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Abstract

We consider two fundamental problems in dynamic scheduling: scheduling to meet deadlines in a
preemptive multiprocessor setting, and scheduling to provide good response time in a number of
scheduling environments. When viewed from the perspective of traditional worst-case analysis, no
good on-line algorithms exist for these problems, and for some variants no good o�ine algorithms
exist unless P = NP.

We study these problems using a relaxed notion of competitive analysis, introduced by Kalyana-
sundaram and Pruhs, in which the on-line algorithm is allowed more resources than the optimal
o�ine algorithm to which it is compared. Using this approach, we establish that several well-known
on-line algorithms, that have poor performance from an absolute worst-case perspective, are opti-
mal for the problems in question when allowed moderately more resources. For the optimization of
average 
ow time, these are the �rst results of any sort, for any NP-hard version of the problem,
that indicate that it might be possible to design good approximation algorithms.

�A preliminary version of this work appeared in the proceedings of the 1997 ACM Symposium on Theory of
Computing.
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1 Introduction

In this paper, we consider two fundamental multiprocessor scheduling problems:

� on-line multiprocessor scheduling of sequential jobs in a hard-real-time environment, in which
all jobs must be completed by their deadlines, and

� on-line multiprocessor scheduling of sequential jobs to minimize average 
ow time (average
response time) in preemptive and nonpreemptive settings.

These problems have de�ed all previous (worst-case) analytic attempts to identify e�ective on-line
algorithms for solving them. For example, Dertouzos and Mok proved that no on-line algorithm
can legally schedule all feasible input instances of the hard-real-time scheduling problem for m � 2
machines [7]. Furthermore, there is no obvious notion of an approximation algorithm1 for this
problem since all jobs must be completed. For the various versions of the 
ow time problem,
while approximations are acceptable, a variety of results ([20, 24], summarized in Section 1.3.2)
show that no on-line algorithm can guarantee a constant approximation ratio. The net result is
that traditional worst-case analysis techniques have failed to provide convincing evidence that any
algorithm can achieve good performance for any of these problems. Furthermore, for the hard-
real-time scheduling problem and the nonpreemptive scheduling to minimize 
ow time problem,
traditional worst-case analysis techniques have failed to di�erentiate algorithms whose performance
is observed empirically to be rather di�erent.

In this paper we give the �rst encouraging results that apply worst-case analysis to these two
multiprocessor problems. We utilize a new method of analysis, introduced by Kalyanasundaram and
Pruhs [17] (for one-processor scheduling) of comparing the performance of an on-line algorithm to
the performance of an optimal o�ine algorithm when the on-line algorithm is given extra resources.
For example, in a preemptive multiprocessor environment, we show that when given machines
that are twice as fast, the shortest-remaining-processing-time algorithm gives optimal performance
for average 
ow time, and the earliest-deadline-�rst and least-laxity-�rst algorithms give optimal
performance for meeting deadlines. In the nonpreemptive setting, we also show that simple greedy
algorithms perform well for optimizing average 
ow time when given more machines. Many of
our results for average 
ow time extend to average weighted 
ow time as well. Finally, for the
hard-real-time scheduling problem, our extra machine results di�erentiate the performance of the
least-laxity-�rst algorithm from the performance of the earliest-deadline-�rst algorithm.

We feel that our results have two practical implications. First, our results provide system
designers with analytic guidelines for coping with lack of knowledge of the future. For example,
our results that describe the performance of an algorithm when given extra machines tell a system
designer how many extra processors are needed to insure a desired performance level. Our results
that describe the performance of an algorithm when given faster machines not only tell a system
designer how much faster the processors need to be to insure a desired performance level, they also
have implications for the performance of the original system in a setting where job-arrival rate is
reduced. In particular, we show that, for the problem of minimizing the average 
ow time, on-line

1There has been signi�cant work in the area of best-e�ort real-time scheduling, in which one tries to maximize the
total weight of the jobs scheduled by their deadlines, but this is not really an appropriate approximation for hard-
real-time scheduling since the fundamental assumption of best-e�ort scheduling is that it is acceptable for jobs to not
complete by their deadlines. Furthermore, even if one accepts best-e�ort real-time scheduling as a reasonable way
to approximate hard-real-time scheduling, Koren et al. showed that the best competitive ratio any on-line algorithm
can achieve is lower bounded by ( �

��1 )m(�
1=m

� 1) where m is the number of machines and � is the ratio between
the weights of the most important and least important jobs in the input instance [21].
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algorithms can achieve small constant competitive ratios with respect to o�ine algorithms given
identical resources if the arrival rate of jobs in the on-line system is somewhat slower than the arrival
rate of jobs in the identical o�ine system. Thus reduced job-arrival rate is an \extra resource" that
can compensate for lack of knowledge of the future, much as the hardware-based increased speed or
increased machines can. Second, more speculatively, if an algorithm, when allowed a bit more speed
or resources, performs well on all input instances, then perhaps it will perform well in practice,
especially if the instances on which it performs very poorly under traditional worst-case analysis
have a special pathological structure. We suggest, though, that the ultimate decision of whether
this sort of analysis is meaningful will depend on the sorts of algorithms the analysis recommends
and whether or not it yields interesting and new distinctions between algorithms. When evaluated
from this perspective, our results provide powerful evidence that \extra-resource" analysis is a
useful tool in the analysis of on-line scheduling problems.

1.1 Problem De�nitions

We are given m identical parallel machines and an input instance (job set) I, which is a collection
of n independent jobs fJ1; J2; : : : ; Jng. Each job Jj has a release date rj , an execution time (also
referred to as length or processing time) pj, possibly a weight wj , and, in the real-time setting only,
a deadline dj . The ratio of the length of the longest job to that of the shortest job in instance I
is denoted 4(I), or simply 4 when the job set I is unambiguous. For any input instance I, we
let I l denote the l-stretched input instance where job Ji has release time lrj instead of rj . A job
can run on only one machine at a time and a machine can process only one job at a time. We
will often denote the completion time of job Jj in schedule S by CS

j and will drop the superscript
when the schedule is understood from context. The 
ow time, or response time of a job in schedule
S is F S

j � CS
j � rj; the total 
ow time of schedule S is

P
j F

S
j , whose minimization is equivalent

to the minimization of average 
ow time 1
n

P
Fj . If the jobs have weights, we can also de�ne the

total weighted 
ow time of schedule S by
P

j wjF
S
j , or equivalently the average weighted 
ow time

1
n

P
j wjFj . For hard real-time scheduling with deadlines, we say a schedule S is optimal if each job

Jj is scheduled by its deadline dj , i.e. C
S
j � dj . These are often called feasible schedules.

We will consider both preemptive and nonpreemptive scheduling models. In a preemptive
scheduling model, a job may be interrupted and subsequently resumed with no penalty; in a
nonpreemptive scheduling model, a job must be processed in an uninterrupted fashion.

1.2 Our On-line Model and Methods of Analysis

We consider on-line scheduling algorithms which construct a schedule in time, and must construct
the schedule up to time t without any prior knowledge of jobs that will become available at time
t or later. When a job arrives, however, we assume that all other relevant information about the
job is known; this model has been considered by many authors, e.g. [14, 15, 16, 27, 28], and is a
reasonable model of a number of settings from repair shops to timesharing on a supercomputer.
(For example, in the latter setting, when one submits a job to a national supercomputer center,
one must give an estimate of the job size.)

We will analyze our algorithms by considering their performance when they are allowed to
run on more and/or faster machines as well as when they are run on l-stretched input instances.
Given an input I to a scheduling problem with m machines and (optimal) objective function value
V , an s-speed �-approximation algorithm �nds a solution of value �V using m speed-s machines.
A w-machine �-approximation algorithm �nds a solution of value �V using wm machines. An l-
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Speed to Achieve Optimal Extra Machines to Achieve Optimal

hard deadline 6
5 � s � 2� 1

m
5
4 � w

call < w(LLF ) � c log4
c4 < w(EDF )

preemptive,
P
Fj

22
21 � s � 2� 1

m

preemptive,
P
wjFj , m = 1 s � 2

nonpreemptive,
P
Fj , w � c log4

w � c log n [1 + o(1)-approx]

nonpreemptive,
P
wjFj w � c log4 [2-approximation]

Figure 1: Summary of main algorithms and hardness results. The notation x � s � y means the problem
can be solved with speed-y machines, but cannot be solved optimally with speed-(x � �) machines for any
� > 0. Similarly w is for w-machine algorithms, and w(EDF) is the number of extra machines given to
earliest-deadline-�rst algorithm. LLF is the least-laxity �rst algorithm. We use c to denote some constant
and call to denote all constants. 4 is the ratio of the longest length to the shortest length.

stretch �-approximation �nds a solution to I l of value �V using machines identical in number and
speed to the o�ine algorithm. For a problem with deadlines, we consider V to be the objective of
scheduling all jobs by their deadlines, so it is always the case that � = 1. In fact, for both deadlines
and 
ow-time, we will usually be concerned with the case where � = 1, so we will omit the term
\�-approximation" when this is true.

1.3 Our Results

We now discuss our results, which are summarized in Figure 1.

1.3.1 Preemptive Problems

We �rst study on-line preemptive scheduling for both objectives: minimum total 
ow time and hard
real-time scheduling with deadlines. We show that two simple and widely-used scheduling heuristics
(for which worst-case analysis yields a pessimistic evaluation) are (2� 1

m )-speed algorithms. These
results follow from a general result that characterizes the amount of work done by any \busy"
algorithm (one that never allows any unforced idle time) run at speed s when compared to that
done by any algorithm run at speed 1. We also show that no (1 + �)-speed algorithms exist for
either problem for small � (1=5 for meeting deadlines and 1=21 for 
ow time).

More speci�cally, for preemptive hard real-time scheduling, we analyze two simple and widely
used on-line algorithms, earliest-deadline-�rst (EDF) [6] and least-laxity-�rst (LLF) [7]. At time t
in an m-processor system, EDF schedules them jobs currently in the system which have the earliest
deadlines while LLF schedules the m jobs currently in the system which have the smallest laxities
(at time t, a job Jj has laxity (dj � t)� (pj � xj) where xj is the amount of processing Jj received
prior to time t). In the uniprocessor setting (m = 1), both EDF [6] and LLF [7] can schedule any
feasible input instance. In the multiprocessor environment (m � 2), no on-line algorithm legally
schedules all feasiblem-machine input instances [7]. Nonetheless, EDF and LLF are likely heuristic
choices in practice.

In the faster-machine model, we show that EDF and LLF are (2� 1
m)-speed algorithms for the

problem of hard-real-time scheduling and that this result is tight for EDF. We also show that no
(1+ �)-speed algorithm exists for this problem for � < 1=5 and m � 2. In the extra-machine model,
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we show that LLF is an O(log�)-machine algorithm while EDF is not a o(�)-machine algorithm
for any m � 2. We note that our analysis of LLF is fairly tight by showing that LLF is not a
c-machine algorithm for any constant c. We also show that no (1 + �)-machine algorithm exists
for this problem for � < 1=4 for m � 2. Comparing these results with those in the faster-machine
model, we see a contrast between the power of extra machines and the power of extra speed in the
preemptive setting.

For the problem of minimizing total 
ow time, we analyze the simple and widely used SRPT
(Shortest Remaining Processing Time) Rule which always schedules the m jobs with the short-
est remaining processing times. In the uniprocessor setting (m = 1), SRPT is optimal. In the
multiprocessor setting (m � 2), while SRPT can still be considered to be an optimal on-line algo-
rithm within a constant factor, its approximation guarantee is nonconstant; in particular, Leonardi
and Raz show that SRPT is a �(logmin(n=m;�))-approximation algorithm, and they provide

(log n=m) and 
(log�) lower bounds on the competitive ratio of any randomized on-line algo-
rithm [24]. In contrast, we show that SRPT is a (2 � 1

m)-speed algorithm. We also show that no
(1 + �)-speed algorithm exists for this problem for � < 1=21 for m � 2.

We also consider the problem of scheduling a single machine preemptively to minimize average
weighted 
ow time, where the weights re
ect job priorities. In contrast to the unweighted problem,
scheduling preemptively on a single machine to optimize average weighted 
ow time is NP-hard
[22]. Recently there has been much progress in developing o�ine approximation algorithms for the
related NP-hard problem of minimizing

P
j wjCj [4, 15, 26, 1], but no non-trivial polynomial-time

approximation algorithms are known for
P
wjFj . (Since

P
wjCj =

P
wjFj +

P
wjrj , an optimal

schedule for
P
wjCj is also an optimal schedule for

P
wjFj , but a �-approximation for

P
wjCj

may be a very poor approximation for
P
wjFj .) We show how to use the linear-programming

relaxations considered by [15] to develop an (on-line) 2-speed algorithm for this problem.

