
Course goals

�� exposure to another languageexposure to another language
�� C++C++
�� Object-oriented Object-oriented principles principles

�� knowledge of specific data structuresknowledge of specific data structures
�� listslists, , stacksstacks & & queuesqueues, , priority queuespriority queues, , dynamicdynamic

dictionariesdictionaries, , graphsgraphs
�� impact of DS design & implementation onimpact of DS design & implementation on

program performanceprogram performance
�� asymptotic complexityasymptotic complexity of algorithms of algorithms

Course outline
Features of C++, object-oriented programming principles, and features of the
Unix programming environment will be introduced concurrently with the study
of these topics, as appropriate

Review of C++
Introduction to Unix
Review of program performance

•time and space complexity
•asymptotic notation
-- searching (linear vs binary) & sorting (insertion sort vs mergesort)

Data representation and lists
Stacks and Queues
Hash tables
Binary trees

•representation
•traversal

Priority queues
•Linear lists
•Heaps

Search trees
•Binary search trees
•balanced binary search trees � AVL trees

Graphs
•representation
•traversal

Course outline
Features of C++, object-oriented programming principles, and features of the
Unix programming environment will be introduced concurrently with the study
of these topics, as appropriate

Review of C++
Introduction to Unix
Review of program performance

•time and space complexity
•asymptotic notation
-- searching (linear vs binary) & sorting (insertion sort vs mergesort)

Data representation and lists
Stacks and Queues
Hash tables
Binary trees

•representation
•traversal

Priority queues
•Linear lists
•Heaps

Search trees
•Binary search trees
•balanced binary search trees � AVL trees

Graphs
•representation
•traversal

�objects
�classes -- .h and .cpp files
�templates
�access control

�public/ private/ protected methods
�friend classes

�inheritance
�public/ private/ protected inheritance
�multiple inheritance

�the strings package

Course outline
Features of C++, object-oriented programming principles, and features of the
Unix programming environment will be introduced concurrently with the study
of these topics, as appropriate

Review of C++
Introduction to Unix
Review of program performance

•time and space complexity
•asymptotic notation
-- searching (linear vs binary) & sorting (insertion sort vs mergesort)

Data representation and lists
Stacks and Queues
Hash tables
Binary trees

•representation
•traversal

Priority queues
•Linear lists
•Heaps

Search trees
•Binary search trees
•balanced binary search trees � AVL trees

Graphs
•representation
•traversal

�man pages
�the g++ compiler

�stages in compilation
�makefiles
�environment variables
�the gdb debugger
�emacs? pico

compilerpreprocessor assembler loader
.cpp .s .o a.out

Course outline
Features of C++, object-oriented programming principles, and features of the
Unix programming environment will be introduced concurrently with the study
of these topics, as appropriate

Review of C++
Introduction to Unix
Review of program performance

•time and space complexity
•asymptotic notation
-- searching (linear vs binary) & sorting (insertion sort vs mergesort)

Data representation and lists
Stacks and Queues
Hash tables
Binary trees

•representation
•traversal

Priority queues
•Linear lists
•Heaps

Search trees
•Binary search trees
•balanced binary search trees � AVL trees

Graphs
•representation
•traversal

�bigOh/ bigTheta notation
�asymptotic worst-caseworst-caseworst-caseworst-case complexity of algorithms
�common complexities:

�log n
�n
�n log n
�n2, n3, ...

