
Maximizing Job Completions Online

Bala Kalyanasundaram� Kirk R. Pruhsy

Abstract

We consider the problem of maximizing the number of jobs completed by their dead-
line in an online single processor system where the jobs are preemptable and have release
times. So in the standard three �eld scheduling notation, this is the online version of the
problem 1 j ri; pmtn j

P
(1�Ui). We present a deterministic algorithm Lax, and show

that for every instance I, it is the case that either Lax, or the well-known determin-
istic algorithm SRPT (Shortest Remaining Processing Time), is constant competitive
on I. An immediate consequence of this result is a constant competitive randomized
algorithm for this problem. It is known that no constant competitive deterministic
algorithm exists for this problem. This is the �rst time that this phenomenon, the
randomized competitive ratio is constant in spite of the fact that the deterministic
competitive ratio is nonconstant, has been demonstrated to occur in a natural online
problem. This result is also a �rst step toward determining how an online scheduler can
use additional processors in a real-time setting to achieve competitiveness.

1 Introduction

We consider the problem of maximizing the number of jobs completed by their deadline in
an online single processor system where the jobs are preemptable and have release times. So
in the standard three �eld scheduling notation [4], this is the online version of the problem
1 j ri; pmtn j

P
(1 � Ui). We present a deterministic algorithm Lax, and show that for

every instance I, it is the case that either Lax, or the well-known deterministic algorithm
SRPT (Shortest Remaining Processing Time), is constant competitive on I.

The �rst consequence of this result is that one can then easily obtain a constant competi-
tive randomized online algorithm by running each of SRPT and Lax with equal probability.
This assumes an oblivious adversary, that is, the adversary may not modify I in response to
the outcome of a random event in A (for further information see one of [3, 6]). It is known
that no constant competitive deterministic algorithm exists for this problem [1]. This is
the �rst time that this phenomenon, the randomized competitive ratio is constant in spite

�Dept. of Computer Science, University of Pittsburgh. E-Mail: kalyan@cs.pitt.edu. Supported in part

by NSF grant CCR-9734927.
yDept. of Computer Science, University of Pittsburgh. E-Mail: kirk@cs.pitt.edu. Supported in part by

NSF grant CCR-9734927.

1

of the fact that the deterministic competitive ratio is nonconstant, has been demonstrated
to occur in an unarguably natural online problem. Previously, the most natural problems
that demonstrably exhibited this phenomenon were various scheduling problems where the
input was restricted in various ways, e.g. assuming that jobs have only two possible lengths
(see for example [9]).

The second consequence of this result is that it is possible for an online deterministic
scheduler, equipped with two unit speed processors, to be constant competitive with an
adversary equipped with one unit speed processor. For a discussion of the usefulness of
resource augmentation analysis in online scheduling problems see [7] and [10]. Broadly
speaking, [7] and [10] show that an online scheduler, equipped with either faster processors
or more processors, can be constant competitive with respect to
ow time, and that an online
scheduler, equipped with faster processors, can be constant competitive in various real-time
scheduling problems. The obvious unanswered question inherent in these papers is, \How
can an online scheduler make use of extra processors in real-time scheduling problems to
achieve competitiveness?" The results in this paper are a �rst step toward answering this
question.

1.1 Problem De�nition

We consider the online version of the problem 1 j ri; pmtn j
P
(1 � Ui). An instance I

consists of a collection J1; : : :Jn of jobs. Each job Ji has a release time ri, a length or
execution time xi, and a deadline di. The online scheduler is unaware of Ji until time ri,
at which time the scheduler additionally learns xi, and di. The scheduler may schedule
Ji on a single processor for up to xi units of time during [ri; di]. If Ji is scheduled for xi
units of time then Ji is completed. The system is preemptive, that is, the processor may
instantaneously abandon a job Ji, and later restart Ji from the point of suspension. (In
a non-preemptive system, the scheduler must run a job to completion once it has started
that job.) The objective function is the total number jobs completed, and our goal is to
maximize this objective function.

The laxity `i of a job Ji is di � ri � xi. That is, if Ji is going to be completed, then
the laxity is the amount of time that Ji will not be run between its release time and its
deadline.

If S is a schedule, let jSj be the number of jobs completed in S. If A is a scheduling
algorithm, we let A(K) denote the schedule produced by A on input K. We let Opt(K)
denote the optimal schedule on an instance K.

In this paper we use competitiveness in several di�erent ways. A schedule S is c-
competitive with another schedule T if jT j � cjSj. A scheduling algorithmA is c-competitive
if A(K) is c-competitive with Opt(K) for all inputs K. A scheduling algorithm A is compet-
itive if there exists some constant c such that A is c-competitive. The competitive ratio of
a scheduling algorithm A is the minimum c, such that A is c-competitive. The competitive
ratio can be viewed as the payo� to a game played between two players, the online player

2

and the adversary. The adversary speci�es the input and services that input optimally.

1.2 Related Results

We start with results on the online version of 1 j ri; pmtn j
P
(1� Ui). Every deterministic

algorithm for this problem has a competitive ratio of
(log�
log log�), where � is the ratio of the

length of the longest job to the length of the shortest job [1]. It is easy to see from the results
in this paper that the algorithm SRPT is �(log�) competitive. Constant competitive
deterministic algorithms for special instances (e.g. equal job lengths or monotone deadlines)
can also be found in [1]. If all the jobs can be completed by their deadline then the EDF
(Earliest Deadline First) algorithm will produce an optimal schedule [4]. In [7] it is shown
that if the online scheduler is given a faster processor than the adversary, then there is a
relatively simple algorithm that is constant competitive. Further this result holds even for
the more general problem 1 j ri; pmtn j

P
(1 � Ui)wi, where the the jobs have associated

positive bene�ts, and the goal is to maximize the aggregate bene�t of the jobs completed
by their deadline. There is no constant competitive deterministic or randomized algorithm
for 1 j ri; pmtn j

P
(1� Ui)wi [8].

We now survey results on problems that are one \change" away from the problem that
we consider. For a recent general survey of online scheduling see [11].

We �rst consider problems where one changes the objective function. If the objective
function is to minimize the number of jobs that miss their deadline, then there is no con-
stant competitive randomized online algorithm [5]. If the objective function is to maximize
processor utilization (the fraction of time that the processor is working on a job that it will
complete by its deadline), then there is a 4-competitive deterministic algorithm, and this
is optimal for deterministic online algorithms [2, 12]. It is well known that the algorithm
SRPT minimizes the total
ow time, which is the sum over all jobs of the completion time
minus the release time of that job.

If one changes the job environment to disallow preemption then it is easy to see that no
constant competitive randomized algorithm exists.

In [10] several results are presented in the case that the machine environment has mul-
tiple processors. In particular, they show that the algorithm that runs the job with least
laxity �rst, and the algorithm that runs the job with the earliest deadline �rst, will complete
all the jobs by their deadline, on instances where the adversary completes all the jobs, if
they are equipped with a processor twice as fast as the adversary's processor.