1.3.2 Nonpreemptive Models

We also consider the problem of scheduling nonpreemptively to minimize average weighted 
ow time
in both the uniprocessor and multiprocessor settings. Note that the simplest possible variant of this
problem (o�ine uniprocessor, unweighted) is already a diÆcult problem with very strong nonap-
proximability results. In particular, Kellerer, Tautenhahn and Woeginger [20] recently showed that
there exists no polynomial-time o(

p
n)-approximation algorithm for this problem unless P = NP ,

and Leonardi and Raz have shown that there is no polynomial-time o(n1=3)-approximation algo-
rithm for the parallel machine case [24]. Thus, traditional worst-case analysis has little to o�er to
practitioners. In sharp contrast to these results, we give an O(log�)-machine algorithm for the on-
line minimization of total weighted 
owtime on parallel machines, and we give an O(log n)-machine
(1+o(1))-approximation algorithm as well as an O(log n)-machine (1+o(1))-speed algorithm for the
on-line minimization of total 
owtime (unweighted) on parallel machines. These results generalize
further to nonpreemptive scheduling to meet due dates.

We then o�er some evidence that indicates it may be diÆcult to improve upon our results, even
for unweighted 
ow time. A common method of analyzing the performance of a nonpreemptive
algorithm is with respect to the optimal preemptive solution, which is an obvious lower bound
on the optimal nonpreemptive solution [26, 20]. Let Sp be the schedule with optimal 
owtime
in the preemptive 1-machine setting for some instance I, and let Sm be the schedule with opti-
mal 
owtime in the nonpreemptive m-machine setting. We give a polynomial-size lower bound of

�

�
n

1

2m+1�2 =s2
�
on the gap between

P
j F

Sp
j and

P
j F

Sm
j for any constant m � 2, even if the

m machines are speed-s for any constant s. Thus the analysis of any O(1)-machine s-speed non-
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preemptive 
ow-time algorithm will require a stronger lower bound on the optimal nonpreemptive

ow-time than the 
ow-time of the optimal preemptive 1-machine 1-speed schedule. In contrast to
this negative result about O(1)-machine algorithms, we give an O(log n)-machine 2-speed algorithm
that nonpreemptively achieves the 1-machine 1-speed preemptive lower bound.

1.3.3 Speed and Stretch

We conclude by showing that any s-speed �-approximation algorithm is also an s-stretch �s-
approximation algorithm when we consider the problems of minimizing average 
ow time or average
weighted 
ow time. In light of this result, throughout the paper we focus only on analyzing faster
machines and extra machines, but remember that the results for faster machine extend to stretched
schedules for all results concerning 
ow time.

1.4 Related Results

Several papers have applied extra resource analysis to the problem of minimizing 
ow time in a
variety of scheduling environments. Kalyanasundaram and Pruhs were the �rst to do so in their
study of the minimization of preemptive total 
ow time and best-e�ort �rm-real-time schedul-
ing [17]. For the unweighted uniprocessor setting where the algorithm has no knowledge of pj until

job Jj completes, they were able to show a simple on-line algorithm was an s-speed
�
1 + 1

s�1
�
-

approximation algorithm for minimizing 
ow time. (Note our relationship between faster machines
and stretched schedules implies that this algorithm is also an s-stretch (s + s

s�1)-approximation
algorithm.) This result is quite dramatic as it was previously shown that no deterministic on-line

algorithm can approximate the optimal 
ow time within a factor of 
(n
1
3 ) [25]. This result was

improved by Coulston and Berman who show that for s � 2, the algorithm actually is an s-speed
2
s -approximation algorithm; that is, for s > 2, the algorithm with m speed-s machines outperforms
an optimal algorithm for m speed-1 machines [5]. Finally, Edmonds has recently shown that Equi-
partition, a natural generalization of the round robin algorithm to a parallel processing setting, is a
(2+�)-speed (2+ 4

� )-approximation algorithm for � > 0 and an s-speed 16
s -approximation algorithm

for s � 4 [8]. Thus, for s � 16, Equi-partition can achieve optimal performance. Edmonds also
proves many other results about a wide variety of scheduling models with di�erent assumptions
about the parallelizability of jobs.

Likewise, several papers have applied extra resource analysis or similar analysis techniques to
several real-time scheduling problems. However, nearly all of these problems have allowed jobs
to not be completed. For example, Kalyanasundaram and Pruhs consider a problem where jobs
have values and the goal is to maximize the sum of the values of completed jobs in a uniprocessor
setting [17]. In contrast to quite strong traditional on-line lower bounds, they were able to show

that an on-line scheduling algorithm was an s-speed
�
1 + 2

s�1
�
-approximation algorithm, for s > 1;

at speed 2, this corresponds to a 3-approximation. They also consider the unweighted version
of this problem and show that either SRPT or a second deterministic algorithm has a constant
competitive ratio on every instance for this problem [18]. Thus, if an on-line algorithm is given two
processors, it will be constant competitive against the optimal o�ine algorithm on one processor.
Other authors have considered best-e�ort real-time scheduling problems where jobs are assumed to
have a minimum percentage laxity [2, 12]. In some ways, this is similar to assuming that the on-line
algorithm has faster machines. However, a di�erence is that both the on-line and o�ine algorithms
bene�t from this minimum laxity whereas only the on-line algorithm bene�ts from extra resources
in extra resource analysis.
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More recently, Kalyanasundaram and Pruhs have looked at the relationship between migratory
and nonmigratory multiprocessor real-time scheduling [19]. In the migratory model, a job may be
preempted and then resumed with no penalty on a di�erent processor. In the nonmigratory model,
a job must be completely processed by one machine, though it may be preempted. The main result
from this paper with respect to our work is that if a set of jobs can be completed by their deadlines
on m processors in a migratory environment, then this same set of jobs can be completed by their
deadlines on 3m � 2 processors in a nonmigratory environment for m � 1. Thus, they use extra
resources to o�set migration whereas we use extra resources to o�set knowledge of the future.

Bender, Chakrabarti, andMuthukrishnan have recently produced results dealing with stretch [3].
However, their de�nition of stretch is di�erent than ours. In particular, given an input instance I
and a schedule S(I), they de�ne the stretch of job n in I to be the 
ow time of job n divided by
the length of job n. Their de�nition of stretch captures the slowdown job n experiences due to the
presence of other jobs.

Finally, Lam and To have recently extended the preemptive real-time scheduling results of this
paper to allow both extra processors and extra resources [23]. They show that EDF given m + p
speed-(2� (1 + p)=(m+ p)) processors can schedule any instance feasible for m speed-1 processors.
For p = 0, this is the bound given in this paper. They show that any algorithm given 1 + p
processors requires these processors to have speed at least 1=(2

p
2 + p=m � 2) to schedule any

instance feasible on m speed-1 machines. When p = 0, this is slightly stronger (in the 3rd decimal
place) than the bound given in this paper. They give an algorithm that schedules all instances
feasible for m speed-1 machines using 1 + p speed-(2 � (2(m � 1) +mp)=((m + 1)(m � 1) +mp))
processors. This is similar to our bounds for EDF for p = 0 when m is large. However, for m = 2
and p = 0 the speed of 4=3 improves upon the 1:5 we prove for EDF. For m = 2 and p = 1, the
new bound beats the lower bound for p = 0. The paper also gives improved lower bounds for all
algorithms that schedule based only on deadline. The new algorithm is optimal for m = 2 and
p = 0 among such deadline-ordered schedules.

2 On-line preemptive unweighted scheduling

In this section, we consider both scheduling to minimize unweighted average 
ow time and hard-
real-time scheduling in a preemptive scheduling environment. We �rst consider the faster machine
setting, and we show that SRPT is a preemptive, (2�1=m)-speed algorithm for minimizing average

ow time and that EDF and LLF are (2�1=m)-speed algorithms for hard-real-time scheduling and
that this result is tight for EDF. These results are based upon a fundamental result (Lemma 2.6)
which shows a tradeo� between the amount of work done by any busy algorithm by speci�c times
and the speed of the processors it is given.

We next consider the extra machine setting, and we �rst observe that the natural analogue
to Lemma 2.6 does not apply. As a result, we are unable to derive any results for SRPT for
minimizing average 
ow time, and we derive much poorer results for EDF and LLF for hard-real-
time scheduling. In particular, we show that both LLF and EDF are not c-machine algorithms for
any constant c for the hard-real-time scheduling problem. However, we then show that that LLF
is an O(log4)-machine algorithm whereas EDF is not even an o(4)-machine algorithm for this
problem, so LLF is signi�cantly better than EDF for the hard-real-time scheduling problem in this
model.

We conclude by showing that no (1+�)-speed algorithm exists for the hard-real-time scheduling
problem for � < 1=4, and that no (1 + �)-speed algorithm exists for minimizing average 
ow time
for � < 1=10. We prove these results by �rst giving simpler proofs for the weaker bounds 1=5 and
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1=21 respectively.

2.1 Faster machines

Theorem 2.1 For 1 � � � 2 � 1
m , SRPT is an �-speed 2�1=m

� -approximation algorithm for pre-
emptively minimizing the sum of completion times on parallel machines.

In particular, when � = 2� 1=m, we get the following result.

Corollary 2.2 SRPT is a preemptive, (2� 1
m)-speed algorithm for minimizing average 
ow times

on parallel machines.

When � = 1, Theorem 2.1 implies that SRPT is a (2� 1
m)-approximation algorithm which improves

slightly a bound of 2 from [26].

Corollary 2.3 SRPT is a (2� 1
m)-approximation algorithm for sum of completion times on parallel

machines.

Theorem 2.4 EDF is a preemptive, (2� 1
m )-speed algorithm for hard-real-time scheduling on par-

allel machines.

Theorem 2.5 LLF is a preemptive, (2� 1
m)-speed algorithm for hard-real-time scheduling on par-

allel machines.

The key to the proof of all three theorems is the following fundamental relationship between
machine speed and total work done by any busy algorithm such as SRPT, EDF, or LLF. We let
A(j; t) denote the amount of processing algorithm A speci�es for job Jj by time t. For job set J
let A(J; t) =

P
j2J A(j; t).

Lemma 2.6 Consider any input instance I, any time t, any m � 1, and any 1 � � � (2 � 1
m ).

De�ne � = 2�1=m
� . For any busy scheduling algorithm A using m speed-� machines, A(I; �t) �

A0(I; t) for any algorithm A0 using m speed-1 machines.

Proof: We will prove this by contradiction. Fix an input instance I, and consider the set of
\underworked" jobs: fJi j 9 a time t(i) such that A(I; �t(i)) < A0(I; t(i)) and A has done less work
on job Ji by time �t(i) than A0 has done on job Ji by time t(i)g. If the Lemma is false, this set
must be nonempty. Let Jj be such a job from this set with a minimum release time rj and let t
denote t(j). Thus, A(I; �t) < A0(I; t) and, since A has done less work on job Jj by time �t than
A0 has done on Jj by time t,

A(j; �t) < A0(j; t): (1)

Since Jj has a minimum release time rj, it follows that A(I; rj) � A0(I; rj� ). Therefore, we can also
conclude that the total work done by A from time rj to time �t must be strictly less than the total
work done by A0 from time

rj
� to time t. That is, we also have the following constraint.

A(I; �t)�A(I; rj) < A0(I; t)�A0(I;
rj
�
) (2)

We will derive a contradiction by showing that constraints (1) and (2) cannot be true simultaneously.
We �rst analyze the algorithm A from time rj to time �t. We divide this time period into two

types of time intervals: overloaded intervals where more than m jobs are available to be scheduled
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by A and underloaded time periods where at most m jobs are available to be scheduled. Let
x denote the total length of the overloaded time intervals and y denote the total length of the
underloaded time intervals. Obviously, x+ y = �t� rj .

With respect to x and y, we now derive a lower bound on the total amount of work done by A
from time rj to time �t and the amount of work done by A on job Jj by time �t. During overloaded
intervals, A uses all m machines while during underloaded intervals, A uses at least one machine to
run job Jj . Therefore, A does at least �mx+�y total work from time rj to time �t. Furthermore,
A does at least �y work on job Jj by time �t.

Algorithm A0 does at most m(t � rj
� ) work from time

rj
� to t since A0 only has m speed-1

machines. Furthermore, A0 can do at most t� rj � t� rj
� work on job Jj by time t.

Plugging these lower bounds for A and upper bounds for A0 into constraints (1) and (2), we
conclude that

m

�
t� rj

�

�
> �(mx+ y) (3)

and
t� rj

�
> �y: (4)

We now show that (3) and (4) cannot simultaneously be true. Add (3) to (m� 1) times (4) to
obtain �

t� rj
�

�
(2m� 1) > �m(x+ y):

Recall that x+ y = �t� rj , and so if we divide the left side by �t� rj and the right by x+ y, we
obtain

2m� 1

�
> �m

, 2� 1

m
> ��:

This last inequality cannot hold since �� = 2� 1
m by de�nition. Thus, the result follows. 2

Proof of Theorem 2.1: We will actually prove the following more general result. Consider any
input instance I. Let S(I) be any legal schedule for I using m speed-1 machines and SRPT (I)
be the schedule derived by applying SRPT to I using m speed-� machines. Then for any time t,
the number of completed jobs in SRPT (I) at time t2�1=m� is at least as many as the number of
completed jobs in S(I) at time t. This implies that for all k, the completion time of the kth job

completed in SRPT (I) is no later than 2�1=m
� times the completion time of the kth job completed

in OPT (I) (a speci�c legal schedule), so Theorem 2.1 clearly follows.
We prove this general result as follows. De�ne It � I to be the set of jobs that complete by

time t in schedule S(I). By Lemma 2.6 and the de�nition of It, all jItj jobs will be completed by

time 2�1=m
� t in SRPT (It) given m speed-� machines. We now use the following lemma, proved in

[26].