�determining complexities of algorithms
�example complexities -- sort/ search

Recurrence : T(n) ≤ 2 . T(n/2) + c1 . n + c2
T(1) = c3

T(n) = O(n log n)

Example: merge sort
mergeSort(A, i, j) // sort A[i,...j]
{

if (i==j) return A[];
mergeSort(A, i, (i+j)/2);
mergeSort(A, (i+j)/2 + 1, j);
merge(A, i, (i+j)/2, j)

}

merge(A, i, k, j)
//PreCond: A[i,...,k] and A[k,...,j] are sorted
//PostCond:A[i,...,j] is sorted

Course outline
Features of C++, object-oriented programming principles, and features of the
Unix programming environment will be introduced concurrently with the study
of these topics, as appropriate

Review of C++
Introduction to Unix
Review of program performance

•time and space complexity
•asymptotic notation
-- searching (linear vs binary) & sorting (insertion sort vs mergesort)

Data representation and lists
Stacks and Queues
Hash tables
Binary trees

•representation
•traversal

Priority queues
•Linear lists
•Heaps

Search trees
•Binary search trees
•balanced binary search trees � AVL trees

Graphs
•representation
•traversal

�data representation:
�array-based
�linked/ pointer-based
�simulated pointer (cursors)

�lists
�ADT specification
�representation using arrays
�representation using linked lists
�compare and contrast

adt linearList{
create()
destroy()
isEmpty()
isFull()
length()
Find(x,k)
Search(x)
delete(k,x)
insert(k,x)

}

class list{
 public:

list();
~list();
bool isEmpty();
bool isFull();
int length();
bool Find(x,k);
int Search(x);
void delete(k,x);
void insert(k,x);

 private:
};

Course outline
Features of C++, object-oriented programming principles, and features of the
Unix programming environment will be introduced concurrently with the study
of these topics, as appropriate

Review of C++
Introduction to Unix
Review of program performance

•time and space complexity
•asymptotic notation
-- searching (linear vs binary) & sorting (insertion sort vs mergesort)

Data representation and lists
Stacks and Queues
Hash tables
Binary trees

•representation
•traversal

Priority queues
•Linear lists
•Heaps

Search trees
•Binary search trees
•balanced binary search trees � AVL trees

Graphs
•representation
•traversal

�data representation:
�array-based
�linked/ pointer-based
�simulated pointer (cursors)

�lists
�ADT specification
�representation using arrays
�representation using linked lists
�compare and contrast

Course outline
Features of C++, object-oriented programming principles, and features of the
Unix programming environment will be introduced concurrently with the study
of these topics, as appropriate

Review of C++
Introduction to Unix
Review of program performance

•time and space complexity
•asymptotic notation
-- searching (linear vs binary) & sorting (insertion sort vs mergesort)

Data representation and lists
Stacks and Queues
Hash tables
Binary trees

•representation
•traversal

Priority queues
•Linear lists
•Heaps

Search trees
•Binary search trees
•balanced binary search trees � AVL trees

Graphs
•representation
•traversal

�ADT specification
�stack- LIFO
�queue - FIFO
�(dequeue)

�implementation
�representation using arrays

��circular� for queues
�representation using linked lists
�Θ(1) time operations
�minminminmin and nextMin nextMin nextMin nextMin operations

Course outline
Features of C++, object-oriented programming principles, and features of the
Unix programming environment will be introduced concurrently with the study
of these topics, as appropriate

Review of C++
Introduction to Unix
Review of program performance

•time and space complexity
•asymptotic notation
-- searching (linear vs binary) & sorting (insertion sort vs mergesort)

Data representation and lists
Stacks and Queues
Hash tables
Binary trees

•representation
•traversal

Priority queues
•Linear lists
•Heaps

Search trees
•Binary search trees
•balanced binary search trees � AVL trees

Graphs
•representation
•traversal

�a recursive recursive recursive recursive definition
�root
�left [sub]tree
�right [sub]tree

�implementation
�representation using arrays

�inefficient, except for complete trees
�representation using linked structures
�O(h) time operations (h: height of the tree)

�tree traversalstraversalstraversalstraversals -- recursively defined
�preorder/ inorder/ postorder
�each takes O(n) time (n: # elements)

Course outline
Features of C++, object-oriented programming principles, and features of the
Unix programming environment will be introduced concurrently with the study
of these topics, as appropriate