The o�ine version of of 1 j ri; pmtn j
P
(1� Ui) can be solved in polynomial time using

a dynamic programming algorithm [4].

3

1.3 Basic De�nitions

Throughout this paper, I will denote a generic instance of 1jri; pmtnj
P
(1�Ui). A schedule

S is a partial function that maps each time t � 0 to a job Ji, with ri � t � di, that S
is running at time t. Furthermore, a schedule may not run any job Ji for more than xi
time units. If S is unde�ned at time t then S is not running a job at time t. A schedule
S completes a job Ji, or equivalently Ji 2 S, if Ji is run for xi time units. A schedule S is
resolute if S completes every job that it runs. We say that S � T if every job completed
in S is completed in T . If S runs a job Ji then we denote the last time that Ji is run as
ci(S). If S completes a job Ji then ci(S) is the completion time of Ji. If S runs a job Ji
then we denote the �rst time that Ji is run as fi(S). A job Ji completed in a schedule S is
idle if the processor is idle for some non-zero amount of time between when Ji is �rst run
and when Ji is completed. We say a schedule S is e�cient if it does not idle any jobs. We
say that a job Ji is skinny if xi � `i, and otherwise Ji is fat. We de�ne the value vi of the
job Ji to be min(xi; `i).

A schedule S is a forest if whenever fi(S) < fj(S) then Ji is not run during the time
interval (fj(S); cj(S)). If a schedule S is a forest, then we think of it as a forest of rooted
trees, in the graph theoretic sense. The descendents of a job Ji 2 S are those jobs that
are run after Ji is �rst run for a non-zero amount of time, but before Ji is last run. We
order the children of a job in S chronologically by the time of �rst execution of these
children. In particular, the �rst child Jj of a job Ji is the job, other than Ji, run during
time (fi(S); ci(S)) that minimizes fj(S), and the last child Jk of Ji is the job, other than
Ji, run during time (fi(S); ci(S)) that maximizes cj(S). We say a forest is leafy if at least
half of the nodes in the forest are leaves. We de�ne what we call z-descendents inductively.
The job Ji is a 0-descendent of itself. If Jk is child of Jj , and Jj is a (z � 1)-descendent of
Ji, then Jk is a z-descendent of Ji. Similarly, a job Ji is the 0-ancestor of itself. If Jk is the
parent of a job Ji, and Ji is the (z� 1)-ancestor of a job Jj , then Jk is the z-ancestor of Ji.

A job Ji in a forest S is a progenitor if there exists an integer z > 0 such that Ji has 2
z

z-descendents in S.

2 Algorithm Descriptions

2.1 Shortest Remaining Processing Time

Among all jobs that can be completed by their deadline, SRPT is always running the job
that it can complete �rst. Hence, SRPT only switches jobs when it completes its current
job, or when a new job Ji is released with xi less than the remaining processing time of the
job that SRPT is running.

4

2.2 Lax

Intuitively, Lax is trying to run jobs with high laxity. A job Ji with high laxity might be a
good choice in some situations because Ji can preempted for a longer period time, without
using up its laxity, than other jobs. Intuitively, we think of the value of a job as its laxity,
and think of laxity as being a valuable scarce resource for each job. However, formally we
seem to be required to set the value of a job Ji to be min(`i; xi), instead of the more obvious
`i, because the value of high laxity to the scheduler diminishes after `i =
(xi). Since it was
already known that a constant competitive algorithm exists in the case of all fat jobs [7], it
seems that the hard case is if all jobs are skinny, that is vi = `i for each job.

Lax partitions all jobs into three disjoint groups, a stack H of jobs that Lax intends to
run, a collection V of jobs that Lax might consider adding to H , and the remaining jobs
that are neither in H nor V . We denote the number of jobs in H by k, and the jobs in H ,
from bottom to top, as Jh(1); : : : ; Jh(k). Lax is always running the job Jh(k) that is at the
top of H . Let � � 24 be some constant that we de�ne later. Let xi(t) be the length of Ji
not executed by Lax before time t; Or in other words, the remaining processing time of Ji
at time t. A job Ji is viable at time t if ri � t and di � t � xi(t) � `i=2. Lax maintains a
collection V of jobs Ji

� that are not currently in H , and that were never previously in H ,

� that are currently viable, and

� that satisfy �xi � vh(k).

Intuitively, when Lax considers adding a job to its stack H , it only considers jobs in V .
Jobs that are no longer viable have used up too much of their original laxity. Jobs Ji with
�xi > vh(k) will use up too much of the laxity of the job Jh(k). We exclude jobs that have
been in H previously largely because it simpli�es our analysis. For each job Ji, let Push(i)
be the time that Ji was pushed on H , and Pop(i) be the time that Ji was popped o� H . If
Ji was never pushed onto H then Push(i) = Pop(i) = +1.

There are two type of events that might cause Lax to change H , the release of a job, and
completion of the top job in H . The algorithms for both of these events use the following
procedure Fill that repeatedly pushes the highest value job in V onto H .

Procedure Fill

While V is not empty Do

Select the job Jj 2 V with maximum value

(1) Push Jj onto H

Note that each push and each pop in the code can potentially change V . Now consider a
time ri at which a job Ji is released. Intuitively, if Ji won't use up too much of the laxity of

5

the top job in H then Ji should be pushed onto H . Otherwise, the status quo is acceptable
unless Ji is more valuable than the job at the top of the stack H , and Ji doesn't use up too
much of the laxity of the job that is second from the top of H . In this case, the stack H is
popped and the procedure Fill is called. The job Ji doesn't simply replace Jh(k) because,
in order to make our analysis work, we seem to need the invariant that Fill is called every
time that a job is added to H . More formally, Lax executes the following code when Ji is
released:

If vh(k) � �xi Then

(2) Push Ji onto H
Else If vh(k�1) � �xi and vi > vh(k) Then

(3) Pop H

Select the job Jj 2 V with maximum value

(4) Push Jj onto H

Call Fill

The �rst loop in Fill is unrolled before the call to Fill because we will have to treat
the push in line (4) di�erently in our analysis than the push in line (1) of Fill. Note that
Ji 2 V after the pop in line (3).

Lax responds to the completion of the top job Jh(k) in H at time t by popping jobs o�
the stack that can not possibly complete by their deadline, and then calling Fill. More
formally, Lax runs the following code when it completes the top job of H :

(5) Pop H

While t+ xh(k)(t) > dh(k) Do

(6) Pop H
Call Fill

A forest S is shrinking if whenever Jj is a descendent of Ji in S it is the case that
�xj � vi. It is obvious that Lax(I) is an e�cient forest. Lemma 1 also shows that Lax(I)
is shrinking.

Lemma 1 At all times throughout the execution of Lax it is the case that vh(i) � �xh(i+1),
vh(i) � �vh(i+1), and xh(i) � �xh(i+1), for 1 � i � k � 1.

Proof: That vh(i) � �xh(i+1) follows since Jh(i+1) was in V at the time that it was pushed
onto H . That vh(i) � �vh(i+1) follows because xh(i+1) � vh(i+1). That xh(i) � �xh(i+1)
follows because xh(i) � vh(i).

