
Hello Class
It’s me again!



Today
Example of an NP-Complete problem:  Circuit-satisfiability

Proof that it is in NP (verifiable in polynomial time)

An somewhat informal appeal that it is also NP-Hard

Also today:  Pictures!  (Figures)  So please speak up if you can’t see.



Brief Review
The class of NP, NP-Complete, NP-Hard, etc. are of no practical valuable if they 
are all empty.

To show they are not empty requires a single example.

NP-classification is important for a variety of reasons, the most obvious related to 
cyber-security.



Circuit Satisfiability:  Circuit Design:  Principles
A circuit is a Direct Acyclic Graph (DAG).  In examples, direction is left to right.

It forms a function from {0,1}n ⇒ {0,1}m

Input edges to the graph take a single boolean input from the set of inputs

Each boolean in the input set corresponds to a single input edge

Output edges to the graph emit a single boolean output to the set of outputs

Each boolean in the output set corresponds to a single output edge



Circuit Satisfiability:  Circuit Design:  Examples
Take n = 3, m = 3.

{0,1}1 

{0,1}2 

{0,1}3 

{0,1}1 

{0,1}2 

{0,1}3
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Circuit Satisfiability:  Circuit Design:  Examples
Take n = 3, m = 4.

{0,1}1 

{0,1}2 

{0,1}3 

{0,1}1 

{0,1}2 

{0,1}3

{0,1}4



Circuit Satisfiability:  Circuit Design:  Logic Gates
To make things more exciting, we add the concept of logic gates.

Graph nodes can be logic gates, which are functions.

The NOT gate:  {0,1} ⇒ {0,1} inverts input: NOT(1) = 0, NOT(0) = 1

The AND gate:  {0,1}n ⇒ {0,1} emits 0 unless all inputs are 1, then 1

The  OR  gate:  {0,1}n ⇒ {0,1} emits 1 unless all inputs are 0, then 0

Nodes may always generate multiple identical outputs, ie “multiple wires”



Circuit Satisfiability:  Circuit Design:  Examples
Take n = 3, m = 3.

{0,1}1 

{0,1}2 

{0,1}3 

Here, for example, c(1,1,0) = <1,1,1> or c(1,0,1) = <0,0,0>

{0,1}1 

{0,1}2 

{0,1}3

AND

NOT



Circuit Satisfiability:  Circuit Design:  Examples
Take n = 3, m = 1.

{0,1}1 

{0,1}2 

{0,1}3 

Here, for example, c(1,1,1) = 1 while another other inputs give c = 0.

{0,1} 
AND



Circuit Satisfiability:  Satisfiability
Satisfiable means that something might be “true”

For a circuit to be satisfiable, we consider circuit with a single output.

If there is a set of inputs for which the output is 1, then it is satisfiable.

Formally:  

Otherwise it is unsatisfiable.

As an aside, if all inputs evaluate to true, then a circuit is valid.  



Circuit Satisfiability:  Satisfiable Example
Take n = 3, m = 1.

{0,1}1 

{0,1}2 

{0,1}3 

This is satisfiable because c(1,1,1) = 1

{0,1} 
AND



Circuit Satisfiability:  Unsatisfiable Example
Take n = 1, m = 1.

{0,1} 

See that c(0) = 0 and c(1) = 0 as well.  (Change AND to OR for a valid circuit)

{0,1} 

NOT

AND



Circuit Satisfiability:  Closing Remarks
The size of a circuit is the number of gates.

The size of the input is the number of booleans.

We take as trivial the encoding of the circuit as a graph in memory.

Consider this as an exercise, taking care to preserve polynomial constraints

The text would like me to note that this problem is important because people get 
jobs making circuits and this problem has implications there.  C.R.E.A.M.



CIRCUIT-SAT is in NP (Lemma 34.5)
Consider algorithm A.  It’s aim is to verify a solution in polynomial time.

A takes as input a circuit C and a certificate and gives boolean output.

The certificate encodes outputs of a graph edges in the circuit.  Crucially, its size 
is bounded by a polynomial of the the size of the circuit.

A considers each logic gate in C and, if all operations are correct the C output 1, 
then it returns true.   Otherwise, it returns false.

With a satisfying certificate, A completes in polynomial time and returns true.



CIRCUIT-SAT is NP-Complete Sketch
And I quote:

“The actual proof of this fact is full of technical intricacies, and so we shall settle 
for a sketch of the proof based on some understanding of the workings of 
computer hardware.”



CIRCUIT-SAT is NP-Hard Sketch:  Computers
Perhaps unsurprisingly, computers can be made out of circuits.  Moreover, circuits 
can compute algorithms on problems in NP.

How?

A program is stored in memory as a sequence of instructions.  These instructions 
are combinations of logic gates.  (Otherwise may be memory references).

Now, if we are ahead of schedule, we will build an addition circuit from logic.

Otherwise, we will go straight to the Lemma.



An Aside:  Circuit Addition:  Problem Statement
Consider addition between two-digit binary numbers.  It can be encoded as:

{0,1}4 ⇒ {0,1}3 where the interpretation of input is two adjacent two-digit numbers

Output is the 3 digit sum.

Binary encoding is standard:

0b00 = 0, 0b01 = 1, 0b10 = 2, etc. 



An Aside:  Circuit Addition:  Circuit Part 1
First we consider addition between single digit binary numbers with carrying.

That is, {0,1}2 ⇒ {0,1}2 where input is two adjacent single-digit numbers

Output is the sum, with the second value holding the 0b10’s place to carry

{0,1}1  

{0,1}2

OR

AND

NOT

AND
{0,1}1 (1’s place)

{0,1}2 (0b10’s / carry)



An Aside:  Circuit Addition:  Circuit Part n
From there, we can simply rearrange inputs to group 1’s and 10’s places and add

{0,1}1

{0,1}2

{0,1}3

{0,1}4

Fairly straightforward to extend to general addition and, frankly, everything else.

ADD

ADD

ADD

OR

{0,1}1 (1’s place)

{0,1}2 (0b10’s)

{0,1}3 (0b100’s)



CIRCUIT-SAT is NP-Hard Sketch
Imagine encoding everything in a computer’s memory that a program is allowed to 
use, everything in registers.

This is the computer’s state which the text calls a configuration.

Imagine executing instructions as transitions between states.

This is done using boolean circuits!

GASP!



CIRCUIT-SAT is NP-Hard (Lemma 34.6)
Definitions:

L is a language in NP.

F is the polynomial time algorithm used for reduction

It maps strings x in L to circuit C = f (x)

It preserves the feature that x is in L iff C is satisfiable

M is a mapping circuit from one configuration to another

Also recall previously defined algorithm A which is polynomially complex



CIRCUIT-SAT is NP-Hard (Lemma 34.6)
Algorithm F:  

For input x, create a circuit C.  It will contain polynomially many instances of M.

If x is in L there will be a satisfying input to C.  Call this y.

C takes an input the algorithm A, the input x and the input y and no other input.

The result?  The computer computes C(y) = A(x,y) in polynomially many steps.

Why?  A runs in polynomially many M’s which are, themselves, polynomial.  



CIRCUIT-SAT is NP-Hard (Lemma 34.6)
Note then that if C is not satisfiable, then the algorithm does not return true 
because of the correctness of A.

Likewise, if the algorithm returns true, then C is necessarily satisfiable and so to 
then is x.

The algorithm fits in polynomial space because it runs in polynomial time and 
updates at most polynomial memory locations per unit time.  



CIRCUIT-SAT is NP-Complete (Lemma 34.6)
This is, by definition, an immediate consequence of membership in NP and 
NP-Hard.

Any questions?


