Ch 4: Trees
"it's a jungle out there..."
"I think that I will never see
a linked list useful as a tree;
Linked lists are used by everybody, but it takes real smarts to do a tree"

$$
\begin{gathered}
\text { Trees: examples } \\
\text { (Family trees) }
\end{gathered}
$$

$$
\begin{gathered}
\text { Trees: examples } \\
\text { (corporate structure) }
\end{gathered}
$$

$$
\begin{gathered}
\text { Trees: examples } \\
\text { (your Zlnix file system) }
\end{gathered}
$$

Definitions

- A tree t is a finite nonempty set of elements. One of these elements is called a root, and the remaining elements (if any) are partitioned into trees that are called subtrees of t.
- children of the root ‥ root of subtree
- parent of an element/grandparent/ancestor/ descendent/...
- Leaves: elements with no children
- degree of an element: \# children
- degree of a tree: max degree of any element

Tree definitions: examples

Tree definitions: examples

levels Tree definitions: examples

Binary trees

- A binary tree t is a finite (possibly empty) collection of elements. When the binary tree is not empty, it has a root element and the remaining elements (if any) are partitioned into two binary trees, called the left subtree and the right subtree of t
- Notes:
- a binary tree may be empty
- each element has exactly two (perhaps empty) subtrees
- the subtrees/ children are ordered

Example binary tree: an expression tree

Example binary tree: an expression

Properties of binary trees

- A binary tree of n elements has ?? edges
- exactly n - 1
- The height/ depth of a binary tree is the number of levels in it.
\mathcal{A} binary tree of height his at least?? and at most ??? elements
- at least h
- at most 2^{h} - 1
- The height of a binary tree with n elements is at most ?? and at least ???
- at most n
- at least $\left\lceil\log _{2}(n+1)\right\rceil$

Binary trees (reviewfrom yesterday)

- A binary tree t is a finite (possibly empty) collection of elements. When the binary tree is not empty, it has a root element and the remaining elements (if any) are partitioned into two binary trees, called the left subtree and the right subtree of t
- Notes:
- a binary tree may be empty
- each element has exactly two (perhaps empty) subtrees
- the subtrees/ children are ordered

$$
\text { Properties of } \underset{y}{6 i n a r y ~ t r e e s ~(r e v i e w f r o m ~}
$$

- A binary tree of n elements has $n-1$ edges
- The height/ depth of a binary tree is the number of levels in it.
\mathcal{A} binary tree of height h has at least h and at most 2^{h} - 1 elements
- The height of a binary tree with n elements is at most n and at least $\left\lceil\log _{2}(n+1)\right\rceil$

Binary trees: some more definitions

A FULL binary tree $\left(\mathcal{H t}\right.$ h ==> \#-elements $\left.=2^{h}-1\right)$

Binary trees: some more definitions

$\mathcal{A} C O M P L E T E$ binary tree (levels fill in from the left)

Representing binary trees

As an array:
Use the canonical ordering .. node with
canonical ordering igoes into \mathcal{T} [i]

T[i]'s left child at ??
Tli]'s right child at ??
Tli]'s parent is at ? ?

Problems with this approach:
memory inefficient
(works fine for full or complete binary trees)

Representing binary trees $\mathcal{A s}$ a pointer to a tree Node:

Representing binary trees

$\mathcal{A s}$ a pointer to a tree Node:
template <class T>
class node\{
publ ic c

T data;

node <T> * LC;
node $<T>* R C$;
\};

Representing binary trees

$\mathcal{A s}$ a pointer to a tree Node:
templ ate <class T>
class node\{
public:

```
node(T x, node<T>* t l=NULL, node<T>* t 2=NULL);
```

T data;
node <T> * LC;
node <T> * RC;
\};

$$
\{\text { data }=x ; \mathcal{L C}=t 1 ; \mathcal{R C}=t 2 ;\}
$$

Anexample tree

An example tree

An example tree

An example tree

Representing binary trees

```
templ ate < al ass C>
cl ass node{
publ i c:
    node(C x, node<C>* t1, node<C> * t 2);
    C data;
    node<C> * LC;
    node<C> * RC;
    };
```


$$
\begin{gathered}
\text { Recursive programming on binary trees: } \\
\text { counting elements }
\end{gathered}
$$

```
// in the user (client) program
i nt count El ements(node<char> * T)
{
    if (T = NULL) return O;
    return (
            1 // itself
            + count El ements(T- >LC)
            + count El ements(T- >RC) );
}
```

```
Recursive programming on binary trees:
computing deptf
```

```
// i n the user (cli ent) program
```

// i n the user (cli ent) program
i nt dept h(node<char> * T)
i nt dept h(node<char> * T)
{
{
if(T = O) return O;
if(T = O) return O;
return (
return (
+
+
max (dept h(T->LC),
max (dept h(T->LC),
dept h(T->RC)));
dept h(T->RC)));
}

```
}
```

> Recursive programming on binary trees: comparing trees

```
// in the user (client) program
bool i denti cal ( node<i nt > * T1, node<i nt > * T2)
{
    if(T1 = NULL) return (T2 工 NULL);
    if (TZ = NULL) return false;
    if (T1->data ! = T2- >data) ret urn fal se;
    return ( i dentical (T1->LC, T2->LC)
            &&
            i denti cal (T1->RC, T2->RC) );
}
```

> Recursive programming on binary trees: comparing trees

```
// in the user (client) program
bool what(node< nt > * T1, node< nt > * T2)
{
    if (T1 = NULL) return (T2 = NULL);
    if (TZ = NULL) return false;
    return ( what(T1->LC, T2->LC)
                            &&
                            what (T1->RC, T2->RC) );
}
```

> Recursive programming on binary trees: preorder traversal

```
// in the user (client) program
voi d preOrder(node<char> * T)
{
    if(T=O) return;
        cout << T->data;
        preOrder(T->LC);
        preOr der(T- >RC);
}
```

$$
\begin{gathered}
\text { Recursive programming on binary trees: } \\
\text { inorder traversal }
\end{gathered}
$$

```
// i n the user (client) program
voi d i nOrder(node<char> * T)
{
    if(T = O) return;
        i nOr der (T- >LC);
        cout << T->data;
        i nOr der (T- >RC);
}
```

$$
\begin{gathered}
\text { Recursive programming on binary trees: } \\
\text { postorder traversal }
\end{gathered}
$$

```
// in the user (client) program
voi d post Order(node<char> * T)
{
    if (T = O) return;
        post Or der(T->LC);
        post Or der(T->RC) ;
        cout << T->data;
    }
```

Recursive programming on binary trees:
? ? ?

```
// in the user (client) program
treeNode<char * mystery( node<char> * T)
{
    if(T = O) return NULL;
    return new node<char >
        T->dat a,
        myst ery(T->LC),
        myst ery(T->RC)
        );
}

\section*{Recursive programming on binary trees:}
? ? ?
```

// i n the user (cli ent) program
treeNode<char * puzz| e(node<char> * T)
{
if(T = O) return NULL;
return new node<char >
T->dat a,
puzzl e(T->RC),
puzzl e(T->LC)
);
}

