1. Pseudo-code — describe algorithms

2. Asymptotic notation — discuss efficiency

3. Design techniques — design algorithms

The sorting problem

Input: A sequence of n numbers (aq,ds,...,a,).

Output: A permutation (reordering) (a}, a3, ..., a,) of the input sequence such
thata] <a, <--- <a,,.

Insertion Sort

True at Initialization
* Maintained during each iteration of the loop
for j = 2to A.length * Itand termination condition implies correctness
key = A[]]
// Insert A[j] into the sorted sequence A[l .. — 1].
1 = j —1
while i > 0 and A[i] > key
A[l + 1] = AJi]
I =1—1
Ali + 1] = key

INSERTION-SORT (A)

0N DN B Wi —

Loop invariants to show correctness (of loops)

At the start of each iteration of the for loop of lines 1—8 the subarray
A[l .. j —1] consists of the elements originally in A[1.. j — 1], but in sorted
order.

A model for analyzing running times
The Random Access Machine (RAM) model [p 23-24]

Assume instructions commonly found on most real computers take constant time
per instruction

* Arithmetic: add, subtracivide, remainder, floor, ceiling). Alsc
shift left/shift right (good {SFTitiplying/dividing by 2%).

* Data movement: load, store, copy.

* Control: conditional/unconditional branch, subroutine call and return.

There 1s a limit on the word size: when working with inputs of size n, assume
that integers are represented by c lgn bits for some constant ¢ > 1. (Ign is a
very frequently used shorthand for log, .)

* ¢ > | = we can hold the value of » = we can index the individual elements.
* ¢ 1s a constant = the word size cannot grow arbitrarily.

A model for analyzing running times

An algorithm’s running time depends upon input size and input value
* Takes more time to sort more elements
e Usually, size is the number of elements in the input
 Sometimes, (e.g., number problems) the number of bits
needed
* Sometimes, multiple parameters (e.g., graphs)

 [WEe’ll see that] Insertion sort takes least/ most time on sorted/

reverse-sorted input

A model for analvzing running

For each j, let t; denote the number of times the while test is evaluated

INSERTION-SORT(A)
I for j = 2to A.length

2

oo - ON WU B W

key = AlJ]
// Insert A[j]into the sorted sequence A[l..j —1].
i=j-1
while i > 0 and A[i] > key
Ali +1] = Ali]
i =i-1
Ali + 1] = key

A model for analvzin

For each j, let t; denote the number of times the while test is evaluated

| for 1 — D tn A lonoth r. n
9 Best case: eacht;is1 T(n)isa linear function of n _1

3 Worst case: each t;isj-1 T(n)is a guadratic function of n _ |

A LAV WA WV .L.ALJ -I ALAWVNS WAAW A N\JA VW W Uvj“v‘.‘vv A‘.l‘. . 0 J ‘-J.

. . C n—1
4 We focus mainly on worst-case running times 4

5 while { > 0 and Afi] > key Cs Z{;=2 Lj

Order of growth Theta notation — O(n?)
Another abstraction to ease analysis and focus on the important features.
Look only at the leading term of the formula for running time.

* Drop lower-order terms.

* Ignore the constant coefficient in the leading term.

Take-away message

1. Concentrate on the worst case
2. lgnore constant factors/ lower-order terms

3. Asymptotic analysis — for large values of n

A FAST algorithm is one for which the worst-case running time

grows slowly with input size

Divide and conquer

Generally recursive in structure — make sure you understand recursion!

The divide-and-conquer paradigm involves three steps at each level of the recur-
sion:

Divide the problem into a number of subproblems that are smaller instances of the
same problem.

Conquer the subproblems by solving them recursively. If the subproblem sizes are
small enough, however, just solve the subproblems in a straightforward manner.

Combine the solutions to the subproblems into the solution for the original prob-
lem.

Divide and conquer — merge sort

The merge sort algorithm closely follows the divide-and-conquer paradigm. In-
tuitively, it operates as follows.

Divide: Divide the n-element sequence to be sorted into two subsequences of 7/2
elements each.

Conquer: Sort the two subsequences recursively using merge sort.

Combine: Merge the two sorted subsequences to produce the sorted answer.

The recursion “bottoms out” when the sequence to be sorted has length 1, in which
case there 1s no work to be done, since every sequence of length 1 is already in
sorted order.

MERGE-SORT(A, p,r)

if p<r
q = |(p+r)/2]
MERGE-SORT(A, p,q)
MERGE-SORT(A,q + 1,r)
MERGE(A, p.q,r)

& T S

Divide and conquer — merge sort

sorted sequence

1 2 2 3 4 5 6 7
/ merge \

2 4 5 7 1 2 3 6
merge \ / merge \
2 5 4 7 1 3 2 6
merg& ﬂnerge merge ﬂnerge
5 2 4 7 | 3 2 6

initial sequence

Divide and conquer analysis - recurrences

Let 7' (n) = running time on a problem of size 7.

* If the problem size is small enough (say, n < ¢ for some constant c), we have a
base case. The brute-force solution takes constant time: ®(1).

* Otherwise, suppose that we divide into a subproblems, each 1/b the size of the
original. (In merge sort,a = b = 2.)

* Let the time to divide a size-n problem be D(n).

* Have a subproblems to solve, each of size n/b = each subproblem takes
T'(n/b) time to solve = we spend aT'(n/b) time solving subproblems.

* Let the time to combine solutions be C(n).
* We get the recurrence

T(n) = O(1) ifn <c,
) aT(n/b)+ D(n) + C(n) otherwise .
For merge sort T(n) = o) %f” =1,
2T (n/2) +O®n) ifn>1.

Divide and conquer analysis - recurrences

O(1) ifn = 1 _|The Master Theorem yields T(n) = ©(n Ig n)
T(n) = ’
) 2T (n/2) +O(n) ifn>1.
A CN s - cn
Can also see from Recursion Tree / \
cn/2 cn/2 g - cn
AT
cnl4 cnl4 cnl/4 cn/d g - cn

TN

Total: cnlgn+cn

