NP-completeness

2 perspectives:
1. To show that some problems are (probably) hard to solve
2. Arich topic in theoretical computer science
To show a language is in NP:
2-input verification algorithms with polynomial running time
Examples:
Luamv = 1G | G has a Hamiltonian cycle}
Leomposite = th | nis a composite number}
What about
Lorive = {0 | nis a prime number}?
Lyor.nam = 1G | G does not have a Hamiltonian cycle}?

A language L is in the complexity class co-NP if its complement is is NP

NP-completeness

The circuit satisfiability problem CIRCUIT-SAT
A combinatorial circuit of and/ or/ not gates
Represented as a directed acyclic graph
Lorcumsar = 1€ | Cis a satisfiable combinatorial circuit}
Lemma 34.5. Loreursar 1S iIN NP
Lemma 34.6. Lorcyrsat IS NP-hard
Proof -the standard reduction
Let L be any language in NP, accepted by the 2-input verification algorithm A(x,y)
Given any input x (Is x in L?)
-Compute f(|x|), where f(|x|) is the running time of A(x,y)
-Make f(|x]|) copies of the comb circuit of a computer, and f(|x]|)+1 copies
of the memory of the computer, and wire the copies together
-Initialize the first memory copy to A, x, and y
-Ignore all bits except the output bit on the f(|x|)+1 ‘th memory copy

)

A

PC

aux machine state

WO‘kll‘k storage

\\
///

s

\
NN

A

PC

aux machine state

working storage

\\
///

o

NN

A

PC

aux machine state

working storage

N

—
T

_— /

//(

NN T

T

NN

A

PC

aux machine state

King storage

0/1 output

(CIRCUIT-SAT)

SAT Cook (1971). The complexity of theorem-proving
procedures

(3-CNF-SAT>

\
(SUBSET-SUM)

(VERTEX-COVER)

(HAM-CYCLE)

TSP

