- 1. Pseudo-code describe algorithms
- 2. Asymptotic notation discuss efficiency
- 3. Design techniques design algorithms
- Describe *growth* of functions.
- Focus on what's important by abstracting away low-order terms and constant factors.

How we indicate running times of algorithms.

A way to compare "sizes" of functions:

$$egin{array}{ccc} O & pprox & \leq & \ \Omega & pprox & \geq & \ \Theta & pprox & = & \end{array}$$

- $o \approx <$
- $\omega \approx >$

 $O(g(n)) = \{ f(n) : \text{ there exist positive constants } c \text{ and } n_0 \text{ such that} \\ 0 \le f(n) \le cg(n) \text{ for all } n \ge n_0 \}.$

 $\Omega(g(n)) = \{ f(n) : \text{ there exist positive constants } c \text{ and } n_0 \text{ such that} \\ 0 \le cg(n) \le f(n) \text{ for all } n \ge n_0 \}.$

g(n) is an *asymptotic lower bound* for f(n).

 $\Theta(g(n)) = \{ f(n) : \text{ there exist positive constants } c_1, c_2, \text{ and } n_0 \text{ such that} \\ 0 \le c_1 g(n) \le f(n) \le c_2 g(n) \text{ for all } n \ge n_0 \}.$

g(n) is an *asymptotically tight bound* for f(n).

Theorem 3.1

For any two functions f(n) and g(n), we have $f(n) = \Theta(g(n))$ if and only if f(n) = O(g(n)) and $f(n) = \Omega(g(n))$.

 $o(g(n)) = \{f(n) : \text{ for all constants } c > 0, \text{ there exists a constant}$ $n_0 > 0 \text{ such that } 0 \le f(n) < cg(n) \text{ for all } n \ge n_0\}$

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0.$$

 $\omega(g(n)) = \{ f(n) : \text{ for all constants } c > 0, \text{ there exists a constant} \\ n_0 > 0 \text{ such that } 0 \le cg(n) < f(n) \text{ for all } n \ge n_0 \}$

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = \infty$$

Asymptotic notation in equations

When on right-hand side

 $O(n^2)$ stands for some anonymous function in the set $O(n^2)$.

 $2n^2 + 3n + 1 = 2n^2 + \Theta(n)$ means $2n^2 + 3n + 1 = 2n^2 + f(n)$ for some $f(n) \in \Theta(n)$. In particular, f(n) = 3n + 1.

When on left-hand side

No matter how the anonymous functions are chosen on the left-hand side, there is a way to choose the anonymous functions on the right-hand side to make the equation valid.

Interpret $2n^2 + \Theta(n) = \Theta(n^2)$ as meaning for all functions $f(n) \in \Theta(n)$, there exists a function $g(n) \in \Theta(n^2)$ such that $2n^2 + f(n) = g(n)$.

Can chain together:

$$2n^2 + 3n + 1 = 2n^2 + \Theta(n)$$

= $\Theta(n^2)$.

ASYMPTOTIC NOTATION: PROPERTIES

Transitivity:

 $f(n) = \Theta(g(n))$ and $g(n) = \Theta(h(n)) \Rightarrow f(n) = \Theta(h(n))$. Same for O, Ω, o , and ω .

Reflexivity:

 $f(n) = \Theta(f(n)).$ Same for *O* and Ω .

Symmetry:

 $f(n) = \Theta(g(n))$ if and only if $g(n) = \Theta(f(n))$.

Transpose symmetry:

$$f(n) = O(g(n))$$
 if and only if $g(n) = \Omega(f(n))$.
 $f(n) = o(g(n))$ if and only if $g(n) = \omega(f(n))$.

COMPARISON OF FUNCTIONS

omparisons:

f(n) is asymptotically smaller than g(n) if f(n) = o(g(n)). f(n) is asymptotically larger than g(n) if $f(n) = \omega(g(n))$.

No trichotomy. Although intuitively, we can liken O to \leq , Ω to \geq , etc., unlike real numbers, where a < b, a = b, or a > b, we might not be able to compare functions.

Example: $n^{1+\sin n}$ and n, since $1 + \sin n$ oscillates between 0 and 2.

A Problem

Suppose that we wish to know which floors in an *n*-floor building are safe to drop eggs from, and which will cause the eggs to break on landing.

Assume that

- An egg that survives a fall can be used again (but a broken egg is discarded)
- The effect of a fall is the same for all eggs
- If an egg breaks when dropped, then it would break if dropped from a higher floor
- If an egg survives a fall then it would survive if dropped from a lower floor

You have k eggs available. What is the least number of egg-droppings that is guaranteed to determine the lowest floor from which it would break if dropped?