6

3 Algorithm Analysis

We prove that for all instances I, jLax(I)j+jSRPT(I)j =
(jOpt(I)j). To accomplish this
we will want to compare SRPT(I) and Lax(I) with Opt(I). Unfortunately, structurally
Opt(I) can be quite di�erent from Lax(I), thus making a direct comparison di�cult. Intu-
itively, the main purpose of section 3.1 is to show that there are near optimal schedules that
are structurally similar to the schedules produced by Lax, thus facilitating our comparison.
To be more speci�c, we need the following de�nitions.

De�nition 2 We de�ne the pseudo-release time, denoted pri, of a job Ji. If Ji is in H at some
time then pri = Push(i). Else let t � ri be the earliest time such that �xh(k) > vi after Lax
has completely responded to all events at time t. If t � ri+ `i=2 then pri = t, else pri = +1.
Let J be the collection of jobs in I with �nite pseudo-release times, and let N be the collection
of jobs with in�nite pseudo-release times. So I = N [J .

The intuition behind the de�nition of pseudo-release time is that pri is the �rst time that
Lax reasonably had a chance to consider running Ji. In section 3.1, we construct a forest
COpt that is competitive with Opt(N). It is a combinatorial fact that for every forest at
least half the nodes are leaves or �rst children. We argue that SRPT(I) is competitive with
both the number of leaves in COpt, and with the number of �rst children in COpt. The
latter argument is more involved, and requires the construction of an auxiliary shrinking
forest DOpt of the �rst children in COpt. Hence, we can conclude that the adversary
can't earn too many credits from jobs in N , and therefore it is su�cient to show that Lax
or SRPT is competitive with Opt(J).

In section 3.1 we construct a forest BOpt that is competitive with Opt(J). Once again
its easy to see that SRPT(I) is competitive with the number of leaves in BOpt. So we
are left to show that SRPT and Lax are competitive with the number of �rst children in
BOpt. To accomplish this we will construct an auxiliary forest AOpt such that

� AOpt is shrinking, and

� each job Ji 2 AOpt it is the case that fi(AOpt) = pri.

The shrinking property is required so that the jobs in ancestor-to-descendent paths in AOpt
might all legally be in Lax's stack at the same time. The two properties together allow us
to show in section 3.4 the keystone result of the paper, that is, during any period of time
during which AOpt started executing four di�erent jobs, it must be the case that Lax
executed a push in either line (1) or line (2) of its code. We show in the section 3.3 that the
number of jobs that Lax and SRPT complete is at least a constant fraction of the number
of times that Lax executes the pushes in lines (1) and (2) of its code. In section 3.5, we
pull all of the preliminary results together to get the �nal result that either Lax or SRPT
is constant competitive.

7

Name Where De�ned Comments

EDF Lemma 8 Makes schedule a resolute forest

Shrink Lemma 9 Makes schedule shrinking

Late Lemma 10 Makes ci = di for last children

Early Lemma 11 Makes fi = ri for �rst children

Back Lemma 12 Makes fi = pri for �rst children

Klcl Lemma 13 Keeps last children and leaves

Kfcl Lemma 14 Keeps �rst children and leaves

CFill Lemma 15 Makes schedule e�cient without changing completions times

RFill Lemma 16 Makes schedule e�cient without changing �rst run times

Dmany Lemma 17 Removes jobs that have too many descendents

Dl De�nition 18 Removes leaves

AOpt De�nition 18 Approximation to Opt(J) if there are few leaves

BOpt De�nition 18 Approximation to Opt(J) if there are many leaves

DOpt De�nition 21 Approximation to Opt(N) if there are few leaves

COpt De�nition 21 Approximation to Opt(N) if there are many leaves

Table 1: Transformations and schedules

3.1 Structure of the Optimal Schedule

In this subsection, we construct many schedules, and many transformations between sched-
ules. The reader may �nd table 1 helpful in keeping track of these schedules and transfor-
mations.

3.1.1 Preliminaries

We start with some preliminary de�nitions and and lemmas. Let Z be a function from forest
schedules to forest schedules. We say that Z is descendent conserving if for all schedules
S it is that case that every job completed in Z(S) is completed in S, and for every job
Ji 2 Z(S), if Ji is a descendant of Jj in Z(S) then Ji is a descendant of Jj in S. Intuitively,
a transformation is descendent conserving if no job gains a descendent.

Lemma 3 Let Z be a descendent conserving transformation. Then Z(T) is shrinking whenever
T is shrinking.

Proof: This is immediate since a descendent conserving relation adds no new descendents.

Lemma 4 Any transformation from schedules to schedules that only deletes jobs, without chang-
ing when the remaining jobs are run, is descendent conserving.

8

Lemma 5 Let S be a shrinking schedule. If z � 1, and Jj is a z-descendent of Ji in S, then
�zxj � vi.

Proof: This follows easily by induction on z using the de�nition of shrinking.

Lemma 6 The total executions times of the descendents of any non-progenitor Ji in a shrinking
resolute forest S is at most vi=4.

Proof: Since S is shrinking, each z-descendent, z > 0, Jj of Ji satis�es xj � vi=�
z by lemma

5. Since Ji is not a progenitor in S, the total execution time of the descendents of Ji is S
is at most

1X
z=1

2z
vi
�z

= vi

2
�

1� 2
�

=
2vi
�� 2

�
vi
4

The last inequality follows since � � 10.

Lemma 7 In any resolute forest schedule S at least half of the jobs are non-progenitors.

Proof: Consider the following amortization scheme. Each non-progenitor Ji is initially given
one credit. Then each non-progenitor Ji contributes 1=2

y+1 credits to its y-ancestor in S,
y � 0. Note that the total contribution made by Ji is less than one. We now argue by
contradiction that each job Jj 2 S gets an aggregate contribution of at least 1=2 credits.
To reach a contradiction, let Jj 2 S be a job that receives less than 1=2 credits, and
furthermore, all of the descendents of Jj 2 S received at least 1=2 credit. The job Jj must
be a progenitor, or it would have 1

2 credit left from its original allotment. By de�nition of
a progenitor, there must exist a z � 1 such that Jj has a collection Z of 2z z-descendents
that each received at least 1=2 a credit. Let Ji 2 Z , and let Jk be a descendent of Ji that
contributed c credits to Ji. Then Jk will contribute at least c

2z credits to Jj . Hence, the
total contribution that the descendents of Ji make to Jj is at least

1
2z+1 . Hence, Jj must

receive a contribution of at least 1
2 , which is a contradiction.

3.1.2 The Transformations

We de�ne the various schedule transformations that will be used to constructAOpt, BOpt,
COpt, and DOpt. We start by showing how to turn an arbitrary schedule into an e�cient
resolute forest.

Lemma 8 For every schedule T , there is an e�cient resolute forest EDF(T), that completes
exactly the same jobs as T .