Lemma 2.7 [26] If SRPT completes k jobs of input instance I 0 by any time t and I 0 � I 00, then it
completes at least k jobs of input instance I 00 by time t.

We apply this result with It = I 0 and I = I 00 to conclude that for any time t, at least jItj jobs will
be completed by time 2�1=m

� t in SRPT (I). 2
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Proof of Theorem 2.4: Consider any input instance I which can be legally scheduled on m speed-1
machines. Rename the jobs in order of deadlines so that di � dj for 1 � i < j � n. De�ne It to be
the set of jobs fJ1; : : : ; Jtg for 1 � t � n; that is, It consists of the t jobs in I with the t smallest
deadlines (with some variation allowed due to tiebreaking). We also de�ne I0 to be the empty set
of jobs. We prove by induction on t that EDF, usingm speed-(2�1=m) machines, legally schedules
It for 0 � t � n.

Clearly EDF legally schedules I0 and I1. Assume EDF legally schedules It for 0 � t � n� 1.
Consider what EDF does with It+1. Let Q � It+1 denote the set of jobs which have deadline
dt+1 and note this set must contain at least job Jt+1. Then It+1 �Q must be Iq for some q where
0 � q � t. By our induction hypothesis, EDF legally schedules Iq. Because EDF gives priority
to jobs with earlier deadlines, EDF (It+1) is identical to EDF (Iq) on the jobs in Iq. Thus, all jobs
in Iq complete by their deadlines in EDF (It+1). By Lemma 2.6, EDF has done at least as much
work as OPT on It+1 by time dt+1. In particular, since OPT has completed all jobs in It+1 by time
dt+1, this means EDF has completed all jobs in Q by time dt+1. Thus, EDF legally schedules It+1.

Thus, by the principle of induction, EDF is a speed-(2� 1=m) algorithm. 2

We now show this result is tight.

Lemma 2.8 EDF, using m speed-(2 � 1
m � �) machines, cannot schedule some input instances

which can be scheduled on m speed-1 machines.

Proof: Consider the following input instance consisting of m+ 1 jobs all released at time 0. The
�rst m jobs have length xm�1

m and deadlines x. The m+ 1st job has length x and deadline x+ 1.
EDF will schedule the m smaller jobs �rst since they have earlier deadlines and will not complete
them until time x(m�1)

m(2� 1
m
��) . Thus, the completion time of the larger job will be

x(m�1)
m(2� 1

m
��)+

x
2� 1

m
�� =

(2m�1)x
2m�1�m� = x+ m�x

2m�1�m� . So, if we choose x >
2m�1�m�

m� , the completion time of the larger job will
exceed x+ 1 and thus will fail to complete by its deadline. On the other hand, the optimal o�ine
algorithm can schedule this input instance by devoting one machine to the larger job from time 0
to time x and m� 1 machines to the remaining m jobs. 2

We now will prove Theorem 2.5. We begin by de�ning some notation. Note, the notation is
more general than is needed for this proof because this notation will also be used in section 2.2
when we consider LLF and extra machines.

De�nition 2.1 For any m � 2, an input instance I is is (c; s;m)-hard if LLF cannot legally
schedule input instance I using cm speed-s machines while OPT can schedule I using m speed-1
machines.

De�nition 2.2 We de�ne the failure time in any (c; s;m)-hard input instance I using cm speed-s
machines, FT (I; c; s;m), to be the �rst time in LLF(I) where there are more than cm active jobs
with laxity 0. We de�ne this set of jobs to be the failure set of I, FS(I; c; s;m).

We wish to prove that there are no (1; 2� 1=m;m)-hard input instances for any m � 2. Rather
than working with an arbitrary (1; 2 � 1=m;m)-hard input instance, we will work with canonical
input instances which consist only of \relevant jobs." That is, we will strip away any jobs that do
not contribute to the failure of LLF to schedule the input instance.

De�nition 2.3 For any input instance I, and any two jobs Ji and Jj in I, we say that Ji blocks Jj
if there exists a time t in LLF(I) where (i) both jobs are in the system and available for execution
at time t and (ii) the laxity of job Ji is at most the laxity of job Jj at time t. Note a job Ji blocks
itself.

9



De�nition 2.4 For any job Ji in any input instance I, B(Ji) denotes the set of jobs in I which
block job Ji. For any set of jobs Y � I, B(Y ) denotes the set of jobs in I which block any job in Y .

De�nition 2.5 For any input instance I and any set of jobs Y � I, de�ne R1(Y ) = B(Y ). For
i � 2, de�ne Ri(Y ) as B(Ri�1(Y )). Finally de�ne R�(Y ) = [i�0Bi(Y ).

Fact 2.1 For any input instance I, any subset Y � I, and any c; s � 1, the following statements
hold for R�(Y ).

1. R�(Y ) � I.

2. If I is feasible on cm speed-s machines, then R�(Y ) is also feasible on cm speed-s machines.

3. 4(I) � 4(R�(Y )).

4. Each job in R�(Y ) is scheduled identically in LLF(R�(Y )) and LLF(I) assuming LLF uses
cm speed-s machines in both cases.

De�nition 2.6 If input instance I = R�(FS(I 0; c; s;m)) for some (c; s;m)-hard input instance I 0,
we say that I is a canonical (c; s;m)-hard input instance.

Note, for any (c; s;m)-hard input instance I, there exists a corresponding canonical (c; s;m)-
hard input instance CI which consists of R�(FS(I; c; s;m)). Because of Fact 2.1, in particular
property 3 of Fact 2.1, we can limit our attention to canonical (c; s;m)-hard input instances.

Proof of Theorem 2.5: Suppose there exists a (1; 2 � 1=m;m)-hard input instance I 0. Then there
must exist a canonical (1; 2 � 1=m;m)-hard input instance I. We will show that there are no
canonical (1; 2 � 1=m;m)-hard input instances I.

Let I denote any canonical (1; 2 � 1=m;m)-hard input instance. We �rst observe that OPT
must do at least as much work on every job by the failure time FT (I; 1; 2�1=m;m) as LLF does by
FT (I; 1; 2�1=m;m). This follows since every job Jj in I belongs to R

�(FS(I; 1; 2�1=m;m)) since
I is a canonical instance. Therefore, every job in I either has a deadline before the failure time
FT (I; 1; 2 � 1=m;m) or has 0 laxity at FT (I; 1; 2 � 1=m;m). This means that if any job receives
less processing by time FT (I; 1; 2 � 1=m;m) than it receives in LLF (I), it either has missed its
deadline or it has negative laxity. In either case, this job will not complete by its deadline.

We now observe that OPT must actually do more work on at least one job in FS(I; 1; 2 �
1=m;m) by the failure time. This follows since there are at least m + 1 jobs with zero laxity at
FT (I; 1; 2 � 1=m;m), and OPT cannot possibly complete these jobs by their deadlines given only
m speed-1 machines.

Putting these two observations together, they imply that OPT must do more total work than
LLF by time FT (I; 1; 2 � 1=m;m). However, by Lemma 2.6, LLF has done at least as much
work as OPT has by time FT (I; 1; 2 � 1=m;m). Thus, it follows that there cannot be a canonical
(1; 2 � 1=m;m)-hard input instance, and thus there are no (1; 2 � 1=m;m)-hard input instances,
and the result follows. 2

Note, the above proof can be extended to prove the already known result that LLF legally
schedules all feasible input instances on a single machine without any extra resources.

Lemma 2.6 also has implications for on-line load balancing. In particular, Lemma 2.6 leads to
the following result which is a generalization of Graham's proof that List Scheduling is a (2� 1

m)-
approximation algorithm for minimizing the makespan [13] of a schedule (makespan is the maximum
completion time of any job in the schedule).
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Corollary 2.9 For 1 � � � 2 � 1
m , List Scheduling is an �-speed [(2 � 1

m )=�]-approximation
algorithm for minimizing the makespan.

2.2 Extra Machines

The key to our positive results for faster machines was Lemma 2.6. Unfortunately, the natural
analogue to this result does not hold for extra machines as we shall show in a moment.

De�nition 2.7 Let A denote an arbitrary m-processor scheduling algorithm. For any m � 2, the
family of input instances I(m) is c-lazy for A if there exists a time t � 0 such that (i) A, given
cm speed-1 machines, does not �nish all jobs in I(m) by time t, and (ii) all jobs in I(m) can be
�nished by time t on m speed-1 machines. We refer to the �rst such time t as the lazy point or LP
of I(m).

Note I(m) is really a family of input instances parametrized by m, but we shall simply refer to
I(m) as a single input instance I. Also, when the algorithm A is clear from context, we simply use
c-lazy rather than c-lazy for A.

Lemma 2.10 Let A denote any busy algorithm which prioritizes shorter jobs over longer jobs.
Then for any integer c, there exists an input instance I which is c-lazy for A.

Proof: All jobs in I are released at time 0. Input I contains cm length-1 jobs and bm2 c length-
2cm jobs. Since A gives priority to shorter jobs, the length-2cm jobs do not complete until time
2cm + 1. However, the optimal m-machine schedule can �nish all jobs by time 2cm by devoting
bm2 c machines to the length-2cm jobs and the remaining machines to the length-1 jobs. 2

We build upon Lemma 2.10 to derive strong lower bounds for both LLF and EDF for the hard-
real-time scheduling problem.

Our �rst goal is to show that LLF is not a c-machine algorithm for any constant c for any
m � 2. That is, we wish to show there exist (c; 1;m)-hard input instances for any m � 2 and c � 1
as de�ned in De�nition 2.1. For the remainder of this section, we will typically use c-hard input
instance in place of (c; 1;m)-hard input instance.

We build a c-hard input instance from the c-lazy input instance of Lemma 2.10 in two steps.
The �rst step creates a c-lazy input instance I(c; y;m) for LLF for any integer c by (i) setting
deadlines and thus laxities to insure that LLF gives priority to shorter jobs and (ii) invoking more
waves of short jobs to increase the amount of missing work at the lazy point (LP) of I(c; y;m).

De�nition 2.8 De�ne the job set I(c; y;m) as follows. First there are bm2 c length-2cy jobs with
release times 0, deadlines 2cy + y, and thus initial laxities of y. Meanwhile, for 0 � i � y � 2c,
there are cm length-1 jobs with release times 2ci, deadlines 2c(i + 1), and thus laxities of 2c � 1.
Altogether, (y � 2c+ 1)cm length-1 jobs are released from time 0 to time 2c(y � 2c).

Lemma 2.11 For all m � 2, integers c � 1, and y � 2c, job set I(c; y;m) is c-lazy for LLF. In
particular, the bm2 c length-2cy jobs of I(c; y;m) will each have y� 2c+1 remaining processing time
and 2c� 1 laxity at the lazy point 2cy in LLF (I(c; y;m)).

Proof: See �gure 2 for a pictoral proof. At time 0, bm2 c jobs jobs are released, each of length 2cy
and laxity y. By the assumption of this lemma y � 2c. There are also cm length-1 jobs released
with laxity 2c�1. Thus the length-1 jobs have smaller laxity and all will be run from time 0 to time
1. Thus all the long jobs will lose one unit of laxity before the release of the next set of length-1
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Figure 2: LLF and optimal m schedule for I(c; y;m)

jobs. In general, for 0 � i � y � 2c, at time 2ci, the laxity of each of the length-2cy jobs is exactly
y � i which is at least 2c. The length-1 jobs released at these times have laxities 2c � 1. This
implies that for 0 � i � y � 2c, at time 2ci, LLF will choose to use all cm machines to schedule
the just released cm length-1 jobs. Thus the length-2cy jobs will not be executed from time 2ci to
time 2ci + 1 for 0 � i � y � 2c, a total of y � 2c + 1 time units. Therefore, at time 2cy, the bm2 c
length-2cy jobs will still each require y � 2c+ 1 units of processing and will have laxities 2c� 1.

On the other hand, all jobs can be completed by time 2cy on m machines if the following
schedule is used. Dedicate bm2 c machines to the length-2cy jobs from time 0 to time 2cy. Use the
other machines to schedule the length-1 jobs. 2

We now convert the c-lazy input instance I(c; y;m) into a c-hard input instance I(c;m). The
key idea is that LLF still has signi�cant work to do in the time interval [2cy; 2cy + y] whereas the
optimalm-machine algorithm has no work to do after the lazy point 2cy. Thus, we overload LLF by
repeating scaled down versions of this c-lazy input instance within the time interval [2cy; 2cy + y].
To simplify the de�nition of the �nal c-hard input instance I(c;m), we �rst augment our de�nition
of the c-lazy input instance I(c; y;m) to include a global release time t.

De�nition 2.9 De�ne the job set I(t; c; y;m) as follows. There are bm2 c length-2cy jobs with
release times t, deadlines t+ 2cy + y, and thus initial laxities of y. Meanwhile, for 0 � i � y � 2c,
there are cm length-1 jobs with release times t + 2ci, deadlines t + 2c(i + 1), and thus laxities of
2c� 1. Altogether, (y � 2c+ 1)cm length-1 jobs are released from time t to time t+ 2c(y � 1).

