Algorithm design techniques
 - divide and conquer
 - incremental
 - Dynamic Programming & Greedy
Use Graph Algorithms (esp. shortest paths) as examples
 - Graph Representation
Graphs

\[G = (V,E) \]

- \(V \) the vertices of the graph \(\{v_1, v_2, \ldots, v_n\} \)
- \(E \) the edges; \(E \) a subset of \(V \times V \)
- A cost function – \(c_{ij} \) is the cost/weight of the edge \((v_i, v_j) \)
Graph $G=(V,E)$: representation

1. **Adjacency Matrix** – a $|V| \times |V|$ matrix, with the $[i,j]$’th entry representing the edge from the i’th to the j’th vertex

2. **Adjacency List** – an array of linked lists of length $|V|$, with the i’th entry denoting the edges from the i’th vertex
Graph $G=(V,E)$: representation

1. **Adjacency Matrix** – a $|V| \times |V|$ matrix, with the (i,j)’th entry representing the edge from the i’th to the j’th vertex

2. **Adjacency List** – an array of linked lists of length $|V|$, with the i’th entry denoting the edges from the i’th vertex

![Graph $G=(V,E)$ with Adjacency Matrix and Adjacency List](graph.png)
Graph $G=(V,E)$: representation

1. **Adjacency Matrix** – a $|V| \times |V|$ matrix, with the $[i,j]$’th entry representing the edge from the i’th to the j’th vertex

2. **Adjacency List** – an array of linked lists of length $|V|$, with the i’th entry denoting the edges from the i’th vertex

Weighted graph: the matrix entries denote the edge-weights

Some *sentinel* value (depends on application) for non-existent edges

- E.g., shortest-path problems: ∞

Values along the *diagonal*

Undirected graph: symmetric along diagonal

Memory requirement: $\Theta(|V|^2)$

- OK for *dense* graphs; too much for *sparse* graphs

- Road networks; social n’works; etc. tend to be sparse
Graph $G=(V,E)$: representation

1. **Adjacency Matrix** – a $|V| \times |V|$ matrix, with the $[i,j]$’th entry representing the edge from the i’th to the j’th vertex

2. **Adjacency List** – an array of linked lists of length $|V|$, with the i’th entry denoting the edges from the i’th vertex
Graph $G=(V,E)$: representation

1. **Adjacency Matrix** – a $|V| \times |V|$ matrix, with the $[i,j]$’th entry representing the edge from the i’th to the j’th vertex

2. **Adjacency List** – an array of linked lists of length $|V|$, with the i’th entry denoting the edges from the i’th vertex

Weighted graph: the list entries contain the edge-weights as well

The **order** of the edges within a list is irrelevant

Undirected graph: each edge appears in two lists

Memory requirement: $\Theta(|V| + |E|)$

- **linear** in the **size** of the graph
Graphs

\[G = (V,E) \]

- \(V \) the vertices of the graph \(\{v_1, v_2, ..., v_n\} \)
- \(E \) the edges; \(E \) a subset of \(V \times V \)
- A cost function – \(c_{ij} \) is the cost/weight of the edge \((v_i, v_j) \)

Adjacency Matrix

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>∞</td>
<td>6</td>
<td>3</td>
<td>∞</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>0</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
</tr>
<tr>
<td>3</td>
<td>∞</td>
<td>∞</td>
<td>0</td>
<td>2</td>
<td>∞</td>
</tr>
<tr>
<td>4</td>
<td>∞</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>∞</td>
</tr>
<tr>
<td>5</td>
<td>∞</td>
<td>4</td>
<td>∞</td>
<td>2</td>
<td>0</td>
</tr>
</tbody>
</table>

Adjacency List

1. \(3 \rightarrow 6 \rightarrow 4 \rightarrow 3 \)
2. \(1 \rightarrow 3 \)
3. \(4 \rightarrow 2 \)
4. \(2 \rightarrow 1 \rightarrow 3 \rightarrow 1 \)
5. \(4 \rightarrow 2 \rightarrow 2 \rightarrow 4 \)
Graphs

Memory – $O(|V|^2)$ vs $O(|V| + |E|)$

Does a particular edge exist? – $O(1)$ vs $O(\min(|V|, |E|))$

Outdegree of a particular vertex – $O(|V|)$ vs $O(\min(|V|, |E|))$

Indegree of a particular vertex – $O(|V|)$ vs $O(\max(|V|, |E|))$
The square of a directed graph $G = (V, E)$ is the graph $G^2 = (V, E^2)$ such that $(u, v) \in E^2$ if and only if G contains a path with at most two edges between u and v. Describe efficient algorithms for computing G^2 from G for both the adjacency-list and adjacency-matrix representations of G. Analyze the running times of your algorithms.

Is there an edge between vertices 3 and 2 in G^2?

Is there an edge between vertices 3 and 5 in G^2?