Proof: It is well known that if there is a feasible schedule that completes all of the jobs, then
the Earliest Deadline First (EDF) schedule, which maintains the invariant that it always

9

runs the uncompleted job with earliest deadline, also completes all the jobs [4]. Let EDF(T)
be the EDF schedule of the jobs completed in T . The result then follows immediately.

We now show how to transform an arbitrary resolute forest into a shrinking resolute
forest.

Lemma 9 Let � = ��3
5�(��1) . For every resolute forest T , there is another resolute forest

Shrink(T) such that

1. Shrink(T) � T ,

2. Shrink(T) is shrinking,

3. jShrink(T)j � �
4 jT j.

Proof: We break the proof into cases. In the �rst case assume that there are more skinny
jobs in T than there are fat jobs. Let A be T with the fat jobs deleted. Note jAj � jT j=2.
Process each tree in A from the root to the leaves in a pre-order fashion. At each node
Ji, delete the descendants Jj of Ji with �xj � `i. Note that for each Ji it is the case

that at most � jobs will be deleted. Call the resulting forest C. Note that jCj � jAj
�+1 �

jT j
2(�+1) . Furthermore, C is shrinking because the construction of C guarantees that if Jj is
a descendent of Ji in C then �xj � `i, and hence �xj � vi since each job in C is skinny.

In the second case assume that there are more fat jobs in T than there are skinny jobs.
Let A be T with the skinny jobs deleted. Hence jAj � jT j=2. In [7], the online version of the
problem 1jri; pmtnj

P
wi(1� Ui) (maximizing the aggregate bene�t of the jobs completed

by their deadline) is considered, and an algorithm Slacker is presented. It is shown in [7]
that, under the assumption that every job is fat, the competitive ratio of Slacker is at
most 5c(c�1)

c�3 , where c is a parameter of Slacker satisfying c > 3. The schedule produced
by Slacker is a forest. Furthermore, if each job has unit bene�t (as is the case here)
the schedule produced by Slacker has the property that if Jj is a descendent of Ji then
blogc

1
xi
c < blogc

1
xj
c. Consider the schedule produced by Slacker, with c = �, when the

input is the jobs completed in A. Delete from this schedule any jobs not completed by
Slacker, and call the resulting schedule B. Hence, jBj � jAj(��3)

5�(��1) = � � jAj. We consider
two subcases. In the �rst subcase, assume that there are more jobs in B with odd depth.
In this case, let C be the schedule formed from B by deleting the jobs with even depth. In
the second subcase, assume that there are more jobs in B with even depth. In this case, let
C be the schedule formed from B by deleting the jobs with odd depth. Hence, jCj � jBj=2.
If Jj is a descendent of Ji in C, then 1 + blogc

1
xi
c < blogc

1
xj
c because there used to be at

least one intermediate node between Ji and Jj in B. Therefore 1 + logc
1
xi

< logc
1
xj
, and

hence, �xj < xi. Therefore C is shrinking since each job in A is fat. Also jCj � �
4 jT j.

Hence, in either case jCj � �
4 jT j, since

�
4 � 1

2(�+1) for � > 3. In either case, we set

Shrink(T) = C.

10

The next three lemmas show how to move the completion of last children back to their
deadlines, and how to move the �rst run times of �rst children up to either their release
time, or pseudo-release time.

Lemma 10 For every resolute forest schedule T , there is another resolute forest schedule Late(T)
that completes exactly the jobs in T and such that

1. for all last children Ji 2 Late(T) it is the case that ci(Late(T)) = di,

2. if T is e�cient then Late(T) is e�cient, and

3. Late is descendent conserving.

Proof: Let S0 = T . We then repeatedly apply the following construction to the schedule
Sa, a � 0, to create a schedule Sa+1, until it is no longer possible to do so. Let Jj be a
last child of a job Ji in Sa such that cj(Sa) 6= dj . Let m = min(dj; ci(Sa)). Let P be the
period of time, during the time period [fj(Sa); m], that Sa is running either Jj or Ji. Let
y be the total time that Sa is running Ji during time P . To obtain Sa+1 we modify the
schedule Sa to run Ji for the �rst y time units in P , and Jj for the last xj time units in
P . Note that this is a legal schedule because, Ji is not run before its release time since
ri � fi(Sa) < fj(Sa), and Jj is not after its deadline since dj � m.

If dj � ci(Sa) then Jj becomes a sibling of Ji. In this case, the aggregate depths of
the nodes in Sa+1 is strictly less than the aggregate depths of the nodes in Sa+1, and the
number of last children in Sa+1 that complete at their deadline is the same as the number
of last children in Sa that complete at their deadline.

Otherwise, if dj < ci(Sa) then Jj stays a child of Ji. Furthermore, in some cases, some
children of Jj may become children of Ji. In this case, the aggregate depths of the nodes in
Sa+1 is not larger than the aggregate depths of the nodes in Sa+1, and the number of last
children in Sa+1 that complete at their deadline is strictly larger than the number of last
children in Sa that complete at their deadline.

Hence, this construction must terminate at some schedule, which we de�ne to be
Late(T). Condition 1 holds for Late(T) since the construction is no longer applicable.
Condition 2 holds since the above transformation does not create any new idle times. Con-
dition 3 holds since the construction creates no new descendents.

The proof of the following two lemmas follow from the proof of the previous lemma by
symmetry.

Lemma 11 For every resolute forest schedule T , there is another resolute forest schedule Early(T)
that completes exactly the same jobs as T and such that

1. for all �rst children Ji 2 Early(T) it is the case that fi(Early(T)) = ri,

11

2. if T is e�cient then Early(T) is e�cient, and

3. Early is descendent conserving.

Lemma 12 Let T be a resolute forest schedule such that for every job Ji 2 T it is the case that
fi(T) � pri. Then there is another resolute forest schedule Back(T) that completes exactly
the same jobs as T , and such that

1. for all �rst children Ji 2 Back(T) it is the case that fi(Back(T)) = pri,

2. if T is e�cient then Back(T) is e�cient, and

3. Back is descendent conserving.

We now show that a lot of jobs in any forest must be either leaves or last children, and
that a lot of jobs in any forest must be either leaves or �rst children. We need this lemma
because we only know how to show that Lax and SRPT are competitive with the number
of leaves, �rst children, or last children in a particular schedule.

Lemma 13 Let Klcl(S) be the schedule obtained from the resolute forest schedule S by
deleting all jobs that are not last children or leaves. Then Klcl(S) is a resolute forest and
jKlcl(S)j � jSj=2.

Proof: We prove the cardinality claim separately for each tree T in the forest. We use
induction on the the height of T . The claim follows immediately if T has height 1, and
hence consists of a single node. Otherwise, let r be the root of T , let c1; : : : ; cm be the
children of r in T , let Ti be the subtree of T rooted at ci, 1 � i � m, and let L(A) be the
number of leaves plus the number of last children in a tree A. Then the claim follows since

L(T) = 1 +
mX
i=1

L(Ti) � 1 +
mX
i=1

jTij=2 = 1+ (jT j � 1)=2 � jT j=2

The �rst inequality is by induction.