De�nition 2.10 See �gure 3 for a graphical representation of this input instance. We de�ne
the input instance I(c;m) to be [6ci=1I(ti�1; c; yi;m) where ti and yi are de�ned as follows. Let
y1 = 4(2c � 1)(2c + 1)6c�1 (the key property is that y1 > 2(2c � 1)(2c + 1)6c�1). We recursively
de�ne yi = yi�1=(2c + 1) for 2 � i � 6c (note yi�1 = (2c + 1)yi and y1 = (2c + 1)6c�1y6c). Let
ti = 2c

Pi
j=1 yj for 0 � i � 6c (note t0 = 0).

Lemma 2.12 Consider input I(c;m) scheduled by LLF and by OPT. At time ti for 1 � i � 6c,
LLF will still have ibm2 c jobs with at least yi � 2c + 1 required units of processing remaining and
laxities of at most 2c� 1 whereas the optimal m machine algorithm �nishes all jobs released before
time ti by time ti.
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Figure 3: Graphical representation of I(c;m)

Proof: We prove the result by induction on i. The base case where i = 1 follows directly from
Lemma 2.11.

The inductive step is proven as follows. By the inductive hypothesis, LLF, run with cm ma-
chines, has ibm2 c `leftover" jobs with at least yi � 2c + 1 required units of processing and laxities
at most 2c � 1 at time ti for some 1 � i � 6c � 1 whereas the optimal m machine schedule has
completed all jobs released before time ti by time ti.

If we assume these ibm2 c leftover jobs receive continuous processing from time ti to time ti+1
(that is, these jobs receive 2cyi+1 units of processing), these ibm2 c jobs will have yi�2cyi+1�2c+1 =
yi+1 � 2c+ 1 (note yi = (2c+ 1)yi+1) required units of processing remaining and laxities 2c� 1 at
time ti+1.

If we assume these leftover jobs do not \steal" any processing time from any jobs released
at or after time ti, Lemma 2.11 tells us the bm2 c length-2cyi+1 jobs released at time ti will have
yi+1 � 2c + 1 required units of processing remaining and laxities 2c � 1 at time ti+1. Combining
these jobs with the ibm2 c leftover jobs gives us (i + 1)bm2 c jobs which have at least yi+1 � 2c + 1
required units of processing remaining and laxities 2c� 1 at time ti+1.

Meanwhile, Lemma 2.11 tells us that the optimal m machine schedule completes all the jobs
released in the time interval [ti; ti+1) by time ti+1. Thus, the Lemma is proven. 2

Theorem 2.13 LLF is not a c-machine algorithm for hard-real-time scheduling for any constant
c.

Proof: From Lemma 2.12, we see that input instance I(c;m) can be feasibly scheduled onm speed-
1 machines. Meanwhile, at time t6c = 2c

P6c
j=1 yj, LLF will still have at least 2cm jobs with at least

y6c� 2c+1 required units of processing remaining and laxities of at most 2c� 1. If y6c > 2(2c� 1),
LLF will not be able to legally schedule this instance. Working backwards, we see that since we
de�ned y1 = 4(2c � 1)(2c + 1)6c�1, y6c = 4(2c � 1) > 2(2c � 1), and the theorem follows. 2

Note that 4(I(c;m)), the ratio of longest job length to shortest job length, is large. We now
show that any c-hard input instance I for LLF must have a structure similar to that of I(c;m); in
particular 4(I) must be exponential in c. More speci�cally, we will show that any c-hard input
instance I for LLF consists of at least c c-lazy building blocks Ii for 1 � i � c for LLF where block
Ii arrives after the lazy point of the previous building block. That is, input I must look something
like Figure 3. We will use this to show the exponential nature of 4(I).

In order to prove the desired result, we will work with canonical (c; 1;m)-hard input instances
as de�ned in De�nition 2.6. For the remainder of this section, we will refer to such input instances
as canonical c-hard input instances. Because of Fact 2.1, in particular property 3 of Fact 2.1, we
can limit our attention to only canonical c-hard input instances.

Our �rst result about any canonical c-hard input instance CI is that at the failure time
FT (CI; c; s;m), the optimal m-machine schedule has done at least as much work on every job
in CI as LLF has using cm machines. Note, this result does not hold for an arbitrary c-hard
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input instance I since I may contain \extraneous" jobs on which LLF has done more work by
FT (I; c; s;m) than the optimal m-machine schedule. For the remainder of the section, we will use
FT (I; c) to denote FT (I; c; s;m) and FS(I; c) to denote FS(I; c; s;m).

De�nition 2.11 Let A(j; t) denote the amount of processing speci�ed by algorithm A for job Jj by
time t.

De�cit def(j; t) denotes how much extra processing OPT, using m machines, has done on job
Jj by time t than LLF has done on Jj using cm machines.

De�nition 2.12 Let OPT be the optimal algorithm for scheduling on m speed-1 machines. Then
for any canonical c-hard input instance CI, def(j; t) = OPT (j; t) � LLF (j; t). Furthermore, for
any subset Y � CI, def(Y; t) =

P
Jj2Y def(j; t).

Lemma 2.14 Let CI denote any canonical c-hard input instance. OPT must do at least as much
work on all jobs in CI as LLF does by the failure time of CI; that is, 8Jj 2 CI def(j; FT (CI; c)) �
0.

Proof: Since CI is a canonical c-hard input instance, every job Jj in CI belongs to R
�(FS(CI; c)).

Therefore, every job Jj in CI either has a deadline before the failure time FT (CI; c) or has 0 laxity
at FT (CI; c). This means that if any job Jj receives less processing by time FT (CI; c) than it
receives in LLF (CI), it either has missed its deadline or it has negative laxity. In either case, this
job will not complete by its deadline. 2

We now use Lemma 2.14 to prove that CI must be similar to I(c;m). We �rst identify the
arrival times and lazy points of at least c c-lazy building blocks. We do this by identifying the
latest time ti � FT (CI; c) when there are at most im available jobs. Time interval [ti�1; ti) bounds
the arrival time and lazy point of at least one c-lazy building block for 1 � i � c. Each building
block contains at most m jobs in FS(CI; c), and these jobs in FS(CI; c) are the incomplete jobs
at times ti.

De�nition 2.13 For any canonical c-hard input instance CI, de�ne time ti for 0 � i � c to be
the minimum of ft j There are at least im + 1 available jobs in LLF (CI) from time t to time
FT (CI; c):g.

De�nition 2.14 For any canonical c-hard input instance CI and for 1 � i � c, de�ne Ti to be the
time interval [ti�1; ti) and T 0

i to be the time interval [ti; FT (CI; c)].

See �gure 4 for a graphical depiction of these concepts.

De�nition 2.15 For any canonical c-hard input instance CI and for any time interval T , let J(T )
denote the set of jobs in CI which arrive during time interval T .

The following three statements, while not necessarily true, provide intuition for the remainder
of our proof:

1. The jobs in J(Ti) for 1 � i � c not completed by time ti are in FS(CI; c).

2. The work de�cit of these jobs is no more than jTij because Ti contains the time interval when
these jobs accumulate their work de�cits.

14



t0(= 0) t1 t2 t3
q q q

tc FT (CI; c)
0

m

2m

3m

4m

q

q

q

cm

q q q

� -T 0

0
� -� -T1 T 0

1
� -� -T2 T 0

2

q

q

q

Figure 4: Number of available jobs in LLF (CI) over time.

3. This work de�cit, and thus jTij, is an upper bound on jT 0
i j.

Unfortunately, we are not able to directly relate the work de�cit of jobs in J(Ti) to jT 0
i j. Instead

we prove the following result relating these work de�cits to jT 0
i+1j.

Lemma 2.15 For any canonical c-hard input instance CI,

def(J(Ti); ti) > mjT 0
i+1j for 1 � i � c� 1: (5)

It then follows that jTij > jT 0
i+1j for 1 � i � c� 1.

Proof: We �rst observe that def(J(Ti); ti) � mjTij for 1 � i � c since the jobs in J(Ti) do not
arrive before time ti�1 and OPT can perform at most mjTij units of processing on them by time ti.
Clearly, combining this inequality with inequality (5) yields jTij > jT 0

i+1j. Thus, all that remains is
proving inequality (5).

From Lemma 2.14, we �rst observe that def(J(T 0
i�1); FT (CI; c)) � 0. We now show this implies

(5). For 1 � i � c� 1, throughout time interval T 0
i�1, at most (i� 1)m of the available jobs arrived

before time ti�1. This implies that during time interval Ti+1 = [ti; ti+1), at least m + 1 of the
machines are always working on jobs that belong to J(T 0

i�1). Likewise, during time interval T
0
i+1 =

[ti+1; FT (CI; c)], at least 2m+1 machines are doing work on jobs that belong to J(T 0
i�1). Since OPT

has only m machines total, these observations imply def(J(T 0
i�1); ti+1) � def(J(T 0

i�1); ti)� jTi+1j
and def(J(T 0

i�1); FT (CI; c)) � def(J(T 0
i�1); ti+1)�(m+1)jT 0

i+1j. Combining these two inequalities
with def(J(T 0

i�1); FT (CI; c)) � 0, we conclude that def(J(T 0
i�1); ti) � jTi+1j+ (m+ 1)jT 0

i+1j: We
now observe that def(J(T 0

i�1); ti) = def(J(Ti); ti) since J(Ti) contains all jobs in J(T 0
i�1) released

before time ti. Thus we have def(J(Ti); ti) � jTi+1j + (m + 1)jT 0
i+1j which implies inequality (5),

and the Lemma follows. 2

We now prove our main upper bound result for LLF.

Theorem 2.16 Consider any canonical c-hard input instance CI. Then 4(CI) = 
(�c�d
p
2ce)

where � is the golden ratio.
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Proof: We �rst use Lemma 2.15 to show that Li = jT 0
c�ij grows faster than the Fibonacci numbers.

For 2 � i � c,

Li = jT 0
c�ij

= FT (CI; c)� tc�i
= (FT (CI; c) � tc�(i�1)) + (tc�(i�1) � tc�i)
= Li�1 + jTc�(i�1)j
> Li�1 + jT 0

c�(i�2)j
= Li�1 + Li�2:

The key step of this derivation is our use of Lemma 2.15 in replacing jTc�(i�1)j with jT 0
c�(i�2)j.

We next show that (i) 4(CI) > jT 0
2j = Lc�2 and that (ii) jT 0

c�dp2cej = Ldp2ce � 1. Clearly, if we

prove both of these bounds, it follows that 4(CI) > F(c�2)�(dp2ce�1) where Fi is the i
th Fibonacci

number (F0 = 0 and F1 = 1). Because Fn =
j
�np
5
+ 1

2

k
� �np

5
where � is the golden ratio � 1:61803,

transitivity implies that 4(CI) > �c�d
p
2ce�1p
5

� 1
2 which means 4(CI) = 
(�c�d

p
2ce) and the result

follows.
We �rst prove the lower bound on 4(CI). Let S � J(T1) denote the at most m available jobs

in LLF (CI) just prior to time t1. Since LLF has completed all other jobs in J(T1), it follows
that def(S; t1) � def(J(T1); t1). On the other hand, since no single job can have a work de�cit
greater than its length, m4(CI) � def(S; t1) as S contains at most m jobs. Applying transitivity,
m4(CI) � def(J(T1); t1). We then use (5) to observe that def(J(T1); t1) > mjT 0

2j = mLc�2.
Finally, applying transitivity and dividing by m, we get the desired result that 4(CI) > Lc�2.

We now prove the lower bound on Lp2c. We will show that some job must arrive no earlier
than time tc�dp2ce and be completed by LLF no later than time tc. Thus its length must be
� tc � tc�dp2ce � Ldp2ce, and the lower bound follows.

We �rst observe that just prior to time tc, there are at most cm jobs in the system. We now
show that more than cm jobs arrive during the time interval [tc � tc�dp2ce) which yields the lower

bound. Consider each subinterval Ti for c�d
p
2ce+1 � i � c within [tc� tc�dp2ce). Inequality (5)

shows that LLF falls behind OPT in each subinterval Ti with respect to the jobs released during
that subinterval, and this can only happen if the system is overloaded. Therefore, during each of
these subintervals, there must be a time when there are at least cm + 1 available jobs. Note that
at most (i � 1)m jobs were in the system at time ti�1. Therefore, at least (c � i + 1)m + 1 jobs
must have arrived during subinterval Ti. That is, jJ(Ti)j � (c � i + 1)m + 1. Summing up over
all subintervals, we observe that

Pc
i=c�dp2ce+1 jJ(Ti)j > cm. Therefore, more than cm jobs were

released during the time interval [tc � tc�dp2ce) and the lower bound on Lp2c follows. 2

Corollary 2.17 LLF is an O(log4)-machine algorithm for hard-real-time scheduling.

Proof: Follows from Theorem 2.16. 2

In contrast, we can show that EDF cannot o�er a similar guarantee.

Theorem 2.18 EDF is not a (
j
4m�1

m

k
)-machine algorithm for hard-real-time scheduling.

Proof: For all m � 2 and all 4 � 1, we de�ne an in�nite set of input instances I(m;4) such that
I(m;4) can be scheduled by an o�ine algorithm on m machines but cannot be scheduled by EDF

on cm machines where c =
j
4m�1

m

k
.
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The input instance I(m;4) consists of cm jobs with deadlines of 24 and execution times of 2
and one job with a deadline of 24+1 and an execution time of 24 (i.e. this job must be executed
by time 1 in order to complete by its deadline). All the jobs are released at time 0.

