
Ch 4: TreesTrees

 “it’s a jungle out there...”“it’s a jungle out there...”
“I think that I will never see“I think that I will never see
a linked list useful as a tree;a linked list useful as a tree;
Linked lists are used by everybody,Linked lists are used by everybody,
but it takes real smarts to do a tree”but it takes real smarts to do a tree”

Trees: examples
(Family trees)

Ann

Mark Sue

Mary

Chris

John

Joe

Trees: examples
(corporate structure)

...

VP Sales

... ...

VP Mktg

...

...

... ...

...

VP Finance

... ...

VP Research

President

Trees: examples
(your Unix file system)

$HOME

comp121 comp120 news mail

Assn0 Assn1 Assn2

Point PQueue

Definitions
•• A A treetree tt is a is a finitefinite nonemptynonempty set of elements. set of elements.

One of these elements is called a One of these elements is called a rootroot, , and theand the
remaining elements (if any) are partitioned intoremaining elements (if any) are partitioned into
trees that are called trees that are called subtreessubtrees of of tt..

•• childrenchildren of the root -- root of of the root -- root of subtreesubtree
•• parentparent of an element/ of an element/ grandparentgrandparent/ / ancestorancestor//

descendentdescendent/.../...

•• leavesleaves: elements with no children: elements with no children
•• degreedegree of an elementof an element: # children: # children
•• degree of a treedegree of a tree: max degree of any element: max degree of any element

Tree definitions: examples

A

B C D E

F G H

J K

root

subtrees

Tree definitions: examples

A

B C D E

F G H

J K

root

subtrees

Tree definitions: examples

A

B C D E

F G H

J K

parent/ children

Tree definitions: examples

A

B C D E

F G H

J K

ancestor/ decendents

Tree definitions: examples

A

B C D E

F G H

J K

leaves

Tree definitions: examples

A

B C D E

F G H

J K

degrees of elements
4

A

3
B

2
G

0
D

Tree definitions: examples

A

B C D E

F G H

J K

levels

level 1

level 2

level 3

level 4

Binary trees

•• A A binary treebinary tree t t is a finite (possibly empty)is a finite (possibly empty)
collection of elements. When the binary tree iscollection of elements. When the binary tree is
not empty, it has a not empty, it has a rootroot element and the element and the
remaining elements (if any) are partitioned intoremaining elements (if any) are partitioned into
two binary trees, called the two binary trees, called the left left subtreesubtree and theand the
right right subtreesubtree of of tt

•• Notes:Notes:
–– a binary tree a binary tree may be emptymay be empty
–– each element has each element has exactly twoexactly two (perhaps empty) (perhaps empty) subtreessubtrees
–– the the subtreessubtrees/ children are / children are orderedordered

Example binary tree: an expression
tree

+

*

a b

/

c d

(a * b) + (c / d)

Example binary tree: an expression
tree

((a * b) + c) / d)

+

*

a b

c

d

/

Properties of binary trees
•• A binary tree of n elements has A binary tree of n elements has ???? edges edges

–– exactly exactly n-1n-1
•• The The heightheight/ / depthdepth of a binary tree is the of a binary tree is the

number of levels in it.number of levels in it.
A binary tree of height h has at least A binary tree of height h has at least ???? and and
at most at most ?????? elements elements
–– at least at least hh
–– at most at most 22hh - 1 - 1

•• The height of a binary tree with n elements isThe height of a binary tree with n elements is
at most at most ???? and at least and at least ??????
–– at most at most nn
–– at least at least ��������loglog22 (n+1) (n+1)��������

Binary trees (review from yesterday)

•• A A binary treebinary tree t t is a finite (possibly empty)is a finite (possibly empty)
collection of elements. When the binary tree iscollection of elements. When the binary tree is
not empty, it has a not empty, it has a rootroot element and the element and the
remaining elements (if any) are partitioned intoremaining elements (if any) are partitioned into
two binary trees, called the two binary trees, called the left left subtreesubtree and theand the
right right subtreesubtree of of tt

•• Notes:Notes:
–– a binary tree a binary tree may be emptymay be empty
–– each element has each element has exactly twoexactly two (perhaps empty) (perhaps empty) subtreessubtrees
–– the the subtreessubtrees/ children are / children are orderedordered

Properties of binary trees (review from
yesterday)

•• A binary tree of n elements has A binary tree of n elements has n-1n-1 edgesedges

•• The The heightheight// depthdepth of a binary tree is the of a binary tree is the
number of levels in it.number of levels in it.
A binary tree of height h has at least A binary tree of height h has at least hh and at and at
most most 22hh - 1 - 1 elements elements

•• The height of a binary treeThe height of a binary tree with n elements is with n elements is
at most at most nn and and at least at least ��������loglog22 (n+1) (n+1)��������

Binary trees: some more definitions

A A FULLFULL binary tree binary tree
(Ht(Ht h ==>h ==> #-elements = 2 #-elements = 2hh - -1)1)

Binary trees: some more definitions

A A COMPLETECOMPLETE binary tree binary tree
(levels fill in from the left)(levels fill in from the left)

A canonical ordering

1

2 3

4 5 6
7

8
9

10
11

12

Representing binary trees
As an As an array:array:

Use the canonical ordering -- node withUse the canonical ordering -- node with
canonical ordering i goes into T[i]canonical ordering i goes into T[i]

T[i]’s left child at T[i]’s left child at ????
T[i]’s right child at T[i]’s right child at ????
T[i]’s parent is at T[i]’s parent is at ????