The proof of lemma 14 follows from the proof of lemma 13 by symmetry.

Lemma 14 Let Kfcl(S) be the schedule obtained from the resolute forest schedule S by
deleting all jobs that are not �rst children or leaves. Then Kfcl(S) is a resolute forest and
jKfcl(S)j � jSj=2.

The new two lemmas show how to make a resolute forest e�cient without changing the
completion times, and �rst run times, respectively.

12

Lemma 15 For every resolute forest schedule T there is another resolute forest schedule CFill(T)
that completes exactly the same jobs as T and such that

1. CFill(T) is e�cient,

2. for all Ji 2 T , ci(CFill(T)) = ci(T), and

3. CFill is descendent conserving.

Proof: We then repeatedly apply the following construction to T to obtain CFill(T). Let
Ji be an idle job with no idle descendents. Then the initial execution of Ji is delayed for as
long as possible so as to still allow Ji to complete at its original completion time, provided
that it is always run during the intervening idle times.

Lemma 16 For every resolute forest schedule T there is another resolute forest schedule RFill(T)
that completes exactly the same jobs as T and such that

1. RFill(T) is e�cient,

2. for all Ji 2 T , fi(RFill(T)) = fi(T), and

3. RFill is descendent conserving.

Proof: We then repeatedly apply the following construction to T to obtain RFill(T). Let
Ji be an idle job with no idle descendents. Then Ji is run during each idle time, after Ji is
�rst run, until Ji completes.

We now show how to modify any resolute shrinking forest so that the sum of the exe-
cution times of the descendents of each job Ji is small. This will allow us the freedom to
either move forward or move back the execution of Ji.

Lemma 17 Let S be an arbitrary shrinking resolute forest schedule. Let Dmany(S) be the
schedule derivable from S by deleting each progenitor in S. Then Dmany(S) is a shrinking
resolute forest schedule and

1. the sum of the execution times of the descendents of each Ji 2 Dmany(S) is at most
vi=4.

2. jDmany(S)j � jSj=2.

Proof: Condition 1 follows from lemma 6. Condition 2 follows from lemma 7.

13

3.1.3 The Approximate Optimal Schedules

We are now ready to de�ne AOpt, BOpt, COpt, and DOpt.

De�nition 18 Let Dl(S) be the resolute forest obtained from a resolute forest S by deleting
the leaves in S. Let

BOpt = Klcl(Late(Shrink(EDF(Opt(J)))))

and
AOpt = Back(CFill(Dmany(Dl(BOpt))))

Lemma 19 BOpt is resolute shrinking forest schedule with

jBOptj �
�

8
jOpt(J)j

Proof: EDF(Opt(J)) is a resolute forest, and all of the later transformations preserve
resoluteness and forestness. The schedule Shrink(EDF(Opt(J))) is shrinking, and all of
the later transformations are descendent conserving. Hence, BOpt is shrinking. That

jBOptj �
�

8
jOpt(J)j

follows from lemmas 9, 10, and 13.

Lemma 20 AOpt is a shrinking resolute e�cient forest schedule such that

1. for all Ji 2 AOpt, it is the case that fi(AOpt) = pri, and

2. if BOpt is not leafy, then jAOptj � �
32 jOpt(J)j.

Proof: All of the transformations involved preserve resoluteness and forestness. AOpt is
shrinking by lemma 9, and since, as we have shown in lemmas 4, 15 and 12, the transfor-
mations Dl, CFill, Dmany, and Back are descendent conserving. Condition 1 follows by
lemma 12. By lemma 19,

jBOptj �
�

8
jOpt(J)j

Suppose BOpt is not leafy. Then

jDl(BOpt)j �
�

16
jOpt(J)j

Let
A = CFill(Dmany(Dl(BOpt)))

14

By lemmas 15 and 17,

jAj �
�

32
jOpt(J)j

Let Ji 2 A. Then by lemma 17 ci(A) = di. Also fi(A) � di � (xi + vi=4), or Ji would have
been deleted by Dmany. Hence, since di � xi = ri + `i, fi(A) � ri + `i � vi=4 � ri + `i=2.
and fi(A) � pri since pri � ri + `i=2 for Ji 2 J . Therefore, Back is applicable to A.
Finally,

jBack(A)j = jAOptj �
�

32
jOpt(J)j

by lemma 12.

De�nition 21 Let

COpt = Kfcl(Early(Shrink(EDF(Opt(N)))))

and
DOpt = RFill(Dl(COpt))

Lemma 22 COpt is a resolute shrinking forest schedule with

jCOptj �
�

8
jOpt(N)j

Proof: COpt is resolute forest by lemma 8, and the fact that Shrink, Early, and Kfcl
maintain resoluteness and forestness. COpt is shrinking by lemma 9, and the fact that
Early and Kfcl are descendent conserving. So

jCOptj �
�

8
jOpt(N)j

follows by lemmas 8, 9, 11, and 14.

Lemma 23 DOpt is a shrinking resolute e�cient forest schedule such that

1. for all Ji 2 DOpt, it is the case that fi(DOpt) = ri, and

2. if COpt is not leafy, then jDOptj � �
16 jOpt(N)j.

Proof: That DOpt is a resolute shrinking forest schedule follows from lemma 22, and
the fact that Dl, and RFill are descendent conserving, and preserve resoluteness and
forestness. Condition 1 follows by lemma 11, the fact that Dmany does change �rst runs
times, and lemma 16. Suppose that COpt is not leafy. Then

jDOptj �
�

16
jOpt(N)j

follows by the de�nition of lea�ness, lemma 22, and the fact that RFill doesn't remove
jobs.

15

3.2 Jobs with In�nite Pseudo-Release Times

In this section we will show that SRPT is constant competitive with respect to Opt(N).
This will allow us subsequently restrict our attention to jobs in J .

Lemma 24 Let S be an arbitrary resolute forest schedule for K. Then jSRPT(K)j is at least
half the number of leaves in S.

Proof: We give an amortization scheme by which the jobs in SRPT(K) pay for the jobs
in S. Each job Ji 2 SRPT(K) is initially given one credit, and contributes half a credit
to the job Jj that S is running at time ci(SRPT(K)) (if such a job Jj exists). Consider a
job Jj that is a leaf in S. Hence, cj(S) = fj(S) + xj . We claim that Jj ends up with half
a credit in this scheme. If Jj 2 SRPT(K) it has at least half a credit left from its initial
allocation. Otherwise, SRPT(K) must complete a job during the interval [fj(S); fj(S)+xj]
since SRPT(K) could have opted to run Jj at time fj(S).

Lemma 25 jSRPT(I)j � 1
4 jDOptj

Proof: We now give an amortization scheme by which the jobs in SRPT(I) pay for the
jobs DOpt. Each job Jj 2 SRPT(I) is initially given one credit, and contributes credits
to other jobs in the following ways. The job that DOpt is running at time cj(SRPT(I))
is given 1

2 credit in a type 1 transfer. The job that DOpt is running at time cj(Lax(I)) is
given 1

2 credit in a type 2 transfer.