Clearly, EDF will fail to legally schedule the input instance I(m;4) on cm machines because it
will initially devote all cm machines to the scheduling of the short jobs with length 2 and will not
schedule the long job until time 2 at which point it can no longer be completed by its deadline.

The input instance I(m;4), however, is clearly schedulable on m machines as we can put the
one job with deadline 24+1 on a machine at time 0 and devote the remaining m� 1 machines to
completing the remaining cm jobs of length 2 by their deadlines. 2

2.3 General lower bounds

In this section, we show that no (1 + �)-speed algorithm exists for the hard-real-time scheduling
problem for � < 1=5, and that no (1+�)-speed algorithm exists for minimizing average 
ow time for
� < 1=21. We also show that no (1 + �)-machine algorithm exists for the hard-real-time scheduling
problem for � < 1=4 and for minimizing average 
ow time for � < 1=10. The key to these proofs is
constructing instances where any on-line algorithm given insuÆcient extra resources completes less
work by certain critical deadlines than the optimal o�ine algorithm given m speed-1 machines.

We �rst consider the hard-real-time scheduling problem, and we use the following two input
instances. Input instance IN contains m length-1 jobs with laxity 1 at the time of their release
and m

2 length-2 jobs with laxity 2 at the time of their release. The release times of these jobs is 0.
Input instance IN 0 is IN plus m length-1 jobs released at time 1 with zero laxity at the time of
their release.

Lemma 2.19 Let A denote any (1 + �)-speed algorithm where � < 1=5 or any (1 + �)-machine
algorithm where � < 1=4. Then A does not �nish the length-2 jobs in IN by time 2.

Proof: We �rst observe that IN 0 can be legally scheduled on m speed-1 machines which implies
that A must legally schedule IN 0. Simply devote all m machines to the m length-1 jobs of IN in
time interval [0; 1], then devote all m machines to the newly arrived length-1 jobs in time interval
[1; 2], and �nally devote m

2 machines to the m
2 length-2 jobs in time interval [2; 4].

We now bound the amount of processing that A can give the length-2 jobs of IN 0 in the time
interval [0; 1]. Since IN and IN 0 are indistinguishable until time 1, this bound also applies to IN .
The m extra jobs of IN 0 will use m of the (1 + �)m available units of work in the time interval
[1; 2] leaving only �m units of work that can be devoted to the length-1 jobs of IN during the time
interval [1; 2]. Thus, during time interval [0; 1], A must complete (1 � �)m units of processing on
these jobs. Since A can perform at most (1 + �)m units of work during any unit time interval, this
implies that A can devote at most 2�m units of work to the m

2 length-2 jobs in the time interval
[0; 1].

We now bound the amount of processing that the length-2 jobs of IN can receive in the time
interval [1; 2]. Here we need to treat faster machines separately from extra machines, and thus we
achieve distinct lower bounds.

Given m faster machines, the maximum amount of processing each length-2 job can receive in
the time interval [1; 2] is (1 + �) which means that altogether these length-2 jobs receive m

2 (1 + �)
units of process in time interval [1; 2]. Combining this with the 2�m units of work they might
receive in time interval [0; 1], these length-2 jobs receive at most m

2 + 5�
2 m units of processing in

the time interval [0; 2]. If � < 1
5 , the total remaining processing time for these jobs at time 2 is

m� (m2 + 5�
2 m) which is greater than 0, and the faster machine result follows.
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The analysis for extra machines is similar. The di�erence is that in the time interval [1; 2], the
maximum amount of processing each length-2 job can receive is 1 which means that altogether
these length-2 jobs receive m

2 units of processing in time interval [1; 2]. Thus, the total amount
of processing received by the length-2 jobs in time interval [0; 2] is m

2 + 2�m. If � < 1
4 , the total

remaining processing time for these jobs at time 2 is m� (m2 + 2�m) which is greater than 0, and
and the extra machine result follows. 2

We digress for a moment to explain in more detail the main di�erence between faster machines
and extra machines. Faster machines can \catch up" after they have made a mistake whereas extra
machines cannot. In the above example, if the input is IN rather than IN 0, it is a mistake to
perform m� � units of work on the length-1 jobs in time interval [0; 1] because then in time interval
[1; 2], the best any algorithm can do is devote m

2 machines to the length-2 jobs while devoting the
remaining machines to the remaining �m units of processing required by the length-1 jobs. Thus
many of these other machines will be idle for much of this time interval. In the extra-machine case,
no extra work can be done on the length-2 jobs in the time interval [1; 2], but in the faster-machine
case, some extra work, � units to be exact, can be done on each length-2 job in time interval [1; 2].

We now describe how we exploit the fact that no faster-machine or extra-machine algorithm
�nishes all jobs in IN by time 2 given insuÆcient extra resources. Currently, the length-2 jobs
receive at most 2�m units of processing in time interval [0; 1], and they have Æm un�nished work
at time 2. Suppose we release a second copy of IN at time 2. We will show that the length-2 jobs
released at time 2 receive at most (2�� Æ)m units of processing in time interval [2; 3]. Furthermore,
the amount of un�nished work these length-2 jobs have at time 4 will be at least 2Æm. If we continue
to release new copies of IN , we can show that this ripple e�ect continues until the length-2 jobs
released at time 2t for some t � 0 receive no processing in time interval [2t; 2t + 1]. The following
lemma formalizes this intuitive argument.

First, we need to name these input instances consisting of repeated copies of IN . Let Ii for
i � 1 denote the input instance consisting of i copies of IN where copy j is released at time 2(j�1).
Let I 0i for i � 1 denote the input instance Ii plus m length-1 jobs with 0 laxity released at time
2i� 1, one time unit after the last jobs are released in Ii.

Lemma 2.20 Let A denote any (1 + �)-speed algorithm where � < 1=5 or any (1 + �)-machine
algorithm where � < 1=4. Consider input instance In where n � 1. For any i � n � 1, let Æm
denote the amount of un�nished work the length-2 jobs released at time 2(i � 1) have at time 2i.
Then A does at most max(0; (2��Æ)m) work on the length-2 jobs released at time 2i in time interval
[2i; 2i + 1].

Proof: We �rst observe that I 0i+1 can be legally scheduled onm speed-1 machines, so A must legally
schedule I 0i+1. We now bound the amount of processing that the length-2 jobs released at time 2i
of I 0i+1 can receive in the time interval [2i; 2i+1]. Since I 0i+1 and In are indistinguishable until time
2i+ 1, this bound also applies to In. The analysis is almost identical to that of Lemma 2.19.

First, the jobs available at time 2i contain (1 + Æ)m units of work which must be completed by
time 2i + 2 with m units coming from the length-1 jobs released at time 2i and Æm units coming
from the length-2 jobs released at time 2(i � 1). The m zero-laxity jobs of I 0i+1 released at time
2i+ 1 will use m of the (1 + �)m available units of work in the time interval [2i+ 1; 2i+ 2] leaving
only �m units of work that can be devoted to the remaining (1 + Æ)m units of work with deadline
2i+ 2. Thus, during time interval [2i; 2i+1], A must complete (1 + Æ� �)m units of processing on
these jobs. Since A can perform at most (1 + �)m units of work during any unit time interval, this
implies that A can devote at most max(0; (2�� Æ)m) units of work to the m

2 length-2 jobs released
at time 2i in the time interval [2i; 2i + 1]. 2
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We are now ready for the main hard-real-time scheduling result.

Theorem 2.21 There is no on-line (1+�)-speed algorithm for hard-real-time scheduling for m � 2
and even and � < 1=5, and there is no on-line (1+�)-machine algorithm for hard-real-time scheduling
for m � 2 and even and � < 1=4.

Proof: Let A denote any (1 + �)-speed algorithm where � < 1=5 or any (1 + �)-machine algorithm
where � < 1=4. From Lemmas 2.19 and 2.20, it is clear that there exists some input In with
n � 0 such that A does no work on the length-2 jobs released at time 2(n � 1) in time interval
[2(n�1); 2n�1]. This follows because the minimum amount of un�nished work in the length-2 jobs
two units after their arrival grows by a �xed amount with each new copy of IN until this quantity
exceeds 2�m.

We now prove the faster-machine result. We augment In by releasing m length-2 jobs with zero
laxity at time 2n. Since A did not schedule the length-2 jobs released at time 2(n� 1) during time
interval [2(n � 1); 2n � 1], these jobs still require at least 1��

2 m units of work during time interval
[2n; 2n + 2]. Adding in the jobs released at time 2n, a total of 2m + 1��

2 m units of work need
to be completed during time interval [2n; 2n + 2] which exceeds the 2(1 + �)m units of processing
available when � < 1=5. Thus A does not legally schedule this augmented input instance, but this
augmented input instance can clearly be legally scheduled on m speed-1 machines. Thus A is not
a (1 + �)-speed algorithm for � < 1=5, and the faster machine result follows.

We now prove the extra machine result. The analysis is nearly identical. We again augment In
by releasing m length-2 jobs with zero laxity at time 2n. Since A did not schedule the length-2 jobs
released at time 2(n� 1) during time interval [2(n� 1); 2n � 1], these jobs still require at least m

2
units of work during time interval [2n; 2n+2]. Adding in the jobs released at time 2n, a total of 5

2m
units of work need to be completed during time interval [2n; 2n + 2] which exceeds the 2(1 + �)m
units of processing available when � < 1=4. Thus, A does not legally schedule this augmented input
instance, so A is not a (1 + �)-machine algorithm, and the extra machine result follows. 2

We now prove lower bounds for minimizing average 
ow time.

Theorem 2.22 There is no on-line (1 + �)-speed algorithm for scheduling to minimize 
ow times
for � < 1=21 when the number of machines m is an even number � 2.

Proof: The proof is based on the following adversary strategy. De�ne 1̂ = 1
1+� and 2̂ = 2

1+� . At

time 0, m length-1 jobs and m=2 length-2 jobs are released. Between time 0 and time 1̂, an on-line
algorithm using m speed-(1 + �) machines can do at most m units of work. Let mx denote the
amount of work the on-line algorithm completes on the length-2 jobs before time 1̂, and note that
0 � x � 1=2 since there are only m=2 length-2 jobs. If x � 5=21, then m length-1 jobs are released
at time 2̂ (scenario A). Otherwise, m length-1 jobs are released at time 1̂ (scenario B).

Let us �rst analyze scenario A. In analyzing any on-line algorithm, we will focus on three distinct
time intervals: [0; 1̂), [1̂; 2̂), and [2̂;1). During [0; 1̂), no jobs complete, so the 
ow time incurred
by any on-line algorithm is 3m

2 1̂. During [1̂; 2̂), no length-2 jobs complete, so the 
ow time incurred

by any on-line algorithm is at least the total remaining execution time of the length-1 jobs (mx1̂),
plus the total incremental 
ow time of the length-2 jobs (m2 1̂).

Since no new jobs arrive after time 2̂, SRPT is now the optimal strategy. Each length-2 job
receives at least 1 unit of processing (1̂ units of time) during [0; 2̂) because each length-1 job can
run at most 1̂ time. Thus the remaining length-2 jobs have remaining length at most 1 and have
priority no lower than the newly-arrived length-1 jobs in the SRPT schedule. If all the length-2
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jobs ran during all of [1̂; 2̂], then there would be a total of m=2 work done during that time interval.
Therefore, the length-2 jobs have at least m

2 �mx total remaining units of work at time 2̂.
Since the length-2 jobs are scheduled without delay in some optimal schedule, the total in-

cremental 
ow time of the length-2 jobs in [2̂;1) is their total execution time which is at least
(m2 �mx)1̂. Each length-2 job delays exactly one newly arrived length-1 job, so the total delay

incurred by the newly arrived length-1 jobs in [2̂;1) is the total execution time of the length-2 jobs
which is (m2 �mx)1̂. Adding this to their total execution time of m1̂, the total 
ow time incurred

by the newly arrived length-1 jobs in [2̂;1) is at least (m2 �mx)1̂ +m1̂.

Adding all 
ow time terms for all intervals together yields a total 
ow time of at least (4�x)m1̂.
Plugging in the maximum value of x which is 5

21 , this reduces to
79
21m1̂.

Meanwhile, the optimal speed-1 o�ine algorithm will initially devote m
2 machines to the length-

2 jobs from time 0 to time 2 and devote the other m
2 machines to the length-1 jobs from time 0 to

time 2, thus incurring a 
ow time of 5m
2 from time 0 to time 2 for these jobs. Finally, it will devote

m machines to the jobs released at time 2̂ from time 2 to time 3 incurring a 
ow time of m(1+2� 2̂)
= m+ 2�m

(1+�) . Thus, the 
ow time incurred by the optimal algorithm is 7m
2 + 2�m

1+� . Comparing this

to on-line's 
ow time of at least 79
21m1̂, we see that on-line's 
ow time exceeds o�ine's 
ow time if

� < 1
21 .
We now consider scenario B. In this case, when we analyze any on-line algorithm, we will focus

only on two time intervals: [0; 1̂) and [1̂;1). During [0; 1̂), no jobs complete, so the 
ow time
incurred by any on-line algorithm is 3m

2 1̂.

Since no new jobs will arrive after time 1̂, SRPT is now the optimal strategy which means that
the remaining original length-1 jobs have highest priority, the newly arrived length-1 jobs have
second highest priority, and the original length-2 jobs have lowest priority (they each could have
received at most 1 unit of processing by time 1̂).