Problems with this approach:Problems with this approach:
memory inefficientmemory inefficient
(works fine for (works fine for fullfull or or completecomplete binary trees) binary trees)

Representing binary trees
As a pointer to a treeNode:As a pointer to a treeNode:

LC data RC

T

Representing binary trees
As a pointer to a treeNode:As a pointer to a treeNode:

template <class T>template <class T>template <class T>template <class T>

class node{class node{class node{class node{

public:public:public:public:

T data;T data;T data;T data;

node <T> * LC;node <T> * LC;node <T> * LC;node <T> * LC;

node <T> * RC;node <T> * RC;node <T> * RC;node <T> * RC;

};};};};

LC data RC

Representing binary trees
As a pointer to a treeNode:As a pointer to a treeNode:

template <class T>template <class T>template <class T>template <class T>

class node{class node{class node{class node{

public:public:public:public:

node(T x, node<T>* t1=NULL, node<T>* t2=NULL);node(T x, node<T>* t1=NULL, node<T>* t2=NULL);node(T x, node<T>* t1=NULL, node<T>* t2=NULL);node(T x, node<T>* t1=NULL, node<T>* t2=NULL);

T data;T data;T data;T data;

node <T> * LC;node <T> * LC;node <T> * LC;node <T> * LC;

node <T> * RC;node <T> * RC;node <T> * RC;node <T> * RC;

};};};};

{data = x; LC = t1; RC = t2;}{data = x; LC = t1; RC = t2;}

An example tree

a

b

c

e

h

d f g

An example tree

b

c

e

h

d f g

LC a RC

An example tree

c

h

d f g

LC a RC

LC b RC LC e RC

An example tree

c

h

d f g

LC a RC

LC b RC LC e RC

0 d 00 d 0 0 g 0

0 h 0

0 f RC

Representing binary trees
template <class C>template <class C>template <class C>template <class C>

class node{class node{class node{class node{

public:public:public:public:

 node(C x, node<C>* t1, node<C> * t2); node(C x, node<C>* t1, node<C> * t2); node(C x, node<C>* t1, node<C> * t2); node(C x, node<C>* t1, node<C> * t2);

C data;C data;C data;C data;

node<C> * LC;node<C> * LC;node<C> * LC;node<C> * LC;

node<C> * RC;node<C> * RC;node<C> * RC;node<C> * RC;

};};};};

a

b

c

e

d f

T

Recursive programming on binary trees:
counting elements

// in the user (client) program// in the user (client) program// in the user (client) program// in the user (client) program

int int int int countElementscountElementscountElementscountElements(node<char> * T)(node<char> * T)(node<char> * T)(node<char> * T)

{{{{

 if (T == NULL) return 0; if (T == NULL) return 0; if (T == NULL) return 0; if (T == NULL) return 0;

 return (return (return (return (

 1 1 1 1 // itself// itself// itself// itself

 + + + + countElementscountElementscountElementscountElements(T->LC)(T->LC)(T->LC)(T->LC)

 + + + + countElementscountElementscountElementscountElements(T->RC));(T->RC));(T->RC));(T->RC));

}}}}

Recursive programming on binary trees:
computing depth

// in the user (client) program// in the user (client) program// in the user (client) program// in the user (client) program

int int int int depthdepthdepthdepth(node<char> * T)(node<char> * T)(node<char> * T)(node<char> * T)

{{{{

 if (T == 0) return 0; if (T == 0) return 0; if (T == 0) return 0; if (T == 0) return 0;

 return (return (return (return (

 1 + 1 + 1 + 1 +

 max (max (max (max (depthdepthdepthdepth(T->LC),(T->LC),(T->LC),(T->LC),

 depthdepthdepthdepth(T->RC)(T->RC)(T->RC)(T->RC)))))););););

}}}}

Recursive programming on binary trees:
comparing trees

// in the user (client) program// in the user (client) program// in the user (client) program// in the user (client) program

bool bool bool bool identicalidenticalidenticalidentical(node<int> * T1, node<int> * T2)(node<int> * T1, node<int> * T2)(node<int> * T1, node<int> * T2)(node<int> * T1, node<int> * T2)

{{{{

 if (T1 == NULL) return (T2 == NULL); if (T1 == NULL) return (T2 == NULL); if (T1 == NULL) return (T2 == NULL); if (T1 == NULL) return (T2 == NULL);

 if (T2 == NULL) return if (T2 == NULL) return if (T2 == NULL) return if (T2 == NULL) return falsefalsefalsefalse;;;;

 if (T1->data != T2->data) return if (T1->data != T2->data) return if (T1->data != T2->data) return if (T1->data != T2->data) return falsefalsefalsefalse;;;;

 return (return (return (return (identicalidenticalidenticalidentical (T1->LC, T2->LC) (T1->LC, T2->LC) (T1->LC, T2->LC) (T1->LC, T2->LC)