Since it is obvious that each job Jj 2 SRPT(I) contributes at most one point, it is
su�cient, by lemma 7, to show that each non-progenitor Ji 2 DOpt receives at least 1

2
credit.

Since DOpt is a forest, during [ri; ri + vi=2] it must be the case that DOpt is only
running Ji or descendents of Ji. Note that by lemma 23 it is the case that fi(DOpt) = ri.
The job Ji has at most one child in DOpt since Ji is not a progenitor in DOpt. Hence,
since DOpt is e�cient, we can partition [ri; ri+ vi=2] into three intervals [ri; a), (a; b) and
(b; ri + vi=2] such that during [ri; a) it must be the case that DOpt is running Ji, during
(a; b) it must be the case that DOpt is running descendents of Ji, and during (b; ri+ vi=2]
it must be the case that DOpt is running Ji. Note that it may be the case that Ji is a leaf,
and hence a = b. Since Ji is not a progenitor in DOpt and DOpt is shrinking, by lemma
6 it must be the case that b� a � vi=4. Hence, at least one of (a� ri) or ri+ vi=2� b must
be of size at least vi=4.

Assume that a � ri � vi=4, the argument is the same if ri + vi=2 � b � vi=4. By the
de�nition of N , at all times during the time interval [ri; a] it must be the case that Lax was
always running jobs Jj with �xj � vi. Let Xz be the collection of jobs with lengths in the
range Rz = (vi

�z+1
; vi
�z
] that Lax was running during [ri; a], let Tz be the times that these

jobs were being run during [ri; a], and let jTzj the measure of Tz. There must exists a z > 0,

16

such that jXz j �
vi
4�2z . Let t be the unique point in time such that jTz \ [ri; t]j =

vi
4��z . The

time t exists since � > 2. We claim that Lax must have begun running a job Jj 2 Xz at
some time s 2 [ri; t], and s + xj � s + vi

4��z � a. In order see that such an s exists, observe
that jTz j over the length of the longest job in Xz is at least 3. That is,

jXzj
vi
�z

�
vi
4�2z
vi
�z

� 3

The second inequality follows since z � 1, and � � 24.

We consider two cases. In the �rst case, assume that SRPT didn't complete Jj before
time t. In this case SRPT must complete a job Jh during [s; s+xj] since SRPT could have
opted to run Jj at time s. The job Jh then contributes 1

2 credits to Ji in a type 1 transfer.
In the second case, assume that SRPT did complete Jj before time s. Then Jj contributes
1
2 point to Ji in a type two transfer.

Lemma 26 jSRPT(I)j � �
64 jOpt(N)j.

Proof: First assume that COpt is leafy. Then jSRPT(I)j � 1
2 jCOptj by lemma 24.

Furthermore, jCOptj � �
8 jOpt(N)j by lemma 22. Hence in this case, jSRPT(I)j �

�
16 jOpt(N)j.

If COpt is not leafy then jSRPT(I)j � 1
4 jDOptj by lemma 25, and jDOptj �

�
16 jOpt(N)j by lemma 23. Hence in this case, jSRPT(I)j � �

64 jOpt(N)j.

3.3 Counting Pushes

Let C be the total number of times that the pushes in line (1) and line (2) of Lax were
executed. Our goal in this subsection is to show that the number of jobs completed by
Lax and SRPT is
(C). In subsequent sections this will allow us to assume that Lax and
SRPT earn an amortized
(1) credit whenever Lax executes a push in line (1) or line (2).
Let D be the collection of jobs that were popped in line (6) of Lax. Note that jobs in D
are not completed by Lax. We start by giving an amortization scheme that demonstrates
that the number of jobs completed by SRPT and Lax is
(jDj.

For a time t, we de�ne t+ to be the time just after time t such that during the period
(t; t+] it is the case that Lax does not complete a job, and no job is released. For a time t,
we de�ne t� to be the time just before time t such that during the period [t�; t) it is the
case that Lax does not complete a job, and no job is released. We say that the depth of
a job in the stack H is its depth from the top of H , more precisely, the depth of Jh(j) is
k � j + 1. Recall that k is the height of H .

Amortization Scheme: Each job completed by SRPT is initially given one credit, and
each job completed by Lax is initially given one credit. We will distribute these credits

17

to other jobs in the following ways. If Lax completes a job Jj at a time t, then for each
integer a 2 [1; k] the job of depth a in H at time t+ receives 1=2a+1 credits from Jj in a Lax
transfer. If SRPT completes a job Jj at a time t, then for each integer a 2 [1; k] the job
of depth a in H at time t receives 1=2a+1 credits from Jj in a SRPT-1 transfer. If SRPT
completes a job Jj and Lax ran Jj at some point in time, then for each integer a 2 [1; k] the
job of depth a in H at time Push(j) receives 1=2a+1 credits from Jj in a SRPT-2 transfer.

Lemma 27 The number of credits transfered from each job completed by Lax or SRPT by
the above amortization scheme is at most 1.

We now �x an arbitrary job Ji 2 D. We want to show that
(1) credits were transfered
to Ji under this amortization scheme. If Jj is above Ji on the stack H at some time during
(Push(i);Pop(i)), then we say that Jj is z above Ji if the depth of Ji minus the depth of Jj
is z (note that both of these depths are invariant during (Push(j);Pop(j))). Intuitively, we
show in the next lemma that there is some z such that Lax is running that are z above Ji
in H for a reasonably long period of time.

Lemma 28 There exists an integer z > 0, such that during the period [Push(i);Pop(i)], Lax
was running jobs that are z above Ji for at least

`i
2z+1 units of time.

Proof: During the period [Push(i);Pop(i)] the algorithm Lax will only run Ji, and jobs
above Ji in H . Since Ji was viable when it was added to H , and Ji 2 D, Lax ran jobs other
than Ji for at least `i=2 units of time. Assume to reach a contradiction that, for each z > 0,
Lax ran jobs that are z above Ji less than

`i
2z+1

units of time during [Push(i);Pop(i)]. Then
the total time that Lax wasn't running Ji during [Push(i);Pop(i)] would have to be less
than

P1
z=1

`i
2z+1

= `i
2 . This contradicts the assumption that Ji 2 D.

Let z be the integer from lemma 28. We now de�ne a collection I1 = [a1; b1]; : : : ; Is =
[as; bs] of disjoint intervals as follows:

� [au; bu] � [Push(i);Pop(i)] for 1 � u � s,

� bj < aj+1 for 1 � j < s,

� during the interval [au; bu], 1 � u � s, the algorithm Lax is running jobs that are z
above Ji,

� during (Push(i); a1) and (bs;Pop(i)) the algorithm Lax is never running a job that is
z above Ji, and

� during (bu; au+1), 1 � u < s, the algorithm Lax is never running a job that is z above
Ji.

18

That is, these intervals are the times when Lax is running jobs that are z above Ji. In the
next three lemmas we quantify the credits earned by Ji.