Since each original length-1 job is scheduled without delay, their total incurred 
ow time in
[1̂;1) is their total execution time which is mx1̂. The execution of each original length-1 job
delays the start of one of the newly arrived length-1 jobs. Thus the total delay incurred by the
newly arrived length-1 jobs during [1̂;1) is at least mx1̂. Adding this to their total execution
time of m1̂, the total 
ow time incurred by the length-1 jobs during [1̂;1) is at least mx1̂ +m1̂.
Finally, no original length-2 jobs can start before time 2̂ since they cannot start until the �rst newly
arrived length-1 job �nishes, and this cannot happen before 2̂. Thus, the total delay incurred by the
length-2 jobs in [1̂;1] is at least m

2 (2̂ � 1̂) = m
2 1̂. Adding this to their total remaining execution

time of (m � mx)1̂, the total 
ow time incurred by the length-2 jobs during [1̂;1] is at least
m
2 1̂ + (m�mx)1̂.

Summing together all terms from interval [1̂;1) and the 
ow time for interval [0; 1̂) yields a
total 
ow time of at least (4+x)1̂m. Plugging in the minimum value of x which is 5

21 , this reduces

to 89
21m1̂.
Meanwhile, the optimal o�ine algorithm will devote m machines from time 0 to time 1 to

the length-1 jobs, m machines from time 1 to time 2 for the newly arrived length-1 jobs, and m
2

machines from time 2 to time 4 for the length-2 jobs. Thus, the 
ow time incurred by the o�ine
algorithm will be m+m(1 + 1� 1̂) + m

2 4 = 4m+ �m
1+� . Comparing this to on-line's 
ow time of at

least 89m
21 1̂, we see that on-line's 
ow time exceeds o�ine's 
ow time if � < 1

21 .

Thus, no matter what on-line does before time 1̂, it cannot guarantee an optimal 
ow time if
� < 1

21 . Thus, the theorem follows. 2
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Theorem 2.23 There is no on-line (1 + �)-machine algorithm for scheduling to minimize 
ow
times for � < 1=10 when the number of machines m is an even number � 2.

Proof: The proof is very similar to that of Theorem 2.22. The adversary strategy is slightly
modi�ed as follows. At time 0, m length-1 jobs and m=2 length-2 jobs are released. Between time 0
and time 1, an on-line algorithm using (1 + �)m speed-1 machines can do at most (1+ �)m units of
work. Let xm be the amount of work the on-line algorithm devotes to the length-2 jobs before time
1 and note that 0 � x � 1=2. If x � 3=10, then m length-1 jobs are released at time 2 (scenario
A). Otherwise, m length-1 jobs are released at time 1 (scenario B).

In scenario A, we focus on three distinct time intervals: [0; 1), [1; 2), and [2;1). Our analysis
is similar to the analysis of scenario A in Theorem 2.22. During time [0; 1), no jobs complete,
which contributes 3m=2 to the 
ow time. If xm work is devoted to the length-2 jobs in [0; 1), then
(1 + � � x)m work can be devoted to the length-1 jobs. Thus, during [1; 2) the incremental 
ow
time is m=2 for the incomplete length-2 jobs and the (x � �)m remaining work from the length-1
jobs. As before, SRPT is an optimal strategy starting at time 2, so the remaining length-2 jobs
have priority and have total remaining length at least m=2 �mx. However, now the longest �m
remaining length-2 jobs will not delay any newly-released jobs (the new jobs will run on the extra
machines). These longest jobs are each at most length 1 and therefore the newly-arrived jobs are
delayed by a total of at least m=2 � xm � �m time. Thus the incremental 
ow time in [2;1) is
m=2 �mx for the remaining processing on the length-2 jobs, m=2 �mx � �m for the forced idle
time of the new jobs, and m for the processing of the new jobs. Thus the total 
ow time incurred
by any on-line algorithm for scenario A is at least (4� x� 2�)m. Plugging in the maximum value
of x which is 3

10 , this reduces to (3710 � 2�)m. Meanwhile, the 
ow time incurred by the optimal
algorithm is 7m

2 . Comparing this to on-line's 
ow time of at least (3710 � 2�)m, we see that on-line's

ow time exceeds o�ine's 
ow time if � < 1

10 .
We now consider scenario B. In this case, when we analyze any on-line algorithm, we will focus

only on two distinct time intervals: [0; 1) and [1;1). During [0; 1), no jobs complete until at least
time 1, so the 
ow time incurred by any on-line algorithm in [0; 1) is 3m

2 . At time 1, the shortest
jobs are the remaining original length-1 jobs followed by the new length-1 jobs followed by the
remnants of the original length-2 jobs (they each could have received at most 1 unit of processing
by time 1). Since there are 3m

2 original length-2 jobs and new length-1 jobs and only (1 + �)m
machines, this implies that each of the original length-1 jobs will delay at least one of the original
length-2 jobs or one of the new length-1 jobs. Furthermore, m2 �m� of the original length-2 jobs will
be delayed by the new length-1 jobs for a full time unit. Thus, the 
ow time incurred by employing
the SRPT strategy at time 1 is at least m(x� �)+m(x� �)+m+(m2 �m�)+ (m�mx) where the
�rst term is the incremental 
ow time of the original length-1 jobs, the second term is the delay
these jobs cause for other jobs, the third term is the processing time of the new length-1 jobs, the
fourth term is the delay incurred by the original length-2 jobs as they wait for the new length-1
jobs to �nish, and the �fth term is the remaining processing time of the length-2 jobs. Thus, the
total 
ow time incurred by any on-line algorithm for scenario B is at least (4 + x� 3�)m. Plugging
in the minimum value of x which is 3

10 , this reduces to (
43
10 � 3�)m.

Meanwhile, the optimal o�ine algorithm will devote m machines from time 0 to time 1 to the
length-1 jobs, m machines from time 1 to time 2 for the new length-1 jobs, and m

2 machines for the
length-2 jobs from time 2 to time 4. Thus, the 
ow time incurred by the o�ine algorithm will be
4m. Comparing this to on-line's 
ow time of at least (4310 � 3�)m, we see that on-line's 
ow time
exceeds o�ine's 
ow time if � < 1

10 .
Thus, no matter what on-line does before time 1, it cannot guarantee an optimal 
ow time if

� < 1
10 . Thus, the theorem follows. 2
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3 On-line preemptive weighted 
ow time

In this section we give an on-line 2-speed algorithm for scheduling preemptively to minimize average
weighted 
ow time on a single processor. No non-trivial polynomial-time algorithm is known for
this problem. Our algorithm builds upon the work of Hall et. al. [15] which uses a variety of
linear programming formulations to design approximation algorithms to minimize

P
wjCj. As we

observed earlier, while an optimal algorithm for
P
wjCj is also an optimal algorithm for

P
wjFj , a

�-approximation algorithm for
P
wjCj in no way is guaranteed to be a �-approximation algorithm

for
P
wjFj . We �rst present an o�ine algorithm and then convert it into an on-line algorithm.

Our algorithm is a simple greedy algorithm; at any time t, it schedules the available job with
highest priority. We now de�ne how our algorithm assigns priorities to jobs and what an available
job is.

We use the mean busy time of a job for a given schedule, de�ned, for example, in [9]. Given a
schedule for which job j ends at time T , let Ij(t) = 1 if job j is running at time t and let Ij(t) = 0
otherwise. Then the mean busy time Mj is the average of all the times when job j is processing:

Mj =
1

pj

Z T

rj

Ij(t)tdt:

To determine priorities, we compute the optimal solution to the following linear program R
given job set I and denote this solution M = (M1; : : : ;Mn). Job i has priority over job j if
M i < M j.

R:

Minimize
Pn

j=1wj(Mj +
1
2pj) subject to

X
j2S

pjMj � p(S)(rmin(S) +
1

2
p(S)) for each S � I (6)

where

p(S) =
X
j2S

pj

rmin(S) = min
j2S

rj :

The following lemma, proved in [11], shows that the computed objective
Pn

j=1wj(M j +
1
2pj) is

a lower bound on the optimal weighted completion time (which di�ers from the optimal weighted

ow time by

Pn
j=1wjrj, a constant).

Lemma 3.1 [11] Given a preemptive schedule for instance I on one machine, let C1; : : : ; Cn denote
the job completion times in this schedule, and let M1; : : : ;Mn denote the mean busy times in this
schedule. Then the Mj for 1 � j � n satisfy the inequalities given by (6) and Cj �Mj +

1
2pj.

While R has an exponential number of constraints, Goemans et al.[11] show the following greedy
algorithm computes an optimal solution to R: starting at time zero, always schedule the available
job j with highest wj=pj. Job j is available if it has been released and has not been completed.
This schedule can be computed in O(n log n) time for n jobs; sort the jobs by release date and
maintain a priority queue keyed in wj=pj . We must update the priority queue O(n) times (each
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time a job is released or completed). Given this schedule, we can compute the mean busy time of
each job in O(n) total time, since there are only O(n) total job pieces.

For our algorithm, a job Jj is available at time t if rj � t and the amount of processing received
by job Jj at time t is no more than pj=2; that is, our algorithm only processes one-half of each job.
Clearly, if our algorithm is given a speed-2 machine, it will have exactly the same behavior and
fully process each job. We call this algorithm Preemptively-Schedule-Halves-by-M j .

Lemma 3.2 Let M1 � � � � � Mn be an optimal solution to R, and let eC1; : : : ; eCn denote the
completion times of the job halves found by Preemptively-Schedule-Halves-by-M j. Then, for 1 �
j � n, eCj �M j.

Proof: Let Ij = fJ1; : : : ; Jjg, where the jobs are labeled by priority (increasing M j). Let t be the
latest time before eCj at which the machine is not processing a job in Ij just before time t. If no
such time exists, t = 0. Let Sj � Ij denote the set of jobs that are at least partially processed in
the interval [t; eCj].

We �rst show that eCj � rmin(Sj) +
1
2p(Sj) for 1 � j � n. We observe that all jobs in Sj were

released at time t or later; otherwise, they would be running just before time t since the jobs in Ij
and thus Sj have priority over all other jobs. Futhermore, at least one of the jobs Jl 2 Sj begins
processing at time t, and the processor was not working on any job in Ij just prior to time t. Since
the jobs in Sj have priority over all jobs not in Ij , this implies rj = t which implies t = rmin(Sj).
Since the processor is always processing a job in Sj from time t to time eCj and it only schedules
half of each job, we conclude eCj � rmin(Sj) +

1
2p(Sj):

We now will prove that M j � rmin(Sj) +
1
2p(Sj) for 1 � j � n. Because Sj � Ij , for all

k 2 Sj , Mk � M j . Thus, M jp(Sj) � P
k2Sj pkMk: From inequality (6) applied to set Sj , we getP

k2Sj pkMk � rmin(Sj)p(Sj)+
1
2p(Sj)

2: Transitivity gives usM jp(Sj) � rmin(Sj)p(Sj)+
1
2(p(Sj))

2;

which leads to M j � rmin(Sj) +
1
2p(Sj). Thus

eCj �M j , as we wished to show. 2

We convert Preemptively-Schedule-Halves-by-M j into an on-line algorithm as follows. At any
time, we have a set of released jobs. We form the linear program for these jobs, solve it to compute
priorities on jobs, and greedily schedule according to these priorities until a new job arrives. This
on-line algorithm performs identically to the o�ine algorithm because the relative priorities of jobs
that arrive before any time t are una�ected by the arrival of jobs after time t [10].

Theorem 3.3 Preemptively-Schedule-Halves-by-M j is an on-line 2-speed algorithm for scheduling
preemptively to minimize

P
wjFj on 1 machine.

Proof: This follows from Lemmas 3.1 and 3.2. 2

4 On-line nonpreemptive scheduling

In this section, we consider the signi�cantly-more-diÆcult problem of nonpreemptive scheduling.
We focus on the problems of minimizing total 
ow time and minimizing total weighted 
ow time,
though we do consider the problem of nonpreemptive scheduling with deadlines as well. We give
an on-line O(log�)-machine algorithm for minimizing total 
ow time, an O(log�)-machine 2-
approximation algorithm for minimizing total weighted 
ow time, and an 8-speed O(log�)-machine
algorithm for the hard-real-time scheduling problem. We then give an input instance in which the
gap between the optimal c-machine nonpreemptive schedule's 
ow time (for any constant c) and
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the optimal 1-machine preemptive schedule's 
ow time is polynomial in the number of jobs in the
input instance. This example shows that the analysis of any cm-machine nonpreemptive algorithm
for constant c will require a stronger lower bound on the optimal nonpreemptive 
ow time on m
machines.

4.1 Algorithms

We construct extra-machine nonpreemptive algorithms for minimizing 
ow time and weighted 
ow
time. We �rst give a 2-machine algorithm for minimizing 
ow time if 4(I) � 2, and we give a
2-machine 2-approximation algorithm for minimizing weighted 
ow time if 4(I) � 2. We then
use these special algorithms to construct O(log�)-extra-machine algorithms which are optimal for
arbitrary input instances.

4.1.1 Input instances with similar sized jobs

In this section, we will only consider input instances where 4(I) � 2. Furthermore, we assume
that pmax and pmin, the longest and shortest jobs in I, are known a priori.

