Some results

<u>Result</u>: If $a_m > 0$ then

$$\left(\sum_{i=0}^{m} a_i x^i\right) = O(x^m)$$

<u>**Result</u>**: f(n) = O(g(n)) iff $\lim_{n\to\infty} f(n)/g(n) \le c$ for some finite constant c</u>