Review of C++
Introduction to Unix
Review of program performance

•time and space complexity
•asymptotic notation
-- searching (linear vs binary) & sorting (insertion sort vs mergesort)

Data representation and lists
Stacks and Queues
Hash tables
Binary trees

•representation
•traversal

Priority queues
•Linear lists
•Heaps

Search trees
•Binary search trees
•balanced binary search trees � AVL trees

Graphs
•representation
•traversal

�ADT specification
�create/ destroy/ isEmpty
�insert
�min
�deleteMin

�implementation
�linear list -- one of the operations is O(n)
�binary tree -- a complete tree

�represented using array
�O(log n) operations
�fast implementations (bit-manipulation)

�other operations --
�max
�decrease/ increase
�delete

Course outline
Features of C++, object-oriented programming principles, and features of the
Unix programming environment will be introduced concurrently with the study
of these topics, as appropriate

Review of C++
Introduction to Unix
Review of program performance

•time and space complexity
•asymptotic notation
-- searching (linear vs binary) & sorting (insertion sort vs mergesort)

Data representation and lists
Stacks and Queues
Hash tables
Binary trees

•representation
•traversal

Priority queues
•Linear lists
•Heaps

Search trees
•Binary search trees
•balanced binary search trees � AVL trees

Graphs
•representation
•traversal

�dynamic dictionaries -- ADT
�create/ destroy
�insert
�delete
�find

�implementation using binary trees
�bst�s --operations are O(h)

�inorder traversal sorts the elements
�balancedbalancedbalancedbalanced bst�s -- the AVLAVLAVLAVL tree

� height is always O(log n)
�insert/ delete may involve rotations

�RR/ LL/ RL/ LR

Course outline
Features of C++, object-oriented programming principles, and features of the
Unix programming environment will be introduced concurrently with the study
of these topics, as appropriate

Review of C++
Introduction to Unix
Review of program performance

•time and space complexity
•asymptotic notation
-- searching (linear vs binary) & sorting (insertion sort vs mergesort)

Data representation and lists
Stacks and Queues
Hash tables
Binary trees

•representation
•traversal

Priority queues
•Linear lists
•Heaps

Search trees
•Binary search trees
•balanced binary search trees � AVL trees

Graphs
•representation
•traversal

�dynamic dictionaries -- ADT
�create/ destroy
�insert
�delete
�find

�implementation using binary trees
�bst�s --operations are O(h)

�inorder traversal sorts the elements
�balancedbalancedbalancedbalanced bst�s -- the AVLAVLAVLAVL tree

� height is always O(log n)
�insert/ delete may involve rotations

�RR/ LL/ RL/ LR
�implementation: representation using arrays as tablestablestablestables

�a hash function maps keys to buckets
�collisions may result in overflow
�handling overflows:

�open addressing
�linear linear linear linear probing
�quadratic quadratic quadratic quadratic probing

�chaining
�performance: : : : worst-case O(n), average-case O(1)

Course outline
Features of C++, object-oriented programming principles, and features of the
Unix programming environment will be introduced concurrently with the study
of these topics, as appropriate

Review of C++
Introduction to Unix
Review of program performance

•time and space complexity
•asymptotic notation
-- searching (linear vs binary) & sorting (insertion sort vs mergesort)

Data representation and lists
Stacks and Queues
Hash tables
Binary trees

•representation
•traversal

Priority queues
•Linear lists
•Heaps

Search trees
•Binary search trees
•balanced binary search trees � AVL trees

Graphs
•representation
•traversal

�definition: G=(V,E), |V| = n; |E|=m;
�lots of terminology

�representation
�adjacency matrices
�adjacency lists
�comparecomparecomparecompare and contrastcontrastcontrastcontrast

�example operations
�traversals

�depth first (DFS)
�breadth-first (BFS)

�topological sort of DAG�s
�cycle detection

�directed and undirected graphs
�shortest paths

�the Warshall-Floyd algorithm