&&&&&&&&

 identicalidenticalidenticalidentical (T1->RC, T2->RC)); (T1->RC, T2->RC)); (T1->RC, T2->RC)); (T1->RC, T2->RC));

}}}}

Recursive programming on binary trees:
comparing trees

// in the user (client) program// in the user (client) program// in the user (client) program// in the user (client) program

bool bool bool bool whatwhatwhatwhat(node<int> * T1, node<int> * T2)(node<int> * T1, node<int> * T2)(node<int> * T1, node<int> * T2)(node<int> * T1, node<int> * T2)

{{{{

 if (T1 == NULL) return (T2 == NULL); if (T1 == NULL) return (T2 == NULL); if (T1 == NULL) return (T2 == NULL); if (T1 == NULL) return (T2 == NULL);

 if (T2 == NULL) return if (T2 == NULL) return if (T2 == NULL) return if (T2 == NULL) return falsefalsefalsefalse;;;;

 return (return (return (return (whatwhatwhatwhat(T1->LC, T2->LC)(T1->LC, T2->LC)(T1->LC, T2->LC)(T1->LC, T2->LC)

&&&&&&&&

 whatwhatwhatwhat(T1->RC, T2->RC));(T1->RC, T2->RC));(T1->RC, T2->RC));(T1->RC, T2->RC));

}}}}

Recursive programming on binary trees:
preorder traversal

// in the user (client) program// in the user (client) program// in the user (client) program// in the user (client) program

void void void void preOrderpreOrderpreOrderpreOrder(node<char> * T)(node<char> * T)(node<char> * T)(node<char> * T)

{{{{

 if (T == 0) return; if (T == 0) return; if (T == 0) return; if (T == 0) return;

 cout << T->data; cout << T->data; cout << T->data; cout << T->data;

 preOrderpreOrderpreOrderpreOrder(T->LC);(T->LC);(T->LC);(T->LC);

 preOrderpreOrderpreOrderpreOrder(T->RC);(T->RC);(T->RC);(T->RC);

}}}}

Recursive programming on binary trees:
 inorder traversal

// in the user (client) program// in the user (client) program// in the user (client) program// in the user (client) program

void void void void ininininOrderOrderOrderOrder(node<char> * T)(node<char> * T)(node<char> * T)(node<char> * T)

{{{{

 if (T == 0) return; if (T == 0) return; if (T == 0) return; if (T == 0) return;

 in in in inOrderOrderOrderOrder(T->LC);(T->LC);(T->LC);(T->LC);

 cout << T->data; cout << T->data; cout << T->data; cout << T->data;

 ininininOrderOrderOrderOrder(T->RC);(T->RC);(T->RC);(T->RC);

}}}}

Recursive programming on binary trees:
postorder traversal

// in the user (client) program// in the user (client) program// in the user (client) program// in the user (client) program

void void void void postpostpostpostOrderOrderOrderOrder(node<char> * T)(node<char> * T)(node<char> * T)(node<char> * T)

{{{{

 if (T == 0) return; if (T == 0) return; if (T == 0) return; if (T == 0) return;

 postpostpostpostOrderOrderOrderOrder(T->LC);(T->LC);(T->LC);(T->LC);

 post post post postOrderOrderOrderOrder(T->RC);(T->RC);(T->RC);(T->RC);

 cout << T->data; cout << T->data; cout << T->data; cout << T->data;

}}}}

Recursive programming on binary trees:
???

// in the user (client) program// in the user (client) program// in the user (client) program// in the user (client) program

treeNode<char * treeNode<char * treeNode<char * treeNode<char * mysterymysterymysterymystery(node<char> * T)(node<char> * T)(node<char> * T)(node<char> * T)

{{{{

 if (T == 0) return NULL; if (T == 0) return NULL; if (T == 0) return NULL; if (T == 0) return NULL;

 return new node<char>(return new node<char>(return new node<char>(return new node<char>(

T->data,T->data,T->data,T->data,

mysterymysterymysterymystery(T->LC),(T->LC),(T->LC),(T->LC),

mysterymysterymysterymystery(T->RC)(T->RC)(T->RC)(T->RC)

););););

}}}} mystery returns a copy

Recursive programming on binary trees:
???

// in the user (client) program// in the user (client) program// in the user (client) program// in the user (client) program

treeNode<char * treeNode<char * treeNode<char * treeNode<char * puzzlepuzzlepuzzlepuzzle(node<char> * T)(node<char> * T)(node<char> * T)(node<char> * T)

{{{{

 if (T == 0) return NULL; if (T == 0) return NULL; if (T == 0) return NULL; if (T == 0) return NULL;

 return new node<char>(return new node<char>(return new node<char>(return new node<char>(

T->data,T->data,T->data,T->data,

puzzlepuzzlepuzzlepuzzle(T->RC),(T->RC),(T->RC),(T->RC),

puzzlepuzzlepuzzlepuzzle(T->LC)(T->LC)(T->LC)(T->LC)

););););

}}}} puzzle returns a mirror-image