Lemma 29 During the time period (bu; au+1), 1 � u < s, there is a Lax transfer that nets Ji
at least 1=2z+2 credits.

Proof: If Lax is executing a job that is more that z above Ji at time a
�
u+1 then let t = au+1.

Otherwise, if during the period (bu; au+1) it is always the case that the size of H is less than
z then let t = bu. Otherwise, let t be the latest time in (bu; au+1) such that the job at the
top of H at time t� is more than z above Ji.

By the de�nition of t, the stack H is smaller at time t+ than at time t�. Hence Lax
completed a job at time t since this is the only place in the code of Lax where the stack
size can decrease. By the de�nition of t, the job at the top of H at time t+ is no more than
z above Ji. Hence the depth of Ji at time t+ is at most z + 1. The claim then follows by
the description of the amortization scheme.

Lemma 30 During each interval Iu, 1 � u � s, the job Ji earns at least�
1

2z+2

�$
bu � au

2vi
�z

%

credits.

Proof: Each job that is z above Ji is of length at most vi=�
z by lemma 1. Hence, for each

0 � y �
�
bu�au
2vi
�z

�
�1, the algorithm Lax must push a job Jf(y) that is z above Ji during the

period [au+2y vi
�z
; au+(2y+1) vi

�z
]. If Jf(y) is completed by SRPT before time Push(f(y)),

then Ji gains 1=2
z+2 credits from Jf(y) in a SRPT-2 transfer at time Push(f(y)). Otherwise,

suppose that Jf(y) is not completed by SRPT before time Push(f(y)). Since SRPT could
opt to run Jf(y) at time Push(f(y)), SRPT must complete a job during the period (au +
2y vi

�z
; au+ (2y+2) vi

�z
], and this job that SRPT completes will contribute 1=2z+2 credits to

Ji in a SRPT-1 transfer.

We are now ready to bound the aggregate credits earned by the job Ji.

Lemma 31 The total credits earned by Ji in the above amortization scheme is at least 1
8 .

Proof: For 1 � s � u, we say that an interval Iu is long if bu � au �
4vi
�z
, otherwise, we say

that Iu is short. Let � be the number of short intervals, and ` be the aggregate length of
the long intervals. Since

Ps
u=1 jIuj �

vi
2 , the aggregate length of the short intervals is at

most vi
2 � `, and hence

� �
vi
2 � `
4vi
�z

19

Then by lemma 29 and lemma 30 we have that the aggregate credits earned by Ji is at least

1

2z+2

s � 1 +

sX
u=1

�
bu � au
2vi=�z

�!

�
1

2z+2

0
@s� 1 +

X
long Iu

�
bu � au
2vi=�z

�1A

�
1

2z+2

0
@s� 1 +

X
long Iu

�
bu � au
2vi=�z

� 1

�1A

=
1

2z+2

0
@� � 1 +

X
long Iu

bu � au
2vi=�z

1
A

=
1

2z+2

�
� � 1 +

`�z

2vi

�

�
1

2z+2

vi
2 � `
4vi
�z

� 1 +
`�z

2vi

!

=
1

2z+2

vi
2 + `
4vi
�z

� 1

!

�
1

2z+2

vi
2
4vi
�z

� 1

!

=
1

2z+2

�
�z

8
� 1

�

�
1

8

The last inequality follows since � � 16 and z � 1.

The following lemma then follows immediately from lemma 27 and lemma 31.

Lemma 32 8 jSRPT(I)j+ 8 jLax(I)j � jDj.

We are now ready to give the result that is the goal of this subsection.

Lemma 33 8 jSRPT(I)j+ 9 jLax(I)j � C.

Proof: A push in line (1) or line (2) of Lax that increments the size of H from k to k + 1
is paid for by the �rst subsequent pop to reduce H to size k. If the pop occurred in line
(5) of the code then Lax completed the popped job. If the pop occurred in line (6) of the
code then the job popped in line (6) is in D. The result then follows from lemma 32.

20

3.4 Comparing Lax and Approximate Optimal Solutions

In this section when we speak of the state of Lax at time t, we mean the state of Lax after
it has responded completely to all events at time t. It is important to keep this in mind
in order to avoid confusion. The main result of this subsection, and the keystone result in
this paper, is lemma 37. Lemma 37 essentially shows that during any period of time during
which AOpt started executing four di�erent jobs, it must be the case that Lax executed a
push in either line (1) or line (2) of its code. Before preceding to lemma 37 we will need a
couple of preliminary lemmas.

Lemma 34 Let [s; t] be a period of time during which Lax does not execute a push in either
line (1) or line (2) of its code. Then the value of vh(k) at time t is at least as large as the value
of vh(k) at time s. Furthermore, if k > 1 at time t, then the value of vh(k�1) at time t is at
least as large as the value of vh(k�1) at time s.

Proof: We prove the �rst claim, the proof of the second is similar. Other than lines (1) and
(2), the top job of H can only be changed by one of the pops in lines (3), (5) and (6), or by
the push in line (4). In the former case, by lemma 1, the value of vh(k) is not lessened. In
the latter case the value of vh(k) is not lessened because vi > vh(k), and vj � vi since Ji 2 V
after the pop in line (3).

Lemma 35 There does not exist a Ji and a t � ri such that both Ji 2 V and �xi � vh(k) at
time t.

Proof: If procedure Fill was called at time t we get an immediate contradiction. Otherwise,
de�ne time s such that the procedure Fill was called at time s but was not called at any
time in the interval (s; t]. Therefore the only way that H can change during the (s; t) is
via the push in line (2). Hence, the value of vh(k) at time t is strictly less than the value of
vh(k) at time s. Note that ri � s, that Ji is viable at time s, and that Ji has not been in H
during the interval [0; s]. Hence, Fill would have added Ji at time s, contradiction.

Lemma 36 For all Ji 2 J either pri = ri or Lax popped a job from H at time pri.

Lemma 37 Let Jd be the �rst child of a job Jc, that is a �rst child of a job Jb, that is a �rst
child of a job Ja, in AOpt. Then during the time interval [prb; prd], it must be the case that
Lax executed line (1) or line (2) of its code.

Proof: Applying lemma 20, and the fact that AOpt is a forest, we get that prb < prc < prd.
Assume to reach a contradiction that neither line (1) or (2) of Lax was executed during
[prb; prd].

First assume that Lax pushed Jb on H at time prb. By our assumption that no pushes
happened in line (1) or (2), we can conclude that this push happened in line (4) of Lax.

21

Throughout the interval (prb; prc], it is the case that vh(k) � vb by lemma 34. Applying
lemma 20 we get that �xc � vb. By the de�nition of prc, it must be the case that Jc was
not in H during the interval [0; prb]. So if rc � prb then we get a contradiction to lemma
35 at time prb. Otherwise if rc > prb we get a contradiction to lemma 35 at time rc � prc.

Therefore it must be the case that Lax didn't push Jb at time prb. Then by the de�nition
of prb, it was the case that �xh(k) > vb at time prb. By lemma 1, �xh(k) � vh(k�1) at time
prb. Hence, vb < vh(k�1) at time prb. By lemma 20, �xc � vb. Hence, �xc < vh(k�1) at time
prb.

