
1

COMP 410 - Spring 2017
Programming Assignment 2

Due back by 9:05 am on February 20

F

For this assignment, you are to

1) Implement the priority queue ADT (specified in interface form below) as a sorted array;
2) use your priority queue implementation to sort an array; and
3) compare the efficiency of this sorting algorithm with another one implemented using the java.util.PriorityQueue

implementation of priority queue.

The priority queue interface that you are to implement is as follows:

public interface PQ<C extends Comparable<?super C>> {
public boolean isFull();
public boolean isEmpty();
public void insert(C data); //Precondition: Not full
public C min(); //Precondition: Not empty
public C deleteMin(); //Precondition: Not empty

}

Below we provide a skeleton for your implementation of this interface; complete this skeleton by filling in the three
methods insert(), min(), and deleteMin().

public class PQasSortedArray<C extends Comparable<?super C>> implements PQ<C> {
private C[] arr; // store the elements in the priority queue IN SORTED ORDER
private int currentSize;
public PQasSortedArray(int size){

arr = (C[]) new Comparable[size];
currentSize = 0;

}
public boolean isFull(){return currentSize == arr.length;}
public boolean isEmpty(){return currentSize == 0;}
public void insert(C data){ //fill in the details here}
public C min(){//fill in the details here}
public C deleteMin(){//fill in the details here}

}

Note. You may not use Java’s built-in sort methods within your method implementations — explicitly implement all
sorting routines on your own.



2

Using, and evaluating, your priority queue. You are to use your priority queue implementation in a main class that

1) declares and fills in an array of a (specified) constant size Nwith random Doubles — read up on java.util.Random
to learn how this is to be done.

2) Sorts this array using your priority queue implementation. Let arr1[] denote an array to be sorted; the following
code sorts it:

for (int i=0; i < arr1.length; i++)pq1.insert(arr1[i]);
for (int i=arr1.length-1; i >=0 ; i--)arr1[i] = pq1.deleteMin();

You should determine the amount of time your code takes to sort the array. You can time the performance of any
piece of code in the following manner:

long startTime, endTime;
startTime = System.nanoTime();
//
//CODE TO BE TIMED GOES HERE
//
endTime = System.nanoTime();
System.out.println("Took " + ((endTime - startTime)/1000000) + " time units");

3) Repeat step 2 above (sort and time) for the same array, this time using the java.util.PriorityQueue imple-
mentation of priority queues. The sorting step would look like this:

for (int i=0; i < arr1.length; i++)pq2.offer(arr1[i]); // "offer()" is insert()
for (int i=arr1.length-1; i >=0 ; i--)arr1[i] = pq2.poll(); // "poll()" is deleteMin()

4) Compute the running time of both sorting algorithms for a range of values of N. Based on these computed values,
estimate BigOh running times for both approaches. If they are different, in bigOh terms and/ or absolute (“real
time”) terms, can you provide an explanation as to why?

Submission instructions. You should upload the following three files in a .zipfile to Sakai

1) A file titled PQasSortedArray.java, containing your implementation of the priority queue interface
2) A file titled Tester.java, containing your “main” class that generates random arrays, sorts this array (twice –

once using your priority queue, once Java’s), and times these sorts.
3) A pdf file listing, in tabular form, running times of both sorts for different values of N. Explain how these values

were obtained (e.g., “I ran the code 12 times for each value of N, discarded the largest and smallest running times, and took
the average of the remaining 10”). This pdf file should also contain your estimates of the BigOh running times of both
sorts, and if different, your explanations as to why this is so.


