
1.  Pseudo-code	–	describe	algorithms	
2.  AsymptoNc	notaNon	–	discuss	efficiency	
3.  Design	techniques	–	design	algorithms	

The	sor*ng	problem	



Inser*on	Sort	

You	should	know	about	loop	invariants	to	show	correctness	(of	loops)	

•  	True	at	Ini*aliza*on	
•  	Maintained	during	each	iteraNon	of	the	loop	
•  	It	and	termina*on	condi*on	implies	correctness		

Algorithm	design	technique:	
Incremental	Design	

(Read	pages	18—20	of	the	text)	



A	model	for	analyzing	running	*mes	
The	Random	Access	Machine	(RAM)	model	[p	23-24]	

Assume	instrucNons	commonly	found	on	most	real	computers	take	constant	Nme	
per	instrucNon	



A	model	for	analyzing	running	*mes	
An	algorithm’s	running	Nme	depends	upon	input	size	and	input	value	
•  Takes	more	Nme	to	sort	more	elements		
•  Usually,	size	is	the	number	of	elements	in	the	input	

•  SomeNmes,	(e.g.,	number	problems)	the	number	of	bits	
needed	

•  SomeNmes,	mul*ple	parameters	(e.g.,	graphs)	
•  Primality	tesNng	–	trivial	for	even	numbers	

•  [We’ll	see	that]	InserNon	sort	takes	least/	most	Nme	on	sorted/		
reverse-sorted	input	



A	model	for	analyzing	running	*mes	
For	each	j,	let	tj	denote	the	number	of	Nmes	the	while	test	is	evaluated	



A	model	for	analyzing	running	*mes	

Best	case:					each	tj	is	1	
Worst	case:			each	tj	is	j-1	

T(n)	is	a	linear	funcNon	of	n	
T(n)	is	a	quadraNc	funcNon	of	n	

We	focus	mainly	on	worst-case	running	Nmes	

Theta	notaNon	–	Θ(n2)	

For	each	j,	let	tj	denote	the	number	of	Nmes	the	while	test	is	evaluated	



Take-away	message	

1.  	Concentrate	on	the	worst	case	
2.  	Ignore	constant	factors/	lower-order	terms	
3.  	AsymptoNc	analysis	–	for	large	values	of	n	

A	FAST	algorithm	is	one	for	which	the	worst-case	running	Nme	

grows	slowly	with	input	size	



1.  Pseudo-code	–	describe	algorithms	
2.  AsymptoNc	notaNon	–	discuss	efficiency	
3.  Design	techniques	–	design	algorithms	

InserNon	sort	–	incremental	design		



Divide	and	conquer	
Generally	recursive	in	structure	–	make	sure	you	understand	recursion!			



Divide	and	conquer	–	merge	sort	



Divide	and	conquer	–	merge	sort	



Divide	and	conquer	analysis	-	recurrences	

For	merge	sort	



Divide	and	conquer	analysis	-	recurrences	
The	Master	Method	yields	T(n)	=	Θ(n	lg	n)		

Can	also	see	from	Recursion	Tree	


