Ch 4: Trees

“it's a jungle out there...”

“1 think that 1 will never see

a linked list useful as a tree;

Linked lists are used by everybody,
but it takes real smarts to do a tree”

Trees: examples
(Family trees)

-

Trees. examples
(corporate structure)

e

T

Trees: examples

(your Unix file system)

$HOME

N T

compl21

compl20

AssnO

Assnl Assn2

A

Point

Nnews

mail

PQueue

Definitions

A tree tis a finite nonempty set of elements.

One of these elements is called a root, and the
remaining elements (if any) are partitioned into
trees that are called subtrees of ¢t.

children of the root -- root of subtree

parent of an element/ grandparent/ ancestor/
descendent/...

leaves: elements with no children
degree of an element: # children
degree of a tree: max degree of any element

Tree definitions: examples

Tree definitions: examples

subtrees

Tree definitions: examples

parent/ children

Tree definitions: examples

ancestor/ decendents

Tree definitions: examples

leaves

Tree definitions: examples

degrees of elements

3 C O‘E

- Tree definitions: examples

F G H level 3

Binary trees

e A binary tree tis a finite (possibly empty)

collection of elements. When the binary tree is
not empty, It has a root element and the
remaining elements (if any) are partitioned into

two binary trees, called the left subtree and the
right subtree of ¢

Notes:

- a binary tree may be empty

- each element has exactly two (perhaps empty) subtrees
- the subtrees/ children are ordered

Example binary tree: an expression
tree

(a*b) + (c /7 d)

Example binary tree: an expression
tree

RN
N
\b

d

e

a

((@a*b) +c) /7d)

Properties of binary trees

« A binary tree of n elements has ?? edges
- exactly n-1

e The height/ depth of a binary tree is the
number of levels in it.
A binary tree of height h has at least ?? and
at most ??7? elements
- at least h
- at most 2" - 1

e The height of a binary tree with n elements is
at most ?? and at least 7?77
- at most n
- at least [log, (n+1) |

Binary Lrees (review from yesterday)

e A binary tree tis a finite (possibly empty)

collection of elements. When the binary tree iIs
not empty, It has a root element and the
remaining elements (if any) are partitioned into

two binary trees, called the left subtree and the
right subtree of ¢

Notes:

- a binary tree may be empty

- each element has exactly two (perhaps empty) subtrees
- the subtrees/ children are ordered

Properties of binary trees (review from
yesterday)

A binary tree of n elements has n-1 edges

e The height/ depth of a binary tree is the
number of levels in it.
A binary tree of height h has at least h and at
most 2" - 1 elements

e The height of a binary tree with n elements is
at most n and at least [log, (n+1)]

Binary trees: some more definitions

A wﬁ (1

A FULL binary tree
(Ht h ==> #-elements = 2" -1)

Binary trees: some more definitions

1

Q A canonical ordering

0N
NN
17t

A COMPLETE binary tree
(levels fill in from the left)

Representing binary trees
As an array:

Use the canonical ordering —- node with
canonical ordering 1 goes into TJ[i]

T[i]'s left child at ??
1]'s right child at ??
T[i]'s parent is at ??

—

Problems with this approach:
memory Iinefficient
(works fine for full or complete binary trees)

Representing binary trees
As a pointer to a treeNode:

T

il

Representing binary trees

As a pointer to a treeNode:

template <class T>
class node{
public:

T data;
node <T> * LC;
node <T> * RC;

Representing binary trees
As a pointer to a treeNode:

template <class T>

class node{

public:
node(T X, node<T>* tl=NULL, node<T>* t2=NULL);
T data;
node <T> * LC;
node <T> * RC;

{data = x; LC = t1; RC = t2;}

An example tree

An example tree

An example tree

An example tree

Representing binary trees

template <class C>
class node{
public:
node(C x, node<C>* tl, node<C> * t2);
C data;
node<C> * LC;
node<C> * RC;

}:

Recursive programming on binary trees:
counting elements

// in the user (client) program
int countElements(node<char> * T)
{
iIT (T == NULL) return O;
return (
1 // itself
+ countElements(T->LC)
+ countElements(T->RC));

Recursive programming on binary trees:
computing depth

// in the user (client) program
int depth(hode<char> * T)
{
iIT (T == 0) return 0O;
return (
1 +
max (depth(T->LC),
depth(T->RC)));

Recursive programming on binary trees:
comparing trees

// in the user (client) program
bool i1dentical(nhode<int> * T1l, node<int> * T2)
{

iIfT (T1 == NULL) return (T2 == NULL);

iIT (T2 == NULL) return false;

iIf (Tl->data = T2->data) return false;

return (identical (T1->LC, T2->LC)

&&
identical (T1->RC, T2->RC));

Recursive programming on binary trees:
comparing trees

// in the user (client) program
bool what(node<int> * T1l, node<int> * T2)
{

iIf (T1 == NULL) return (T2 == NULL);

iIT (T2 == NULL) return false;

return (what(T1->LC, T2->LC)
&&
what(T1->RC, T2->RC));

Recursive programming on binary trees:
preorder traversal

// in the user (client) program
void preOrder(node<char> * T)
{
iIT (T == 0) return;
cout << T->data;
preOrder(T->LC);
preOrder(T->RC);

Recursive programming on binary trees:
Inorder traversal

// in the user (client) program
void i1nOrder(node<char> * T)
{
iIT (T == 0) return;
iNOrder(T->LC);
cout << T->data;
iINOrder(T->RC) ;

Recursive programming on binary trees:
postorder traversal

// in the user (client) program
void postOrder(node<char> * T)
{
iIT (T == 0) return;
postOrder(T->LC);
postOrder(T->RC);
cout << T->data;

Recursive programming on binary trees:
277

// in the user (client) program
treeNode<char * mystery(node<char> * T)
{
iIT (T == 0) return NULL;
return new node<char>(
T->data,
mystery(T->LC),
mystery(T->RC)
}) mystery returns a copy

Recursive programming on binary trees:
277

// in the user (client) program
treeNode<char * puzzle(nhode<char> * T)
{
iIT (T == 0) return NULL;
return new node<char>(
T->data,
puzzle(T->RC),
puzzle(T->LC)
); _ _
1} puzzle returns a mirror-image