Now assume that Lax pushed Jc on H at time prc. By our assumption that no pushes
happened in line (1) or (2), we can conclude that this push happened in line (4) of Lax.
Throughout the interval (prc; prd], it is the case that vh(k) � vc by lemma 34. Applying
lemma 20 we get that �xd � vc. By the de�nition of prd, it must be the case that Jd was
not in H during the interval [0; prc]. So if rd � prc then we get a contradiction to lemma
35 at time prc. Otherwise if rd > prc we get a contradiction to lemma 35 at time rd � prd.

Therefore it must be the case that Jc was not pushed on H at time prc. Hence, by
lemma 36 it must be the case that at time prc, either some job must have been popped
from H , or Jc was released.

First consider the case that a pop occurred at time prc. Recall that in the third para-
graph of this proof we concluded that it must be the case that �xc < vh(k�1) at time prb.
Hence, �xc < vh(k) after the �rst pop at time prc by lemma 34 and lemma 1. If this pop
happened in line (5) or (6) then Jc, or some other job, will be pushed on H in line (1) of
Lax at time prc, a contradiction. If this pop happened in line (3) of Lax then Jc, or some
job with larger value, must have been pushed on H in line (4) of Lax. Hence, in this case
vh(k) � vc at time prc.

Now consider the case that rc = prc. In this case, either Lax didn't execute the body
of the else statement because vh(k) � vc, or Lax must have executed the push in line (4)
at time prc, and since Jc 2 V at that time, we again get that vh(k) � vc at time prc. As a
result we again get that vh(k) � vc at time prc.

So under all possible scenarios it is the case that vh(k) � vc at time prc. By lemma 34
it must be the case that during the interval (prc; prd], we have that vh(k) � vc.

Applying lemma 20 we get that �xd � vc. By the de�nition of prd, it must be the case
that Jd was not in H during the interval [0; prd). So if rd � prc then we get a contradiction
to lemma 35 at time prc. Otherwise if rd > prc we get a contradiction to lemma 35 at time
rd � prd.

3.5 The Competitive Ratio

In this section we put the previous results together to compute the �nal competitive ratio
of SRPT and Lax together.

22

Lemma 38 If BOpt is leafy then jSRPT(I)j � �
16 jOpt(J)j.

Proof: jBOptj � �
8 jOpt(J)j by lemma 19. jSRPT(I)j is at least half the number of leaves

in BOpt by lemma 24. Hence, jSRPT(I)j � 1
2 jBOptj since BOpt is leafy.

Lemma 39 If BOpt is not leafy, 3C + 6 jSRPT(I)j � jAOptj.

Proof: We use an amortization argument to pay for the jobs completed in AOpt. We
initially give 3 credits to each push executed in line (1) or (2) of Lax, and 3 credits to each
leaf of AOpt. Let Ja be an arbitrary job in AOpt. We now break the proof into many
cases.

If Ja is a leaf in AOpt, then Ja is paid for by it own credits. Otherwise, let Jb be the
�rst child of Ja in AOpt. By lemma 12, Jb begins execution in AOpt at time prb.

If Jb is a leaf in AOpt, then Ja is paid for by the credits in Jb. Otherwise, let Jc be the
�rst child of Jb in AOpt. By lemma 12, Jc begins execution in AOpt at time prc.

If Jc is a leaf in AOpt, then Ja is paid for by the credits at Jc. Otherwise, let Jd be the
�rst child of Jc in AOpt. By lemma 12, Jd begins execution in AOpt at time prd.

Else Ja is paid for by the push that Lax must have executed in line (1) or line (2) during
[prb; prd] by lemma 37.

Note that no push is charged more than three times, and that no leaf is charged more
than three times. The result follows since, by lemma 24, jSRPT(I)j is at least half of the
number of leaves in AOpt.

Theorem 40 For all instances I,

jOpt(I)j � (
256

�
+
768

�
)jSRPT(I)j+

864

�
jLax(I)j

Proof: First assume that BOpt is not leafy. Then

jOpt(I)j � jOpt(N)j+ jOpt(J)j
� jOpt(N)j+ 32

�
jAOptj by lemma 20

� 64
�
jSRPT(I)j+ 32

�
jAOptj by lemma 26

� 256
�
jSRPT(I)j+ 96

�
C by lemma 39

� (256
�

+ 768
�
)jSRPT(I)j+ 864

�
jLax(I)j by lemma 33

Now assume that BOpt is leafy. Then

jOpt(I)j � jOpt(N)j+ jOpt(J)j
� jOpt(N)j+ 16

�
jSRPT(I)j by lemma 38

� 80
�
jSRPT(I)j by lemma 26

23

We get the following corollary by setting � = 24. Note that if � = 24 then 1
�
� 126.

Corollary 41 If � = 24 then for all instances I,

jOpt(I)j � 129; 024 � jSRPT(I)j+ 108; 864 � jLax(I)j

References

[1] S. Baruah, J. Harita, and N. Sharma, \On-line scheduling to maximize task comple-
tions", IEEE Real-time Systems Symposium, 228{237, 1994.

[2] S. Baruah, G. Koren, D. Mao, B. Mishra, A. Raghunathan, L. Rosier, D. Shasha, and
F. Wang, \On the competitiveness of on-line real-time task scheduling", Journal of
Real-Time Systems, 4, 124{144, 1992.

[3] A. Borodin, and R. El-Yaniv, Online Computation and Competitive Analysis, Cam-
bridge University Press, 1998.

[4] P. Brucker, Scheduling Algorithms, Springer-Verlag, 1995.

[5] K. Christian and K. Pruhs, Personal communication.

[6] S. Irani, and A. Karlin, \Online computation", Chapter 13 of Approximation Algo-

rithms for NP-hard Problems, ed. D. Hochbaum, PWS Publishing, 1997.

[7] B. Kalyanasundaram and K. Pruhs \Speed is as powerful as clairvoyance", IEEE Foun-

dations of Computer Science, 214{223, 1995.

[8] G. Koren and D. Shasha, \MOCA: A multiprocessor on-line competitive algorithm for
real-time systems scheduling", Theoretical Computer Science, 128, 75{97, 1994.

[9] R. Lipton, and A. Tomkins, \Online interval scheduling", ACM-SIAM Symposium on

Discrete Algorithms, 302{311, 1994.

[10] C. Phillips, C. Stein, E. Torng, and J. Wein, \Optimal time-critical scheduling via
resource augmentation", ACM Symposium on Theory of Computation, 140 { 149, 1997.

[11] J. Sgall, \On-line scheduling - a survey", On-Line Algorithms: The State of the Art,
eds. A. Fiat and G. Woeginger, Lecture Notes in Computer Science, Springer-Verlag.

[12] G. Woeginger, \On-line scheduling of jobs with �xed start and end time", Theoretical
Computer Science, 130, 5{16, 1994..

24