The following algorithms will be used in the design or analysis of our on-line algorithms:

� O - the optimal nonpreemptive m-machine algorithm,

� ~O - the optimal preemptive m-machine algorithm,

� G - the greedy algorithm which, when a machine is idle, schedules any available job, and

� Gp - a modi�ed greedy algorithm that, when a machine becomes idle, schedules the available
job with the largest weight at the next time that is an integer multiple of p.

The schedules produced by these algorithms on an input instance I will be denoted O(I); ~O(I); G(I);

andGp(I), respectively. We use the notation F
X(I)
j to denote the 
ow time of job Jj when algorithm

X is run on input I, and S
X(I)
j to denote the starting time of job Jj when algorithm X is run on

input I.
We �rst consider the unweighted case where wj = 1 for 1 � j � n.

Lemma 4.1 Let p be a positive integer. Let I be a 
ow-time problem with wj = 1 and pj = p for

all jobs j. Then
P

j F
G(I)
j =

P
j F

~O(I)
j .

Proof: The greedy nonpreemptive algorithm G is optimal even if preemption is allowed, since if a
job is held up for the release of another job of the same size, the two can be swapped, improving
the 
ow time. 2

We now consider the case when 4(I) � 2.

Lemma 4.2 Let p be a positive integer. Let I be a 
ow-time problem on m machines with wj = 1
and p � pj � 2p for all jobs Jj. There is an on-line algorithm U , run on 2m machines, that given

input I produces a schedule with
P

j F
U(I)
j �P

j F
~O(I)
j .

Proof: Let I 0 denote a modi�ed instance of I where all pj = p. Note, p is known a priori. Now
consider an optimal preemptive schedule for instance I. If we remove the last pj � p units of each
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job Jj from the schedule, the 
ow time of job Jj will be reduced by at least pj � p and we will
obtain a feasible, though not necessarily optimal, schedule for instance I 0. Therefore, we have that

F
~O(I0) � F

~O(I) �
X
j

(pj � p): (7)

By Lemma 4.1, G(I 0) has no preemptions, but it is an optimal preemptive schedule for I 0.
We now show that given 2m machines, we can create an on-line schedule U(I) such that S

U(I)
j =

S
G(I0)
j for 1 � j � n. We do this by using two machines to process the jobs assigned to one machine

in G(I 0); more speci�cally, jobs which are assigned to a speci�c machine in G(I 0) are alternately
placed on the two corresponding machines in U(I). Because the processing times at most double
when changing from I 0 to I, the alternate placement insures that no jobs overlap.

Since S
U(I)
j = S

~O(I0)
j for 1 � j � n, we have

FU(I) =
X
j

S
U(I)
j +

X
j

pj �
X
j

rj

=
X

(S
~O(I0)
j + p� rj) +

X
j

(pj � p)

= F
~O(I0) +

X
j

(pj � p)

� F
~O(I);

where the last inequality follows from Equation 7.
2

We now consider minimizing weighted 
ow time. We again begin by focusing on the case when
all jobs have the same processing time p. In this case greedy is not an optimal algorithm, but we
show that Gp is a 2-approximation.

Lemma 4.3 Let p be a positive integer. Let I be a 
ow time problem with pj = p for all jobs j.
Then X

j

wjF
Gp(I)
j �

X
j

wj(F
O(I)
j + p) � 2

X
j

wjF
O(I)
j

.

Proof: Let Op(I) be an optimal schedule in which each job is required to start at a time that

is an integral multiple of p. We �rst observe that
P

j wjF
Op(I)
j � P

j wj(F
O(I)
j + p). To see this,

transform O(I) by moving each job later so that it begins at an integral multiple of p. Clearly this
transformed schedule is valid, each job begins at an integral multiple of p, and the completion time
of each job has increased by no more than p.

We now show that
P

j wjF
Gp(I)
j =

P
j wjF

Op(I)
j . Observe that as long as we are restricting

ourselves to schedules in which each job starts at a multiple of p, we may round all release dates
up to the next multiple of p without changing the set of feasible schedules. We thus have an
input instance in which all pj = p and all rj are multiples of p, and hence we can divide all pj
and rj by p to obtain an instance for which pj = 1 and rj are integral. This scales the objective
function by exactly p also. For this problem it is known that the greedy algorithm is optimal, soP

j wjF
Gp(I)
j =

P
j wjF

Op(I)
j �P

j wj(F
O(I)
j + p).

Since F
O(I)
j � p for all j, this means

P
j wj(F

O(I)
j + p) � 2

P
j wjF

O(I)
j . Thus the result follows.

2
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We now use a proof similar to that of Lemma 4.2 to bound the performance of an on-line
(2m)-machine version of Gp, on the input instances where p � pj � 2p for some p.

Lemma 4.4 Let p be a positive integer. Let I be an input instance with p � pj � 2p. There is an

on-line algorithm U that, given 2m machines, produces a schedule U(I) such that
P

j wjF
U(I)
j �

2
P

j wjF
O(I)
j .

Proof: Form I 0 from I by rounding the processing times down to p. Note, p is known a priori.
Using the two machines with alternating job placement technique of Lemma 4.2, we create an

on-line schedule U(I) where S
U(I)
j = S

Gp(I0)
j for 1 � j � n. Since all jobs in I 0 have processing time

exactly p, this implies that S
Gp(I0)
j = F

Gp(I0)
j � p + rj for 1 � j � n. Furthermore, from Lemma

4.3,
P

j wjF
Gp(I0)
j �P

j wj(F
O(I0)
j + p).

Combining these bounds, we get that

X
j

wjF
U(I)
j =

X
j

wj(S
U(I)
j + pj � rj)

=
X
j

wj(S
Gp(I0)
j + pj � rj)

=
X
j

wj(F
Gp(I0)
j � p+ pj)

�
X
j

wj(F
O(I0)
j + pj)

�
X
j

wj(F
O(I)
j + pj)

�
X
j

wjF
O(I)
j +

X
j

wjpj

� 2
X
j

wjF
O(I)
j

2

Note all the results of this subsection also hold with speed-2 machines instead of doubling
the number of machines. However, the extra-machine results of the next subsection cannot be
transformed into equivalent faster-machine results.

4.1.2 Input instances with arbitrarily-sized jobs

We now give algorithms for input instances I where 4(I) is arbitrarily large. We again �rst
consider unweighted 
ow time and then consider weighted 
ow time. We split the jobs into groups
of similarly-sized jobs and put each group on its own machine. The number of groups is logarithmic
in �(I), and for each group we can use the algorithms for when the processing times are all between
p and 2p.

Let pmin = minj pj and pmax = maxj pj. Recall that 4 is de�ned as max pj=min pj, the ratio
between the minimum and maximum processing times.

Theorem 4.5 There is an on-line 2 dlog4e-machine algorithm for minimizing total 
ow time and
an on-line 2 dlog4e-machine 2-approximation algorithm for minimizing total weighted 
ow time
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assuming pmin and pmax are known a priori. If pmin and pmax are not known, the extra machine
constant changes from 2 dlog4e to 2(dlog4e+ 1) for both total 
ow time and total weighted 
ow
time.

Proof: We divide the jobs into dlog4e groups, where the ith group contains all the jobs with
2i�1pmin � pj � 2ipmin where each group is assigned 2m machines. Within each group, processing
times di�er by at most a factor of 2, so Lemmas 4.2 and 4.4 can be applied. Since we assume
pmin and pmax are known a priori, the �rst two results follow. For the unweighted case, this means
our nonpreemptive algorithm uses 2m dlog4e machines to achieve the the optimal preemptive m-
machine 
ow-time.

If pmin and pmax are not known a priori, we use the processing time p1 of the �rst job released
to establish our groups. That is, the division points will be at 2ip1 where i may be negative since
p1 may not be the smallest job. Given that p1 may not be 2ipmin for some integral value of i, we
potentially need one extra group of 2m machines to insure we span pmin and pmax, and the �nal
result follows. 2

If we do not have 2(dlog4e + 1)m machines, we can adapt the algorithm for minimizing 
ow
time into an O(logn)-machine (1 + o(1))-approximation algorithm.

Corollary 4.6 There is an on-line O(log n)-machine (1 + o(1))-approximation algorithm for min-
imizing total 
ow time and an on-line O(log n)-machine (1 + o(1))-speed algorithm for minimizing
total 
ow time.

Proof: First assume we know pmax and n a priori and that we have (6 log n)m+ 1 machines. We
now utilize only the 3 log n largest groups. More precisely, we devote 2m machines for jobs in the
ranges

(pmax; pmax=2); (pmax=2; pmax=4); : : : ; (2pmax=n
3; pmax=n

3)

for a total of (6 log n)m machines. We schedule these 3 log n groups optimally using Lemma 4.2.
The �nal machine is devoted to the remaining small jobs. The total amount of processing required
by these small jobs is no more than n(pmax=n

3) = pmax=n
2. Therefore, each job has 
ow time no

more than pmax=n
2, and the total 
ow time is no more than n(pmax=n

2) = pmax=n. Since the total

ow time for the original input is clearly at least pmax, this multiplies the total 
ow time by a
1 + o(1) factor.

We now remove the assumption that pmax and n are known a priori. At any point in time, we
use the largest processing time seen so far as our estimate of pmax. We also use p1, the processing
time of the �rst job, to de�ne the division points for our groups as in Theorem 4.5. This increases
the number of groups needed from 3 log n to 3 log n + 1. Note we do not need an estimate of n.
We simply cover as many groups as we have machines. If pmax is revised upwards at any time and
certain job groups are reassigned to the small job category, then the 2m machines which had been
assigned to those jobs �nish processing any jobs currently being run and then are reassigned.

Suppose we have at least (6 log n+ 2)m+ 1 machines (even though we do not know the actual
value of n). Then each time the estimate of pmax is revised, each large job waits at most pmax=n

3

time for the machine to �nish processing the small job it is working on. Clearly, the estimate of
pmax can change at most n times. Thus, the total extra 
ow time for the large jobs incurred by
these changes in the estimate of pmax is at most n2pmax=n

3 = pmax=n. Again, this multiplies the
total 
ow time by a 1 + o(1) factor and the �rst result follows.
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To derive the second result, suppose we use speed-( n
n�2) machines. This means the largest job

now only takes pmax
n�2
n = pmax � 2pmax

n time to process. Since the jobs are scheduled nonpreemp-

tively, the 
ow time of this largest job is reduced by 2pmax
n which is enough to absorb the total 
ow

time of the small jobs and the delays the small jobs impose on the large jobs. 2

Unfortunately, this technique does not work for weighted 
ow time as it might be the case that
all the weight is on the jobs with small processing times.

We can also apply these techniques to the problem of nonpreemptive scheduling with deadlines.

Lemma 4.7 Nonpreemptive EDF is an 8-speed algorithm for the hard-real-time scheduling problem
when pmax � 2pmin.

Proof: We �rst note that Theorem 2.4 tells us that that preemptive EDF is a 2-speed algorithm
for the hard-real-time scheduling problem in general, so it is also a 2-speed algorithm for the special
case where pmax � 2pmin. To simplify notation, we use p to represent pmin. We now show that this
implies that nonpreemptive EDF is a 8-speed algorithm for the hard-real-time scheduling problem
where pmax � 2p. Note, we shall assume that preemptive EDF and nonpreemptive EDF have
consistent ways for breaking ties when two or more jobs have identical deadlines.

For any input instance I, let E(I) denote the schedule produced by preemptive EDF using m

speed-2 machines, let M
E(I)
j denote the time when the second half of job j begins being processed

in E(I), let N(I) denote the schedule produced by nonpreemptive EDF using m speed-8 machines,

and let S
N(I)
j denote the start time of job j in N(I). Our goal is to show that for all jobs j,

S
N(I)
j �M

E(I)
j . This proves our result as the completion time of job j inN(I) is exactly S

N(I)
j +pj=8

whereas the completion time of job j in E(I) is at least M
E(I)
j + (pj=2)=2 � S

N(I)
j + pj=4.

Renumber jobs in nondecreasing order ofM
E(I)
j breaking ties by deadlines with earlier deadlines

having higher priority. Consider any job j and assume that S
N(I)
i � M

E(I)
i for all i < j. We will

show that S
N(I)
j �M

E(I)
j .

Since M
E(I)
j � rj + pj=4, if S

N(I)
j � rj + pj=4, we have S

N(I)
j �M

E(I)
j . Now consider the time

interval [rj + p=4; S
N(I)
j ) in schedule N(I). During this time period, all m machines must be busy

or else job j would be scheduled earlier. Furthermore, all jobs being processed during this time
interval must have higher priority than job j. This follows as the only reason a job j0 with lower
priority than job j would be running and job j would not is that j0 was already running at time rj .
Since jobs have length at most 2p and nonpreemptive EDF has speed-8 machines, any job running
at time rj must be �nished by time rj + p=4.

Consider any job j0 processed inN(I) from time rj+p=4 to time S
N(I)
j . Since S

N(I)
j0 �M

E(I)
j0 , job

j0 cannot be completed before time S
N(I)
j0 +pj0=8 in E(I) as one half of job j

0 is unprocessed at time

S
N(I)
j0 and we assume preemptive EDF only has speed-2 machines. Thus, job j0 would have priority

over job j in E(I) in time interval [S
N(I)
j0 ; S

N(I)
j0 + pj=8]. Since this holds for all jobs j

0 processed

in N(I) in time interval [rj + p=4; S
N(I)
j ) and all processors are occupied in this time interval in

N(I), this implies that job j receives no processing in E(I) in time interval [rj + p=4; S
N(I)
j ).

