Polynomial-time algorithms

Running time is polynomial in the representation of an input instance

- In binary (equivalently, the number of keystrokes on your keyboard)
- Not unary!!

- Revisit the RAM model (and operations taking constant time)

Strictly speaking, we should precisely define the instructions of the RAM model
and their costs. To do so, however, would be tedious and would yield little insight
into algorithm design and analysis. Yet we must be careful not to abuse the RAM
model. For example, what if a RAM had an instruction that sorts? Then we could
sort in just one instruction. Such a RAM would be unrealistic, since real computers
do not have such instructions. Our guide, therefore, is how real computers are de-
signed. The RAM model contains instructions commonly found in real computers:
arithmetic (such as add, subtract, multiply, divide, remainder, floor, ceiling), data
movement (load, store, copy), and control (conditional and unconditional branch,
subroutine call and return). Each such instruction takes a constant amount of time.

The data types in the RAM model are integer and floating point (for storing real
numbers). Although we typically do not concern ourselves with precision in this
book, in some applications precision is crucial. We also assume a limit on the size
of each word of data. For example, when working with inputs of size n, we typ-
ically assume that integers are represented by c Ign bits for some constant ¢ > 1.
We require ¢ > 1 so that each word can hold the value of n, enabling us to index the
individual input elements, and we restrict ¢ to be a constant so that the word size
does not grow arbitrarily. (If the word size could grow arbitrarily, we could store
huge amounts of data in one word and operate on it all in constant time—clearly
an unrealistic scenario.)

Polynomial-time algorithms

Running time is polynomial in the representation of an input instance

Polynomial-time or not?
int fib (int n){//Dynamic Program

int fib (int n){ int f{n+17];
if (n<=2) return 1; f[1]=1[2] = 1,
return fib (n-1) + fib (n-2); for (int i=3; i <= n; i++)
) fli] =fi-1] + f[i-R];
return f[n];
Polynomial-time)

- Constant-time if exponentiation is available
- Linear-time (not logarithmic) if not

F_] 1_+_\/5” q 1_\/511

7, 2 /5 >

http://en.wikipedia.org/wiki/Fibonacci_number

What is the running time of this algorithm?

SQUA RIX-MULTIPLY (A4, B)

. O(n3)
be a new 71 X 71 matrix

1

2

3 fori =1ton But not cubic in the size of the input
-} for j = 1ton

5 Cij = 0

6 for k = 1ton

7 Cij = Cijj + dik 'bkj

8 return C

Showing problems to not be solvable in polynomial time

Optimization problem = decision problem

* Hasayes/ no answer

e Easier (no harder) than the optimization problem

* Polynomial-time solution often means a polynomial-time
solution to the optimization problem, by “binary search”

Showing problems to not be solvable in polynomial time

Optimization problem = decision problem

Reductions Find a known “hard” problem A, such that a polynomial-time solution

to your problem B implies a polynomial-time solution to A

: — . — es
instance & _| _ | polynomial-time instance 3 ~ polynomial-time | Y>> yes
of A reduction algorithm of B algorithm to decide B [Hr5——>l > no

olynomial-time algorithm to decide A
© o : =

&) -
Choose this Prove this
Define this

Showing problems to not be solvable in polynomial time

Optimization problem = decision problem

Reductions Find a known “hard” problem A, such that a polynomial-time solution

to your problem B implies a polynomial-time solution to A

Y Y
Instance of _ Polynomial-time Instance of +| Algorithm
PARTITION transformation KNAPSACK N N
(2) (3]
\g/
Choose this Prove this

Define this

Showing problems to not be solvable in polynomial time

Y Y
Instance of _ Polynomial-time Instance of +| Algorithm
PARTITION transformation KNAPSACK N__| N
(2) (3]
\2'/
Choose this Prove this
Define this

INSTANCE. Finite set A, and a size s(a) € Z* for each a € A
QUESTION. Is there a subset A’ C A such that
Z s(a) = Z s(a)
acA’ acA\A’
Proof of correctness:
An item for each a € A of PARTITION, with weight s(a) « Input instance in PARTITION
and value S(G). W =V = half the sum of the S(G)’S ° |nput instance n_ot in PARTITION

Showing problems to not be solvable in polynomial time

Optimization problem = decision problem

Reductions Find adccnown “hard” pro@A, such that a polynomial-time solution

to your problem B implies a polynomial-time solution to A

We find the known hard problems in [Garey & Johnson]

- How did they get there?

- The first hard problem

The class of problems NP

P = decision problems solved by some polynomial-time algorithm
Observation: For some problems, it seems easier to verify a given

solution, than to find one
— Factorization (is n a composite number?)

— Partition
—Given A’, verify that the sizes of elements in A’ sum to half the total sum

—Knapsack
—Given a subset of the items, verify that their weights sum to £ W, and values to 2V

NP = decision problems verified by some polynomial-time algorithm
Certificates of membership in the language defined by the problem

A language belongs to the class NP if there is an algorithm that
accepts an input and a certificate, and verifies that the input

belongs to the language, in time polynomial in the size of the input

The class of problems NP

Every decision problem defines a language of all strings for which the decision
problem yields a “yes” answer
For decision problems in the class P, there is a polynomial-time algorithm that
determines whether an input belongs to the language
For decision problems in the class NP, there is a polynomial-time algorithm that
verifies whether a given certificate for a given input shows that the input belongs
to the language
* The running time is polynomial in the size of the input (not the certificate)
* [Hence, certificates should be of polynomial size]
Every language in the class P is in the class NP (why?)
Languages such as PARTITION are in NP, but not known to be in P

NP
P

