- 1. Pseudo-code describe algorithms
- Asymptotic notation discuss efficiency
- 3. Design techniques design algorithms
- 1. Concentrate on the worst case
- 2. Ignore constant factors/ lower-order terms
- 3. Asymptotic analysis for <u>large</u> values of n

A FAST algorithm is one for which the worst-case running time grows slowly with input size

- 1. Pseudo-code describe algorithms
- 2. Asymptotic notation discuss efficiency
- 3. Design techniques design algorithms
- Describe *growth* of functions.
- Focus on what's important by abstracting away low-order terms and constant factors.

How we indicate running times of algorithms.

A way to compare "sizes" of functions:

```
O \approx \leq
```

$$\Omega \approx \geq$$

$$\Theta \approx =$$

$$o \approx <$$

$$\omega \approx >$$

 $O(g(n)) = \{f(n) : \text{ there exist positive constants } c \text{ and } n_0 \text{ such that } 0 \le f(n) \le cg(n) \text{ for all } n \ge n_0 \}$.

g(n) is an asymptotic upper bound for f(n).

If $f(n) \in O(g(n))$, we write f(n) = O(g(n))

 $\Omega(g(n)) = \{f(n) : \text{ there exist positive constants } c \text{ and } n_0 \text{ such that } 0 \le cg(n) \le f(n) \text{ for all } n \ge n_0 \}$.

g(n) is an asymptotic lower bound for f(n).

 $\Theta(g(n)) = \{f(n) : \text{ there exist positive constants } c_1, c_2, \text{ and } n_0 \text{ such that } 0 \le c_1 g(n) \le f(n) \le c_2 g(n) \text{ for all } n \ge n_0 \}$.

 $c_2g(n)$

Theorem 3.1

For any two functions f(n) and g(n), we have $f(n) = \Theta(g(n))$ if and only if f(n) = O(g(n)) and $f(n) = \Omega(g(n))$.

g(n) is an asymptotically tight bound for f(n).

 $o(g(n)) = \{f(n) : \text{ for all constants } c > 0, \text{ there exists a constant}$ $n_0 > 0 \text{ such that } 0 \le f(n) < cg(n) \text{ for all } n \ge n_0 \}$

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0.$$

 $\omega(g(n)) = \{f(n) : \text{ for all constants } c > 0, \text{ there exists a constant}$ $n_0 > 0 \text{ such that } 0 \le cg(n) < f(n) \text{ for all } n \ge n_0 \}$

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = \infty$$

Asymptotic notation in equations

When on right-hand side

 $O(n^2)$ stands for some anonymous function in the set $O(n^2)$.

$$2n^2 + 3n + 1 = 2n^2 + \Theta(n)$$
 means $2n^2 + 3n + 1 = 2n^2 + f(n)$ for some $f(n) \in \Theta(n)$. In particular, $f(n) = 3n + 1$.

When on left-hand side

No matter how the anonymous functions are chosen on the left-hand side, there is a way to choose the anonymous functions on the right-hand side to make the equation valid.

Interpret $2n^2 + \Theta(n) = \Theta(n^2)$ as meaning for all functions $f(n) \in \Theta(n)$, there exists a function $g(n) \in \Theta(n^2)$ such that $2n^2 + f(n) = g(n)$.

Can chain together:

$$2n^2 + 3n + 1 = 2n^2 + \Theta(n)$$
$$= \Theta(n^2).$$

ASYMPTOTIC NOTATION: PROPERTIES

Transitivity:

$$f(n) = \Theta(g(n))$$
 and $g(n) = \Theta(h(n)) \Rightarrow f(n) = \Theta(h(n))$.
Same for O, Ω, o , and ω .

Reflexivity:

$$f(n) = \Theta(f(n)).$$

Same for O and Ω .

Symmetry:

$$f(n) = \Theta(g(n))$$
 if and only if $g(n) = \Theta(f(n))$.

Transpose symmetry:

$$f(n) = O(g(n))$$
 if and only if $g(n) = \Omega(f(n))$.
 $f(n) = o(g(n))$ if and only if $g(n) = \omega(f(n))$.

COMPARISON OF FUNCTIONS

f(n) is asymptotically smaller than g(n) if f(n) = o(g(n)).

f(n) is asymptotically larger than g(n) if $f(n) = \omega(g(n))$.

No trichotomy. Although intuitively, we can liken O to \leq , Ω to \geq , etc., unlike real numbers, where a < b, a = b, or a > b, we might not be able to compare functions.

Example: $n^{1+\sin n}$ and n, since $1+\sin n$ oscillates between 0 and 2.

Some problems from the text: 3.1-3, 3.1-4, 3-2

Let f(n) and g(n) denote non-negative functions of n. Prove that $max(f(n), g(n)) = \Theta(f(n) + g(n))$