Therefore, preemptive EDF could only schedule job j in time interval [rj ; rj + p=4) prior to

time S
N(I)
j . Since preemptive EDF has only speed-2 machines, this means that at least half of job

j remains to be processed at time S
N(I)
j . This means that S

N(I)
j � M

E(I)
j and the result follows.

2
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Theorem 4.8 There is a nonpreemptive 8-speed dlog4e-machine algorithm for the hard-real-time
scheduling problem when pmin and pmax are known a priori. If pmin and pmax are not known a
priori, the extra machine constant changes from dlog4e to dlog4e+ 1.

Proof: Let I be a feasible input instance given m speed-1 machines. Divide the jobs in I into
dlog4e groups where the ith group contains all jobs with 2i�1pmin � pj � 2ipmin and each group
is assigned m speed-8 machines. Within each group, processing times di�er by at most a factor
of 2, so Lemma 4.7 applies which means we can schedule these jobs so that all complete by their
deadlines using nonpreemptive EDF. Since we assume pmin and pmax are known a priori, the �rst
result follows. If pmin and pmax are not known a priori, we use the processing time p1 of the �rst
job released to establish our groups. We potentially need one extra group of m speed-8 machines
to insure we span pmin and pmax, and the second result follows. 2

4.2 Lower Bounds

We now present a theorem that indicates that it may be diÆcult to improve upon our results. A
fundamental lower bound for nonpreemptive average 
ow time is the optimum for the corresponding
preemptive problem; in this section we show that any extra-machine algorithm whose analysis is
based on a comparison to this lower bound must do poorly. Speci�cally, we give a lower bound
on the power of additional machines when we are nonpreemptively scheduling and wish to achieve
the same 
ow time as the optimal preemptive schedule. Obviously, there are input instances where
the optimal nonpreemptive 
ow time on c machines can be signi�cantly better than the optimal
preemptive 
ow time on a single machine. We now show the surprising result that there are input
instances where the optimal nonpreemptive 
ow time on c machines is signi�cantly worse than the
optimal preemptive 
ow time on a single machine for any natural number c. This generalizes the
result of [20], who show that there exist input instances where the optimal nonpreemptive 
ow
time on a single machine may be �(n1=2) times greater than the optimal preemptive 
ow time on
a single machine.

Theorem 4.9 There exists a family of input instances I(c;N) with �(N) jobs such that the optimal

nonpreemptive 
ow time for input instance I(c;N) on c machines is 
(N
1

2c+1�2 ) times greater than
the optimal preemptive 
ow time for input instance I(c;N) on one machine, for large enough N .

Proof: Given N and constant c, de�ne n = N
1

2c+1�2 . We will construct instance I(c;N) with
between N and 2N jobs such that the optimal preemptive 
ow time for I(c;N) on one machine is
�(N) while the optimal nonpreemptive 
ow time for I(c;N) on c machines is 
(Nn).

The instance I(c;N) is constructed using c + 1 di�erent types of jobs which we number from
0 to c. For each job type i, 0 � i � c, there are num(i) = n2

i+1�2 di�erent jobs, each of length
len(i) = N

num(i) . Jobs of type i arrive every n len(i) time units starting at time 0 until all of the

num(i) type i jobs have arrived. A key property of instance I(c;N) is that during any time interval
of length len(i) between time 0 and time Nn, Nn

len(i) type i+ 1 jobs arrive.

We �rst show that the optimal preemptive 
ow time for I(c;N) on one machine is at most
2(c+1)N assuming c=n � 1=2; note the sum of the lengths of all jobs is (c+1)N . To simplify the
proof, we analyze the shortest processing time (SPT) algorithm rather than the optimal shortest
remaining processing time (SRPT) algorithm. We will show that SPT �nishes all jobs j by time
rj + 2pj . The upper bound of 2(c + 1)N on the 
ow time for SPT will then follow. The SPT
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algorithm is simpler to analyze because a type l job always has priority over a type i job for
0 � i < l � c.

Consider any job j released at time t, and assume that any job j0 with rj0 < rj and pj0 � pj
�nishes by time rj0 +2pj0 . We will show that job j completes by time rj +2pj. Let job j be a type
i job where 0 � i � c. We �rst observe that one type l job is also released at time t for i < l � c.
This follows from the structure of the input instance. We next observe that the previously released
type l job for i < l � c was released at time t � n len(l). By our assumption, this job completes
by time t � (n � 2)len(l). Since c=n � 1=2 and c � 1, this means n � 2 which means that this
previously released type l job completes by time t. Therefore the only jobs that can delay job j
during time interval [t; t+ 2pj ] are the higher-priority jobs released during this time interval.

We now show that the total processing time of all jobs released during time interval [t; t+ 2pj)
with higher priority than job j is exactly pj. Combining this with our previous observation that all
higher priority jobs released before time t complete by time t, we conclude that job j will complete
by time t+ 2pj .

We again observe that one type l job is also released at time t. Furthermore, a second type l
job is released at time t+2pj for i < l � c. These two facts along with the fact that type l jobs are
released every n len(l) time units imply that the total processing time of all type l jobs released in

the time interval [t; t + 2pj) =
2pj
n for i < l � c. Thus, during time interval [t; t + 2pj), the total

processing time of higher priority jobs is exactly 2(c � i)pj=n for 0 � i � c. This is no more than
2cpj=n which is no more than pj since c=n � 1=2. Thus the upper bound of 2(c + 1)N on SPT's

ow time follows.

We now show that the optimal nonpreemptive 
ow time for I(c;N) is 
(Nn). We do this by
showing, for each k, 1 � k � c, that there must be some time between time 0 and time Nn during
which k jobs, one type i job for 0 � i < k, must be run simultaneously for len(k � 1) time or else
the nonpreemptive 
ow time is 
(Nn).

We prove this by induction on k. For the base case k = 1, this means the one type 0 job must
complete execution before time Nn or else the 
ow time of the schedule is 
(Nn). This is clearly
true since if the one type 0 job which is released at time 0 does not complete before time Nn, its

ow time is Nn.

For the inductive case, assume we have shown, for 1 � k < c, that there exists a time interval
from time 0 to timeNn during which k jobs, one type i job for 0 � i < k, must be run simultaneously
for len(k � 1) time or else the nonpreemptive 
ow time is 
(Nn) We now show this must hold as
well for k + 1.

Consider the time interval of length len(k� 1) during which k jobs are running simultaneously.
From the key property we described earlier, we know that Nn

len(k�1) type k jobs are released during
this time interval. If none of these jobs complete before the end of this time interval, the 
ow time
of these jobs is �(Nn), since these jobs are released evenly through the interval, and therefore at
least half of them will wait len(k � 1)=2 units. Therefore, one of these jobs must complete before
the end of this time interval. Since these jobs arrived after the beginning of the interval, this implies
there exists a time interval from time 0 to time Nn during which k + 1 jobs, one type i job for
0 � i � k, is running simultaneously for len(k) = len((k + 1) � 1) time. Thus, we have shown the
property holds for k + 1 as well and the inductive case is proven.

Therefore, we know either the optimal nonpreemptive schedule has 
ow time at least Nn or
there must be some len(c� 1)-time interval prior to time Nn when c jobs execute simultaneously
on the c machines. Therefore, the Nn

len(c�1) type-c jobs that arrive during this time interval cannot
begin execution until this interval ends. This means these jobs have a 
ow time of at best �(Nn).
Thus, the optimal nonpreemptive 
ow time for I(c;N) is 
(Nn). 2
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We now show that having faster machines as well as extra machines does not fundamentally
change the result. Thus the logarithmic-machine speed-(1 + o(1)) algorithm of Corollary 4.6 pro-
duces a nonpreemptive schedule with 
owtime potentially polynomially better than the optimal
speed-2 schedule for any constant number of machines.

Corollary 4.10 There exists a family of input instances I(c1; c2; N) with �(N) jobs such that
the optimal nonpreemptive 
ow time for input instance I(c1; c2; N) on c1 speed-c2 machines is


(N
1

2c1+1�2 =c22) times greater than the optimal preemptive 
ow time for input instance I(c1; c2; N)
on one speed-1 machine, for large enough N .

Proof: We de�ne I(c1; c2; N) = I(c1; N) and the proof of Theorem 4.9 applies mostly unchanged.
The only di�erence the speed-c2 machines makes is that we now focus on intervals of length len(i)=c2
rather than intervals of length len(i) when analyzing the nonpreemptive algorithm. The key prop-
erty of instance I(c1; c2; N) is now that during any time interval of length len(i)=c2 between time
0 and time Nn, Nn

len(i)c2
type-(i + 1) jobs arrive. This introduces a c22 factor in the denominator of

the optimal nonpreemptive 
ow time since we now have c2 fewer jobs and the time they are in the
system is reduced by a factor of c2 as well. 2

We close this section on nonpreemptive scheduling by observing that the nonpreemptive setting
is fundamentally di�erent than the preemptive setting with respect to extra resource results. In
particular, while additional speed is always as good as additional machines in the preemptive
setting, this is not the case in nonpreemptive scheduling.

Theorem 4.11 There exists an input instance I such that the optimal nonpreemptive 
ow time
given one speed-c machine where c � n1=4�� and � > 0 is polynomially larger than the optimal
preemptive 
ow time given one speed-1 machine.

Proof: We utilize the input instance from [20]. In this input, there is a single job of length n
which is released at time 0 and n jobs of length 1 where the ith such job is released at time i

p
n

for 1 � i � n.
For this set of jobs, the optimal preemptive schedule is to run the large job whenever it is the

only job in the system and to preempt it to run a short job whenever they arrive. It is easy to see
this results in a 
ow time of 2n +

p
n+ 1 as the large job will be delayed by

p
n+ 1 of the short

jobs.
Now consider a nonpreemptive algorithm given one speed-c machine. If the big job is not run

to completion before time n
p
n, it alone incurs a 
ow time of at least n

p
n which is �(

p
n) times

the optimal preemptive 
ow time. On the other hand, if it runs to completion before time n
p
n,

it requires n=c time to run to completion during which n
c
p
n
jobs are released. The total 
ow time

incurred by these jobs as they wait for this long job to complete will be �
�

n
c
p
n
n
c

�
= �

�
n3=2

c2

�
.

Thus, if c = n1=4�� for � > 0, then the total 
ow time incurred by these delayed size-1 jobs will be
�(n1+�

2
) which is �(n�

2
) times the optimal preemptive 
ow time. 2

Now consider the optimal nonpreemptive schedule for this input instance given two speed-1
machines. One machine runs the big job and the other machine runs all the length-1 jobs. The

ow time is actually 2n which is better than the optimal preemptive 
ow time on one machine.
Thus, this example demonstrates that in the nonpreemptive setting, unlike the preemptive setting,
faster machines can be much less e�ective than extra machines.
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5 Translating faster machine results to stretch results

In this section we show how algorithms for minimizing average 
ow time in the faster-machine
model translate to algorithms on machines of the same speed for stretched input instances.

Theorem 5.1 If A is an s-speed �-approximation algorithm for minimizing average 
ow time in
any model (preemptive or nonpreemptive, clairvoyant or nonclairvoyant, on-line or o�ine), then
there exists an algorithm A0 which is an s-stretch (�s)-approximation algorithm for minimizing
average 
ow time.

Proof: Remember that for any input instance I, Is is the identical input instance except job Ji
has release time ris for 1 � i � n. At any time ts, A0 behaves exactly as A did at time t. Because
of the above relationship between I and Is, A0 is well de�ned.

Let Cj and Fj denote the completion time and 
ow time, respectively, of job Jj whenA schedules
input instance I, and C 0

j and F 0
j denote the completion time and 
ow time, respectively, of job Jj

when A0 schedules input instance Is. We have C 0
j = sCj for 1 � j � n. Combining this with the

above release time relationship, we see that F 0
j = sFj for 1 � j � n, and the result follows. 2

Note the theorem holds for any scheduling model and leads to the following series of results.

Corollary 5.2 For the problem of minimizing average 
ow time on a single processor when execu-

tion times are unknown until they complete, the Balance algorithm [17] is an s-stretch
�
s+ s

s�1
�
-

approximation algorithm when 1 � s � 2 [17], and it is an s-stretch 2-approximation algorithm
when s � 2 [5].

Corollary 5.3 SRPT is a (2 � 1=m)-stretch (2 � 1=m)-approximation algorithm for minimizing
average 
ow time on multiple processors.

Corollary 5.4 The algorithm Preemptively-Schedule-Halves-by-M jis a 2-stretch 2-approximation
algorithm for minimizing average weighted 
ow time on a single processor.

Note faster-machine results for real-time scheduling extend to stretched-input results for real-
time scheduling if and only if the deadlines of jobs are multiplied by a factor of s as well. Also,
while extra-machine results translate to stretched input results in a preemptive environment, extra-
machine results do not seem to translate to stretched-input results in a nonpreemptive environment.
Thus, our results in Section 4 do not translate into stretched-input results for nonpreemptive
scheduling.
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